CN201656535U - 全在线蓄电池组充放电测试设备 - Google Patents
全在线蓄电池组充放电测试设备 Download PDFInfo
- Publication number
- CN201656535U CN201656535U CN2010201759238U CN201020175923U CN201656535U CN 201656535 U CN201656535 U CN 201656535U CN 2010201759238 U CN2010201759238 U CN 2010201759238U CN 201020175923 U CN201020175923 U CN 201020175923U CN 201656535 U CN201656535 U CN 201656535U
- Authority
- CN
- China
- Prior art keywords
- power supply
- current
- discharge
- charge
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本实用新型提供了一种全在线蓄电池组充放电测试设备,包括一DC-DC主机工作电源,一控制单元,一正负极性转换开关、第二安全保护电路,相互并接的一安全保护电路、一自动限流充电和等电位连接安全控制电路、一DC-DC变换器,以及相互串接的一恒流放电负载智能控制电路和一放电负载电路。该设备实现以最佳安全的操作方式,适用于不同正、负的通信电源在线蓄电池组的充电、放电维护测试。无论工作电源是正极还是负极接地,该设备进行在线维护测试时,只需操作蓄电池组侧连接的电源工作接地端,避免了操作碰地短路的风险,并具有对在线蓄电池组恒流限压及稳压限流充、放电维护功能,维护测试使用更加灵活、安全简便。
Description
【技术领域】
本实用新型是涉及通信网内电源维护设备,特别是涉及一种全在线蓄电池组充放电测试设备。
【背景技术】
通信行业现有无线基站电源后备蓄电池维护管理,因无线基站数量多规模大、维护工作劳动强度高、成本高、风险大、维护工作任务繁重,以及浪费能源问题,致使大部分的电池容量放电测试维护工作未能落实到位,导致对无线通信基站后备蓄电池组的实际容量不了解,应急保障供电时长不清楚,常因市电中断不能有效地进行应急发电调度管理,往往导致无线基站通信中断事故的发生,蓄电池被提前报废,这些问题一直困扰着整个通信行业电源维护管理工作者和具体维护工作人员。
为实现无线通信基站电源后备蓄电池组全在线无人值守智能化监控管理,由远程监控自动完成在线蓄电池充放电的容量测试,及时掌控现网所有在线电池组容量及保障供电时长的数据,降低维护人员的劳动强度,减少维护成本开支、提高网络运行质量和整体维护工作效率,提升网络安全运营的综合维护管理水平,采取科学有效的维护管理技术,延长蓄电池组使用寿命,实现全网在线蓄电池组充放电容量自动检测及系统自动维护管理。
【实用新型内容】
本实用新型要解决的主要的技术问题,在于提供一种可在全在线综合型蓄电池组设备系统中使用的的全在线蓄电池组充放电测试设备,同时该全在线蓄电池组充放电测试设备可以作为蓄电池组在线充电与放电的维护测试。
本实用新型是这样实现的:一种全在线蓄电池组充放电测试设备,其特征在于:包括一DC-DC主机工作电源,一控制单元,一正负极性转换开关、第二安全保护电路,相互并接的一安全保护电路、一自动限流充电和等电位连接安全控制电路、一DC-DC变换器,以及相互串接的一恒流放电负载智能控制电路和一放电负载电路,所述正负极性转换开关输入并接于安全保护电路、自动限流充电和等电位连接安全控制电路、DC-DC变换器,输出并接第二安全保护电路;所述控制单元再进一步包括一MCU单元、以及均与该MCU单元连接的一电流/电压数据采集及转换控制电路、蓄电池组单体电压检测设备、数据存储器、远程通信电路、LCD显示和键盘输入;所述设备中DC-DC主机工作电源的输出与所述恒流放电负载智能控制电路、DC-DC变换器、控制单元连接;所述DC-DC变换器分别与所述电流/电压数据采集及转换控制电路及MCU单元连接;MCU单元还分别与所述恒流放电负载智能控制电路、自动限流充电和等电位连接安全控制电路连接;被测蓄电池组并联DC-DC变换器,以及恒流放电负载智能控制电路、DC-DC主机工作电源的输入,提供主机正常工作电源。
较佳的,上述技术方案还包括一电源正反向极性工作保护电路,该电源正反向极性工作保护电路的输出分别与所述恒流放电负载智能控制电路,以及相互并联的DC-DC变换器、DC-DC主机工作电源连接。或者是所述DC-DC变换器、DC-DC主机工作电源、所述恒流放电负载智能控制电路均具有正反向极性电源工作的特点。
