CN201623242U - Microwave and millimeter wave multi-drop load line phase shifter - Google Patents
Microwave and millimeter wave multi-drop load line phase shifter Download PDFInfo
- Publication number
- CN201623242U CN201623242U CN2009201803435U CN200920180343U CN201623242U CN 201623242 U CN201623242 U CN 201623242U CN 2009201803435 U CN2009201803435 U CN 2009201803435U CN 200920180343 U CN200920180343 U CN 200920180343U CN 201623242 U CN201623242 U CN 201623242U
- Authority
- CN
- China
- Prior art keywords
- transmission
- line
- phase shifter
- microwave
- millimeter wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 85
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000010363 phase shift Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Abstract
本实用新型属微波毫米波技术领域,具体涉及到微波毫米波移相器的制作。所述移相器至少包括一个多支节并联的微带传输线结构单元,该结构单元是刻在印刷电路板上的并联多个短截线的微带传输线路,它由传输主线、输入端、输出端、并联的传输支线和接地短路钉构成,每根传输支线在距主线八分之一波长处截断,并在截断处安装有控制传输线单元电磁波相位的PIN开关;传输主线长度为四分之一波长,其宽度为0.2~2mm,传输支线长度为八分之三波长,宽度为0.2~1mm,相邻传输支线间距四分之一波长,传输主线的两端分别为传输线路的输入端和输出端。本移相器可级联成为多位微波毫米波数字式移相器,具有损耗小、体积小、结构简单、易于制造等优点,在雷达、相控阵天线中应用具有优势。
The utility model belongs to the technical field of microwave and millimeter waves, and in particular relates to the manufacture of microwave and millimeter wave phase shifters. The phase shifter at least includes a multi-branch parallel microstrip transmission line structural unit, which is a microstrip transmission line engraved on a printed circuit board and connected with multiple stubs in parallel, which consists of a transmission main line, an input terminal, The output terminal, parallel transmission branch lines and grounding short-circuit nails are formed. Each transmission branch line is cut off at one-eighth wavelength from the main line, and a PIN switch for controlling the electromagnetic wave phase of the transmission line unit is installed at the cut-off point; the length of the transmission main line is 1/4 One wavelength, the width of which is 0.2-2mm, the length of the transmission branch line is three-eighths wavelength, the width is 0.2-1mm, the distance between adjacent transmission branches is 1/4 wavelength, and the two ends of the transmission main line are respectively the input end of the transmission line and the output. The phase shifter can be cascaded into a multi-bit microwave and millimeter wave digital phase shifter, which has the advantages of small loss, small size, simple structure, and easy manufacture, and has advantages in application in radar and phased array antennas.
Description
技术领域technical field
本实用新型属微波毫米波技术领域,具体涉及到微波毫米波移相器的制作。The utility model belongs to the technical field of microwave and millimeter waves, and in particular relates to the manufacture of microwave and millimeter wave phase shifters.
背景技术Background technique
微波毫米波移相器在多种领域有应用,如雷达系统,卫星通信系统和相控阵天线阵列。移相器的种类有很多,按照使用材料来分总的来讲有五大类:铁氧体移相器、铁电介质移相器、半导体二极管移相器、砷化镓MMIC移相器和MEMS移相器。Microwave and millimeter wave phase shifters have applications in various fields, such as radar systems, satellite communication systems and phased array antenna arrays. There are many types of phase shifters. According to the materials used, there are generally five categories: ferrite phase shifters, ferroelectric phase shifters, semiconductor diode phase shifters, gallium arsenide MMIC phase shifters and MEMS phase shifters. phase device.
1991年Artech house出版了《Microwave and Millimeter Wave Phase Shifters》,书中第一卷Dielectric and Ferrite Phase Shifters详细介绍了铁氧体移相器的主要种类、设计、制作以及应用。铁氧体移相器主要利用外加磁场改变波导内铁氧体的磁导率,从而改变电磁波的相速得到不同的相移量。其优点是:宽带、功率容量大;缺点是:体积大,损耗大,切换速度慢,难以满足移动通信的要求。In 1991, Artech house published "Microwave and Millimeter Wave Phase Shifters". The first volume of the book, Dielectric and Ferrite Phase Shifters, introduced the main types, design, production and application of ferrite phase shifters in detail. The ferrite phase shifter mainly uses an external magnetic field to change the magnetic permeability of the ferrite in the waveguide, thereby changing the phase velocity of the electromagnetic wave to obtain different phase shifts. Its advantages are: broadband and large power capacity; its disadvantages are: large volume, large loss, slow switching speed, and it is difficult to meet the requirements of mobile communication.