较佳的,上述技术方案还包括一AC/DC开关电源,所述主机工作电源为DC-DC电源,该AC/DC开关电源的输入和输出分别连接所述主机工作电源和市电。
较佳的,上述技术方案还包括一电流检测电路,该电流检测电路可为一个传感器,所述电流检测电路在该设备中耦合监测所述被测蓄电池组的充放电工作电源的一个输入端,为全在线蓄电池组充放电测试设备检测在线被测蓄电池组的充电、放电电流。
较佳的,所述安全保护电路为一大功率二极管,其两端串行连接于通信蓄电池组与通信电源系统设备的直流配电屏之间,保证蓄电池组始终处于安全在线工作状态,不影响对通信系统设备的正常安全供电。
所述第二安全保护电路包括一大功率双向电源静态开关管、一直流接触器以及一用于控制和保护该大功率双向电源静态开关管和直流接触器工作的自动控制保护电路,且所述大功率双向电源静态开关管和直流接触器并联连接。该第二安全保护电路保证被测蓄电池组充电或放电测试过程中均能能实时在线不间断安全供电。同时也是完成充放电转换控制和完成等电位连接的主要电路之一。
本实用新型的优点在于:
1、该全在线蓄电池组测试设备的设计与应用,以在线通信后备蓄电池组两端的电压为测试设备的输入工作电源,满足蓄电池充放电特性、相关通信电源运行维护规程标准及蓄电池组维护测试要采放电检测全在线式并维护了在线通信蓄电池组的充、放电安全节能。
2、该全在线蓄电池组充放电测试设备系统的设计与应用,具有在线蓄电池组对通信设备负荷安全节能放电功能,以及在线智能负载恒流放电功能。同时满足在线各种不同通信设备负荷电流的情况下,均能实现在线蓄电池组的恒流放电容量测试。适用于现网不同的各种通信设备负荷供电电源后备蓄电池组进行在线恒流放电测试。
3、该全在线蓄电池组充放电测试设备系统的设计与应用,不仅具备在线蓄电池组恒流放电测试功能,同时还具有对在线蓄电池组的恒流充电和稳压限流充电维护功能。
4、全在线蓄电池组充放电测试设备同时具备在线通信设备节能放电和在线负载放电功能,以及正负电源极性转换控制在线充放电测试功能,综合性强,使用范围广泛。
5、全在线蓄电池组充放电测试设备,满足在线不同正负电源的通信蓄电池组在线恒流充放电测试,智能化程度高,功能强,使用灵活安全。
6、通过无缝连接技术,与被测试的电池组进行串接,保证被测的蓄电池组始终处于安全在线状态,不影响对通信系统设备的正常安全供电,实现被测的蓄电池组以测试设备设定的放电参数在线对实际负荷放电和在线智能负载放电。
7、当在线通信设备实际负荷,满足被测蓄电池组恒流放电时,该设备系统自动关闭在线智能负载放电;当在线通信设备实际负荷不满足被测蓄电池组恒流放电时,该设备系统将自动控制在线智能负载恒流放电,实现被测蓄电池组在线恒流放电容量测试目的。
8、完成放电容量测试之后,由在线整流器输出工作电源通过该测试设备自动控制进行在线限流充电、恒流充电和稳压限流充电,以及完成在线等电位安全连接,自动将被测蓄电池组恢复到原在线正常安全工作状态。
9、与传统使用智能化假负载进行离线测试对比,有效地解决了离线放电操作、供电及恢复在线全过程维护测试安全隐患问题,具有节能、操作简便安全、在线供电安全、测试结束自动进行在线充电及恢复等电位连接等优点。
10、与先进的在线“蓄电池组放电测试设备”对比,并具有蓄电池组在线安全节能放电测试功能与在线恒流智能负载放电测试功能,满足现网各种不同的通信设备负荷的蓄电池组恒流放电测试,更加实用,并具备在线安全节能充放电维护测试功能。
11、单体电池在线检测和告警保护功能,在“设备”电路设计中采用单体无线电压测试管理系统或单体有线电压测试管理系统,维护检测操作简便,提高系统维护工作安全。
12、该全在线蓄电池组充放测试设备系统的输出具有稳压限流、稳流限压控制保护功能,以及输出过电流、过电压保护及过压关机保护功能,具备通信后备电池组在线放电容量检测和安全供电保护特点。
13、该全在线蓄电池组测试设备系统具备维护操作、参数设置简单,智能化程度高,保护功能强等特点,该全在线式电池组放电测试系统操作界面友好,依照系统提示操作,即可完成通信在线电池组容量检测,并自动保存数据,以便维护分析与管理;
14、该全在线式电池组放电测试系统MCU单元的控制系统设置一路交流备份电源,以便适时查阅、读取、拷贝测试数据,以及历史事件记录;
15、该全在线式电池组放电测试系统的MCU单元的控制系统输出,具有标准数据接口,以及USB接口和IP网络接口,使用灵活方便。
【附图说明】
下面参照附图结合实施例对本实用新型作进一步的说明。
图1是本实用新型全在线蓄电池组充放电测试设备实施例一的原理结构框图。
图2是本实用新型全在线蓄电池组充放电测试设备实施例二的原理结构框图。
图3是实施例一或实施例二与-48V通信电源系统无缝连接操作示意图。
图4和图5是实施例一或实施例二与-48V通信电源系统的放电、充电连接原理示意图。
图6和图7是实施例一或实施例二与+24V通信电源系统的放电、充电连接原理示意图。
图8是实施例一应用于-48V通信电源系统时在线放电状态下的原理结构框图,其中省略控制单元部分。
图9是实施例一应用于-48V通信电源系统时在线充电状态下的原理结构框图,其中省略控制单元部分。
图10是实施例二应用于-48V通信电源系统时在线放电状态下的原理结构框图,其中省略控制单元部分。
图11是实施例二应用于-48V通信电源系统时在线充电状态下的原理结构框图,其中省略控制单元部分。
【具体实施方式】
本实用新型的全在线蓄电池组充放电测试设备是应用于一种全在线蓄电池组设备系统,所述全在线蓄电池组设备系统通常还包括一被测蓄电池组和通信设备。该通信设备由该蓄电池组作为后备电源供电。
现举以下2个实施例,并说明其工作原理。
实施例一
请参阅图1所示,本实施例的全在线蓄电池组充放电测试设备,包括一DC-DC主机工作电源1,一控制单元2,一安全保护电路3、一自动限流充电和等电位连接安全控制电路4、一恒流放电负载智能控制电路5、一放电负载电路6、一DC-DC变换器12,以及一正负极性转换开关11、第二安全保护电路10等各电路模块。所述控制单元2再进一步包括一MCU单元21、以及均与该MCU单元21连接的一电流/电压数据采集及转换控制电路22、蓄电池组单体电压检测设备23、数据存储器24、远程通信电路25、LCD显示和键盘输入26。
所述安全保护电路3、自动限流充电和等电位连接安全控制电路4、DC-DC变换器12相互并接的,所述恒流放电负载智能控制电路5和放电负载电路6相互串接。
所述正负极性转换开关11的输入并接于安全保护电路3、自动限流充电和等电位连接安全控制电路4、DC-DC变换器12,输出并接第二安全保护电路10。
所述设备中DC-DC主机工作电源1的输出与所述恒流放电负载智能控制电路5、所述控制单元2连接;
所述DC-DC变换器12分别与所述电流/电压数据采集及转换控制电路22及MCU单元连接;MCU单元2还分别与所述恒流放电负载智能控制电路5、自动限流充电和等电位连接安全控制电路4连接;
被测蓄电池组并联DC-DC变换器12,以及恒流放电负载智能控制电路5、DC-DC主机工作电源1的输入,提供主机正常工作电源。
上述各电路模块的功能表述如下:
所述DC-DC主机工作电源1:为所述恒流放电负载智能控制电路5、所述控制单元2提供工作电源;
所述控制单元2:本电路模块以MCU单元21的系统程序指令为控制模式,以控制恒流放电负载智能控制电路5、自动限流充电和等电位连接安全控制电路4;
所述安全保护电路3:可为一大功率二极管,其两端经正负极性转换开关11串行连接于通信蓄电池组与通信电源系统设备的直流配电屏之间,保证被测的蓄电池组始终处于安全在线状态,不影响对通信系统设备的正常安全供电;
所述自动限流充电和等电位连接安全控制电路4:在完成被测蓄电池组放电测试结束后,自动进行在线限流充电,以及进行等电位安全连接恢复被测蓄电池组至在线正常工作;
所述恒流放电负载智能控制电路5:根据放电设备系统的设置参数,自动完成被测蓄电池组进行在线假负载恒流放电的控制与测试;
所述放电负载电路6:由恒流放电负载智能控制电路5控制被测蓄电池组允许通过放电负载电流的工作电路;
所述第二安全保护电路10:包括一大功率双向电源静态开关管、一直流接触器以及一用于控制和保护该大功率双向电源静态开关管和直流接触器工作的自动控制保护电路(均未图示),且所述大功率双向电源静态开关管和直流接触器并联连接。该第二安全保护电路10保证被测蓄电池组充电或放电测试过程中均能实时在线不间断安全供电。同时也是完成充放电转换控制和完成等电位连接的主要电路之一。
所述正负极性转换开关11:为连接正负工作电源极性的选择转换开关,适用于正负不同的通信电源在线蓄电池组的充电、放电测试控制转换。
所述DC-DC变换器12:为一高频开关电源电路,其输出电压、电流为连续可调,同时具有恒流限压、稳压限流,过电压、过电流、短路等高可靠性的自动控制保护功能。
本实施例还可包括一AC/DC开关电源7和一电流检测电路8,该AC/DC开关电源7的输入和输出分别连接所述DC-DC主机工作电源1和市电,用以将市电引入以作为主机电源的交流输入供电电源;所述电流检测电路8可为一个传感器,所述电流检测电路8连接所述全在线蓄电池组充放电测试设备的各接线端,为全在线蓄电池组充放电测试设备检测在线被测蓄电池组的充电、放电电流。