2000年Kozyre等人在IEEE微波理论与技术国际会议上发表了“应用铁电介质材料设计移相器”的论文(“Application of Ferroelectrics in Phase Shifters Design”,A.Kozyrev,V.Osadchy,A.Pavlov,L.Sengupta,2000IEEE MTT-S Digest.P1355-1358)。铁电介质移相器主要利用改变加在铁电介质上的直流偏压的大小来改变介质的介电系数,从而使微波毫米波信号的相速发生改变,实现移相的目的。其优点是:结构简单、体积小、重量轻、损耗小、响应速度快;缺点是:功率容量小In 2000, Kozyre et al published the paper "Application of Ferroelectrics in Phase Shifters Design" at the IEEE International Conference on Microwave Theory and Technology ("Application of Ferroelectrics in Phase Shifters Design", A.Kozyrev, V.Osadchy, A.Pavlov , L. Sengupta, 2000IEEE MTT-S Digest.P1355-1358). The ferroelectric phase shifter mainly changes the dielectric coefficient of the medium by changing the magnitude of the DC bias applied to the ferroelectric medium, thereby changing the phase velocity of the microwave and millimeter wave signals to achieve the purpose of phase shifting. Its advantages are: simple structure, small size, light weight, small loss, and fast response; the disadvantage is: small power capacity
1976年,清华大学微带电路编写组编写的《微带电路》书中第八章微带固体控制电路详细地介绍了开关线式移相器、加载线式移相器、反射式移相器等几种基于半导体PIN二极管的移相器的基本原理和设计方法。不管采用那种结构,基于PIN二极管的移相器的原理都是利用PIN二极管在正偏和反偏时的两种不同开关状态,使一段传输线接通或断开来实现移相。其优点:体积小,易于采用数字信号控制,响应速度快;缺点是:功耗大、功率容量比较小。In 1976, Chapter 8 Microstrip Solid Control Circuits in the book "Microstrip Circuits" written by the Microstrip Circuit Writing Group of Tsinghua University introduced in detail the switch line phase shifter, loaded line phase shifter, and reflective phase shifter. The basic principles and design methods of several phase shifters based on semiconductor PIN diodes. No matter which structure is adopted, the principle of the PIN diode-based phase shifter is to use the two different switching states of the PIN diode when it is forward-biased and reverse-biased, so that a transmission line is turned on or off to achieve phase shifting. Its advantages: small size, easy to use digital signal control, fast response speed; disadvantages: large power consumption, relatively small power capacity.
2009年6月朱旗等人在IEEE AP-S上发表了“基于混合左右手传输线的高功率移相器的设计”的论文(“Design of High Power Capacity Phase Shifter with CompositeRight Left-Handed Transmission Line”)这种移相器同样是采用PIN二极管作为开关进行移相控制,但它与传统的PIN二极管移相器不同,PIN二极管开关被安装在混合左右手结构的交指上,这样通过开关的电流仅为流过整个移相器电流的一部分,因此它的功率容量可以大大提高。其优点是:体积小、插入损耗小,功率容量大;缺点是:实现大的相移量难度较大。In June 2009, Zhu Qi and others published the paper "Design of High Power Capacity Phase Shifter with CompositeRight Left-Handed Transmission Line" on IEEE AP-S This kind of phase shifter also uses PIN diodes as switches for phase shift control, but it is different from traditional PIN diode phase shifters. A part of the entire phase shifter current flows, so its power capacity can be greatly improved. Its advantages are: small size, small insertion loss, and large power capacity; the disadvantage is: it is difficult to achieve a large phase shift.
2001年5月Ellinger等人在IEEE Transaction on MTT上发表了“采用集总元件耦合器的C波段紧凑型反射式MMIC移相器”的论文(“Compact Reflective-TypePhase-Shifter MMIC for C-Band Using a Lumped-Element Coupler”Frank Ellinger,Rolf Vogt,Werner Bechtold,IEEE Transaction on Microwave Theory and Techniques,VOL.49,NO.5,MAY 2001)。基于砷化镓MMIC技术的移相器主要采用反射式结构,通过选择不同反射终端获得不同相位的反射系数,从而实现相移。其优点是:体积小、制作工艺成熟,响应速度快;缺点是:插入损耗大、功率容量小。In May 2001, Ellinger et al. published the paper "Compact Reflective-TypePhase-Shifter MMIC for C-Band Using Lumped Element Coupler" on IEEE Transaction on MTT. a Lumped-Element Coupler" Frank Ellinger, Rolf Vogt, Werner Bechtold, IEEE Transaction on Microwave Theory and Techniques, VOL.49, NO.5, MAY 2001). The phase shifter based on gallium arsenide MMIC technology mainly adopts a reflective structure, and the reflection coefficient of different phases is obtained by selecting different reflection terminals, so as to realize the phase shift. Its advantages are: small size, mature manufacturing process, and fast response speed; the disadvantages are: large insertion loss and small power capacity.