请再参考图1,为了将本实施例的全在线蓄电池组充放电测试设备应用时连接方便,将所述放电负载电路6、恒流放电负载智能控制电路5、DC-DC主机工作电源1的两个输入端分别引出一电源输出线,使之具有第一接线端子A和第二接线端子B。再将并接的电源正负极性转换开关11和第二安全保护电路10的输出两端公共点上,分别引出一电源输出线,具有两个接线端,其中一个接线端为第三接线端子D,另一接线端在设备内经电流检测8与第二接线端子B进行了连接,其输出保持与在线的蓄电池组进行串联连接。第一接线端子A、第二接线端子B以及第三接线端子D都同时与电流/电压数据采集及转换控制电路22连接。所述第一接线端子A端,连接在线工作电源的负极或正极,或连接被测蓄电池组侧接在线工作电源的负极或正极接线端;所述第二接线端子B端,连接至被测在线蓄电池组侧连接在线电源工作地的正极或负极接线端子;所述第三端子D端,为连接到通信电源系统供电直流电源工作接地的正极或负极汇集排(电源工作地)。
在本实施例中,可选择地,所述DC-DC变换器12、DC-DC主机工作电源1、所述恒流放电负载智能控制电路5均具有正反向极性电源工作的特点。可实现以最佳安全的操作方式,适用于不同正、负的通信电源在线蓄电池组的充放电维护测试。无论工作电源是正极还是负极接地,该设备进行在线维护测试时,只需操作蓄电池组侧连接的电源工作接地端,避免了操作碰地短路的风险,并具有对在线蓄电池组恒流限压充电及稳压限流充电维护功能,维护测试使用更加灵活、安全简便。
实施例二
请参阅图2,本实施例二与实施例一相比,二者的区别在于:本实施例二的全在线蓄电池组充放电测试设备还包括一电源正反向极性工作保护电路9,该电源正反向极性工作保护电路9的输出与所述恒流放电负载智能控制电路5和放电负载电路6串接后,再串接至相互并联的DC-DC变换器12、DC-DC主机工作电源1,其余结构均与实施例一相同。
说明:实施例一中的分布在所述DC-DC变换器12、恒流放电负载智能控制电路5以及DC-DC主机工作电源1的输入电源正反向极性工作保护电路功能,而实施例二是将由一电源正反向极性工作保护电路9的输出供给DC-DC变换器12、恒流放电负载智能控制电路5以及DC-DC主机工作电源1三个功能模块。因此,上述两个实施例具有相同的功能。
输入连接的电源正反向极性工作保护电路上引出一电源输出线,具有第一接线端子A,以及第二接线端子B。并接的电源正负极性转换开关11和第二安全保护电路10的输出两端公共点上,分别引出一电源输出线,具有两个接线端,其中一个接线端为第三接线端子D,另一接线端在设备内经电流检测1与第二接线端子B进行了连接,其输出保持与在线的蓄电池组进行串联连接。第一接线端子A、第二接线端子B以及第三接线端子D都同时与电流/电压数据采集及转换控制电路22连接。所述第一接线端子A端,连接在线工作电源的负极或正极,或连接被测蓄电池组侧接在线工作电源的负极或正极接线端;所述第二接线端子B端,连接至被测在线蓄电池组侧连接在线电源工作地的正极或负极接线端子;所述第三端子D端,连接到通信电源系统供电直流电源工作接地的正极或负极汇集排(电源工作地)。
请主要参考图3,下面以-48V通信电源后备蓄电池组在线放电容量测试工作原理为例,说明上述两个实施例的全在线蓄电池组充放电测试设备的应用工作原理。
如图3至图7所示,现有通信机房常用-48V或+24V的通信电源后备蓄电池组给通信设备进行供电的原理框图,一48V或+24V整流器与一-48V或+24VDC直流配电屏连接后再与蓄电池组并接,对通信设备进行后备电源的提供。
使用时,将全在线蓄电池组充放电测试设备通过“设备”无缝连接技术串行连接于通信蓄电池组与通信电源系统设备的直流配电屏之间,保证蓄电池组始终处于安全在线工作状态,不影响对通信系统设备的正常安全供电。全在线蓄电池组充放电测试设备的输入工作电源由被测蓄电池组电源提供。操作过程中,蓄电池组仅拆电池组正极端子(电源工作地线),即与整流器供电电源的正极汇集线间进行串联连接,操作简单安全。
在线无缝连接技术的操作过程如下所述:通信电源系统的蓄电池组设备全在线无缝连接操作,将全在线蓄电池组充放电测试设备串接在线蓄电池组的正极(电源工作地线),即与整流器供电电源的正极汇集线间进行串联连接,全在线蓄电池组充放电测试设备的接入应遵守“先接三,后拆一”的原则,电池组放电测试设备完成测试退出服务时,应遵守“先接一,后拆三”的原则。
再请参阅图3至图5,现以-48V通信电源被测蓄电池组为例,此时,上述三个实施例的接线方法均相同,都采用“先接三,后拆一”,即为:先接全在线蓄电池组充放电测试设备的电源输出线L1、L2、L3,即将该测试设备的三个接线端子B、A、D分别连接至蓄电池组正极(即电池组侧连接电源工作地的接线端子)接线端子、负极接线端子或直流配电屏输出一分路A1和-48V通信电源供电正极汇集排GD,后拆被测蓄电池组正极接线端原电源连接线L5,即断开蓄电池组正极接线端子与-48V通信电源供电正极汇集排GD的连接;“先接一,后拆三”即为:被测蓄电池组完成测试,并自动进行限流充电到等电位自动连接退出服务,应先接被测蓄电池组正极端子C1的原电源连接线L5,后拆C1端电源线L1、A1端电源线L2和GD端电源线L3。
请参考图6和图7,其是以+24V通信电源后备蓄电池组为例,其采用的“先接三,后拆一”的连接顺序与-48V通信电源被测蓄电池组的相同,但极性不同,具体表现在:所述第一接线端子A接被测蓄电池组的正极、第二接线端子B接该被测蓄电池组的负极,第三接线端子D接+24V通信电源系统供电直流电源工作接地的负极汇集排(电源工作地),其连接电源正负极性与-48V的相反,放电测试工作电流方向也相反,但其在线放电容量测试工作原理相同。
如图8所示,本实用新型实施例一应用于-48V通信电源系统时的在线放电原理如下所述:
选择其中一组-48V被测蓄电池组I进行在线容量放电测试,如图4中所示的被测蓄电池组I进行在线放电容量测试,被测蓄电池组采用无缝连接不影响对通信设备的正常供电,根据测试参数设置,以I放电1电流进行在线容量的恒流放电测试,当在线通信设备负载电流与在线工作的蓄电池组浮充电流之和(I设备+I浮充电流)大于被测蓄电池组I进行的恒流放电电流I放电1时,全在线蓄电池组充放电测试设备控制DC-DC变换器,以自动稳流控制输出电压UO,提高在线工作的电压U在线电压=UE1+U0,满足被测蓄电池组I在线对通信设备负载恒流放电测试工作要求,自动禁止或关闭恒流放电负载智能控制电路对放电负载电路的供电,保持恒定电流对在线通信设备负载进行放电I放电1=IB1放电=ID+1+I输入=ID+1+IA=I放电D+I恒流负载+IDC-DC+I工控(IB1放电为被测蓄电池组I串接全在线蓄电池组充放电测试设备输入工作的总电流,即为被测蓄电池组I的放电电流;I输入为全在线蓄电池组充放电测试设备输入工作电流,I放电D为被测蓄电池组I对通信设备负载供电电流,I浮充为其他在线工作的蓄电池组浮充工作电流,I工控为全在线蓄电池组充放电测试设备控制单元提供的工作电流,ID+1为DC-DC变换器输出工作的电流,IA为被测蓄电池组I给DC-DC变换器(高频开关电源)、DC-DC主机工作电源和恒流放电负载智能控制电路与电池组放电负载电路提供输入电源的工作电流之和,并等于I输入。),此时,I恒流负载=0,IA=I恒流负载+IDC-DC+I工控=IDC-DC+I工控),在线通信设备工作电流I设备=I整流器+I放电D-I浮 充,整流器或高频开关电源输出电流I整流器小于通信设备负载工作电流I设备。在正常工作情况下,其-48V整流器或高频开关输出电流I整流器为通信设备负载工作电流I设备、被测蓄电池组I放电电流I放电D与在线工作的蓄电池组浮充电流I浮充之和。放电过程,被测蓄电池组I的电压随着放电电流和时间的延长,电池组电压也随之下降,通过全在线蓄电池组充放电测试设备自动稳流控制调整输出电压UO,提升在线工作电压,使之保持被测蓄电池组I以恒定的电流进行容量放电测试;当在线通信设备负载电流与在线工作的蓄电池组浮充电流之和(I设备+I浮充电流)小于被测蓄电池组I进行的恒流放电电流I放电1时,全在线蓄电池组充放电测试设备系统优先自动控制DC-DC变换器,以自动稳流限压控制输出电压UO,提高在线输出稳定的电压U在线电压=U电池 组1+U0,满足被测蓄电池组I在线优先对通信设备负载进行恒流供电,同时根据实际在线通信设备负载限压稳流数值,自动开启辅助恒流放电负载智能控制电路,使被测蓄电池组I电源经电源正反向极性工作保护电路和恒流放电负载智能控制电路向放电负载电路供电,并自动控制调节放电负载电路的工作电流,使被测蓄电池组I在线恒流放电。此时,被测蓄电池组I对在线通信设备负载和全在线蓄电池组充放电测试设备的控制辅助恒流放电负载进行放电I放电1=IB1放电=ID+1+I输入=ID+1+IA=I放电D+I恒流负载+IDC-DC+I工控,在线通信设备工作电流I设备=I放电D-I浮充。此时,正常工作的整流器或高频开关电源输出电流I整流器小于通信设备负载工作电流I设备和被测蓄电池组I放电电流I放电1,且无电流输出。在正常工作情况下,其-48V整流器或高频开关输出电流I整流器为通信设备负载工作电流I负载、被测蓄电池组I放电电流I放电D与其他在线蓄电池组浮充电流I浮充之和。放电过程,被测蓄电池组I的电压随着放电电流和时间的延长,电池组电压也随之下降,通过全在线蓄电池组充放电测试设备自动稳流控制调整输出电压UO,提升在线工作电压,总之保持被测蓄电池组I以恒定的电流进行放电容量测试。进行放电测试的全在线蓄电池组充放电测试设备的保护功能具有:设备在线电压限压保护、过压保护,被测蓄电池组放电低压保护、单体电池放电终止低压保护,以及电池放电工作限流和过流保护。具体参数设置,用户可根据实际测试需求进行设定,为避免用户参数设置错误问题,全在线蓄电池组充放电测试设备系统具有参数上限值设置安全保护功能,以保证全在线蓄电池组充放电测试设备系统运行使用安全。
在线放电结束后,自动充电到等电位恢复在线工作连接原理如图9所示:
被测蓄电池组I在线放电测试结束时,全在线蓄电池组充放电测试设备系统自动控制DC-DC变换器、恒流放电负载智能控制电路和放电负载电路处于关闭状态(此时,被测蓄电池组电压UE1低于在线工作电源的电压U在线电压,I恒流负载和IDC-DC工作电流趋于0。),同时该设备系统自动控制自动限流充电和等电位连接安全控制电路进入充电恢复过程。初始该限流充电过程的原理与全在线蓄电池组放电测试设备放电结束后的限流充电过程相同,基本处于恒流充电状态。当在线工作电压U在线电压、充电电流,不能满足被测的蓄电池组正常充电要求时,全在线蓄电池组充放电测试设备根据系统检测自动控制第二安全保护电路和正负极性转换开关输出,以及DC-DC变换器的输出,使被测蓄电池组变限流充电状态为稳压限流充电状态,并关闭自动限流充电和等电位连接安全控制电路中的自动限流充电电路,自动控制DC-DC变换器的输出与在线电压串联提升被测蓄电池组的充电电压UE1=U在线电压+UO,并进行稳流限压和稳压限流充电。此时,-48V整流器或开关电源输出电流I整流器=I设备+I充电D+I浮充,被测蓄电池组I充电电流IB1充电=I充电D-I输入=I充电D-(IDC-DC+I工控)。随着稳流充电时间的延长,被测蓄电池组I电压也随之升高,当被测蓄电池组I电压达到设置充电限压值时,全在线蓄电池组充放电测试设备系统自动控制DC-DC变换器的输出并进行稳压限流充电,同时由该设备系统通过监测电池充电电流、电压、容量等进行智能诊断是否完成电池充电;当完成电池充电时,该设备系统将自动关闭DC-DC变换器的输出结束充电,同时由第二安全保护电路完成在线供电及等电位安全连接,进而系统自动完成正负极性转换开关的切换,保持在线供电及等电位安全连接状态,恢复在线工作全过程。系统工作结束。
如前所述的放电工作过程中,被测蓄电池组I在线安全供电由安全保护电路3和第二安全保护电路10双重供电安全保护;而在充电过程中,若市电发生中断或整流器(高频开关电源设备)故障,导致其他在线蓄电池组放电至在线低压的现象,由此第二安全保护电路10中的大功率双向电源静态开关管正向导通连接于在线工作电源,以及进行等电位安全连接保护,同时自动关闭DC-DC变换器12的输出,保证被测蓄电池组I充电或放电测试过程中均能实时在线不间断安全供电。
说明:实施例一应用于+24V通信电源系统时,其在线放电及充电状态下的原理可参照实施例一应用于-48V通信电源系统时的情形。二者的区别在于放电和充电测试工作电流方向相反。
再如图10和图11所示,是实施例二应用于-48V通信电源系统时在线放电和充电状态下的原理结构框图,该实施例二应用于-48V通信电源系统时的情形,可参照实施例一应用于-48V通信电源系统时的情形,二者基本相同,此处不再赘述。
综上所述,全在线蓄电池组充放电测试设备均适用于正负通信工作电源设备的蓄电池组充放电维护测试,其通过被测蓄电池组连接全在线蓄电池组充放电测试设备的第一接线端子A(蓄电池组在线工作电源端负极或正极)和第二接线端子B(原蓄电池组在线工作电源接地端正极或负极)两输入端子作为电池组在线充放电测试设备的工作电源。其第三接线端子D(在线电源工作接地端正极或负极)作为输出端子串接在被测蓄电池组与在线通信设备工作电源之间连接于通信电源设备系统直流配电屏的正极或负极工作地汇集排GD(即接电源工作地)。根据全在线蓄电池组充放电测试设备MCU单元的菜单选择、功能及参数设置,系统自动控制正负极性转换开关及改变其输出电压(即第二和第三接线端子B、D两端电压),与被测蓄电池组的串联方式,变充电为放电及变放电为充电的功能转换,从而实现电池组全在线蓄电池组充放电测试目的。
Claims (8)
1.一种全在线蓄电池组充放电测试设备,其特征在于:包括:
一DC-DC主机工作电源,一控制单元,一正负极性转换开关、第二安全保护电路,相互并接的一安全保护电路、一自动限流充电和等电位连接安全控制电路、一DC-DC变换器,以及相互串接的一恒流放电负载智能控制电路和一放电负载电路;
所述正负极性转换开关输入并接于安全保护电路、自动限流充电和等电位连接安全控制电路、DC-DC变换器,输出并接第二安全保护电路;
所述控制单元再进一步包括一MCU单元、以及均与该MCU单元连接的一电流/电压数据采集及转换控制电路、蓄电池组单体电压检测设备、数据存储器、远程通信电路、LCD显示和键盘输入;
所述设备中DC-DC主机工作电源的输出与所述恒流放电负载智能控制电路、控制单元连接;
所述DC-DC变换器分别与所述电流/电压数据采集及转换控制电路及MCU单元连接;
MCU单元还分别与所述恒流放电负载智能控制电路、自动限流充电和等电位连接安全控制电路、DC-DC变换器、第二安全保护电路和正负极性转换开关等电路连接;
被测蓄电池组并联DC-DC变换器,以及恒流放电负载智能控制电路、DC-DC主机工作电源的输入,提供主机正常工作电源。
2.如权利要求1所述的全在线蓄电池组充放电测试设备,其特征在于:还包括一电源正反向极性工作保护电路,该电源正反向极性工作保护电路的输出分别与所述恒流放电负载智能控制电路,以及相互并联的DC-DC变换器、DC-DC主机工作电源连接。
3.如权利要求1所述的全在线蓄电池组充放电测试设备,其特征在于:所述DC-DC变换器、DC-DC主机工作电源、所述恒流放电负载智能控制电路均具有正反向极性电源工作的特点。
4.如权利要求1或2所述的全在线蓄电池组充放电测试设备,其特征在于:还包括一AC/DC开关电源,所述主机工作电源为DC-DC电源,该AC/DC开关电源的输入和输出分别连接所述主机工作电源和市电。
5.如权利要求3所述的全在线蓄电池组充放电测试设备,其特征在于:还包括一电流检测电路,所述电流检测电路在该设备中耦合监测所述被测蓄电池组的充放电工作电源的一个输入端。
6.如权利要求5所述的全在线蓄电池组充放电测试设备,其特征在于:所述电流检测电路为一个传感器。
7.如权利要求1所述的全在线蓄电池组充放电测试设备,其特征在于:所述安全保护电路为一大功率二极管。
8.如权利要求1所述的全在线蓄电池组充放电测试设备,其特征在于:所述第二安全保护电路包括一大功率双向电源静态开关管、一直流接触器以及一用于控制和保护该大功率双向电源静态开关管和直流接触器工作的自动控制保护电路,且所述大功率双向电源静态开关管和直流接触器并联连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201759238U CN201656535U (zh) | 2010-04-09 | 2010-04-09 | 全在线蓄电池组充放电测试设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201759238U CN201656535U (zh) | 2010-04-09 | 2010-04-09 | 全在线蓄电池组充放电测试设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201656535U true CN201656535U (zh) | 2010-11-24 |
Family
ID=43121773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010201759238U Expired - Fee Related CN201656535U (zh) | 2010-04-09 | 2010-04-09 | 全在线蓄电池组充放电测试设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201656535U (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104880635A (zh) * | 2015-06-10 | 2015-09-02 | 宁波力芯科信息科技有限公司 | 一种用于无线充电接收器的检测装置 |
CN108549034A (zh) * | 2018-04-19 | 2018-09-18 | 中铁电气化(武汉)设计研究院有限公司 | 一种蓄电池的检测方法及装置 |
CN109541988A (zh) * | 2018-10-18 | 2019-03-29 | 天津市天楚科技有限公司 | 一种智能充放电工装设备 |
CN113433471A (zh) * | 2021-06-25 | 2021-09-24 | 科华数据股份有限公司 | 一种恒流放电装置及相关的方法和系统 |
CN113640687A (zh) * | 2021-07-15 | 2021-11-12 | 沈阳中车轨道交通装备有限公司 | 大修车辆蓄电池充放电试验方法 |
-
2010
- 2010-04-09 CN CN2010201759238U patent/CN201656535U/zh not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104880635A (zh) * | 2015-06-10 | 2015-09-02 | 宁波力芯科信息科技有限公司 | 一种用于无线充电接收器的检测装置 |
CN104880635B (zh) * | 2015-06-10 | 2017-06-27 | 宁波力芯科信息科技有限公司 | 一种用于无线充电接收器的检测装置 |
CN108549034A (zh) * | 2018-04-19 | 2018-09-18 | 中铁电气化(武汉)设计研究院有限公司 | 一种蓄电池的检测方法及装置 |
CN109541988A (zh) * | 2018-10-18 | 2019-03-29 | 天津市天楚科技有限公司 | 一种智能充放电工装设备 |
CN113433471A (zh) * | 2021-06-25 | 2021-09-24 | 科华数据股份有限公司 | 一种恒流放电装置及相关的方法和系统 |
CN113433471B (zh) * | 2021-06-25 | 2024-01-02 | 科华数据股份有限公司 | 一种恒流放电装置及相关的方法和系统 |
CN113640687A (zh) * | 2021-07-15 | 2021-11-12 | 沈阳中车轨道交通装备有限公司 | 大修车辆蓄电池充放电试验方法 |
CN113640687B (zh) * | 2021-07-15 | 2024-05-17 | 沈阳中车轨道交通装备有限公司 | 大修车辆蓄电池充放电试验方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101813755B (zh) | 全在线蓄电池组充放电测试设备 | |
CN101860051B (zh) | 分布式全在线蓄电池组充放电测试设备 | |
CN101860052B (zh) | 全在线蓄电池组放电测试设备 | |
CN102882268B (zh) | 无扰动不间断供电装置 | |
CN107144796B (zh) | 一种回馈式蓄电池组核容放电装置及应用方法 | |
CN208638048U (zh) | 一种电力变电站蓄电池的自动节能在线维护设备及系统 | |
CN110492600B (zh) | 变电站新型智能直流电源系统及维护方法 | |
CN200950162Y (zh) | 全在线式电池组放电测试系统 | |
CN109449944B (zh) | 变电站双向型直流电源控制系统和方法 | |
CN201656535U (zh) | 全在线蓄电池组充放电测试设备 | |
CN101860050B (zh) | 分布式全在线蓄电池组放电测试设备 | |
CN113507162A (zh) | 一种变电站直流供电系统的自动核容装置及核容方法 | |
CN102055203B (zh) | 通讯基站电网负荷峰谷智能调节电源装置及其工作方法 | |
CN201674256U (zh) | 全在线蓄电池组放电测试设备 | |
CN201674257U (zh) | 分布式全在线蓄电池组放电测试设备 | |
CN102801204B (zh) | 一种240vdc高压直流供电系统及方法 | |
CN201639336U (zh) | 分布式全在线蓄电池组充放电测试设备 | |
CN213637085U (zh) | 一种电压暂降补偿装置 | |
CN201766409U (zh) | 可持续供电的ups配套装置 | |
CN201359640Y (zh) | 智能供电地面测报机 | |
CN103346612B (zh) | 336vdc直流不间断电源系统及供电方法 | |
CN109245286A (zh) | 一种无变压器的应急电源 | |
CN201215581Y (zh) | 电池组放电测试设备 | |
CN105870998B (zh) | 一种变电站直流系统的整流模块休眠控制方法 | |
CN202907199U (zh) | 一种蓄电池智能化管理测试设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101124 Termination date: 20120409 |