2002年6月Rebeiz等人在IEEE Microwave上发表了“射频MEMS移相器:设计和应用”的论文(“RF MEMS phase shifters:design and applications”Rebeiz G.M,Guan-Leng Tan,Hayden J.S,Microwave Magazine,IEEE Volume 3,Issue 2,June 2002Page(s):72-81)。MEMS移相器利用MEMS射频开关来改变并联在传输线中心导带和地之间的负载电容的大小,从而实现整个结构等效线电容的大小的改变,进而改变微波信号通过的相速,实现移相。其优点是:损耗小,功率容量大;缺点是:切换速度慢、可靠性低、使用寿命短。In June 2002, Rebeiz et al published the paper "RF MEMS phase shifters: design and applications" on IEEE Microwave ("RF MEMS phase shifters: design and applications" Rebeiz G.M, Guan-Leng Tan, Hayden J.S, Microwave Magazine , IEEE
上述文献表明,铁氧体移相器、MEMS移相器虽然功率容量大,但是切换速度慢;铁电材料移相器、半导体二极管移相器、砷化镓MMIC移相器虽然体积小、切换速度快,但是普遍功率容量较小;而混合左右手传输线移相器虽然体积小、切换速度快、功率容量大,但实现大的相移量比较困难。The above literature shows that although ferrite phase shifters and MEMS phase shifters have large power capacity, their switching speed is slow; ferroelectric material phase shifters, semiconductor diode phase shifters, and gallium arsenide MMIC The speed is fast, but generally the power capacity is small; while the hybrid left-handed transmission line phase shifter is small in size, fast in switching speed, and large in power capacity, but it is difficult to achieve a large phase shift.
发明内容Contents of the invention
本实用新型的技术目的在于,提供一种结构紧凑的平面型的微带传输线构造的微波毫米波移相器,以克服现有微波毫米波移相器存在的诸如体积大、损耗大,实现大的相移量难度较大等缺点。The technical purpose of this utility model is to provide a compact planar microwave and millimeter wave phase shifter with a microstrip transmission line structure, so as to overcome the existing microwave and millimeter wave phase shifters such as large volume and large loss, and realize large The phase shift amount is difficult and other disadvantages.
本实用新型的技术解决方案如下:The technical solution of the utility model is as follows:
本实用新型的微波毫米波多支节负载线移相器,它至少包括一个多支节并联的微带传输线结构单元,其特征在于,所述每个多支节并联的微带传输线结构单元是刻在印刷电路板(PCB)上的并联多个短截线的微带传输线路,该微带传输线路由传输主线、输入端、输出端、并联的传输支线和接地短路钉构成,每根传输支线在距主线八分之一波长处截断,并在截断处安装有控制传输线单元电磁波相位的PIN开关;其中,传输主线长度为四分之一波长,传输主线宽度为0.2~2mm,传输支线长度为八分之三波长,宽度为0.2~1mm,相邻的传输支线的间距为四分之一波长,所述传输主线的两端分别为传输线路的输入端和输出端,其输入输出端阻抗均为50欧姆。所述接地短路钉是采用现有过孔技术将一个短路片与PCB板第三层的地相连来实现的,该短路片位于传输主线的左侧或右侧。所述PCB板的上、下层是厚度为0.004mm的导体铜,中间是介电常数为1.07-13.6的介质基板。The microwave and millimeter wave multi-branch load line phase shifter of the present utility model comprises at least one multi-branch parallel microstrip transmission line structural unit, which is characterized in that each multi-branch parallel microstrip transmission line structural unit is engraved A microstrip transmission line with multiple stubs connected in parallel on a printed circuit board (PCB). It is cut off at one-eighth wavelength from the main line, and a PIN switch is installed at the cut-off place to control the electromagnetic wave phase of the transmission line unit; among them, the length of the main transmission line is one-quarter wavelength, the width of the main line is 0.2-2mm, and the length of the branch line is eight Three-thirds wavelength, the width is 0.2 ~ 1mm, the distance between adjacent transmission branch lines is one-quarter wavelength, the two ends of the transmission main line are the input end and the output end of the transmission line respectively, and the impedance of the input and output ends is 50 ohms. The grounding short-circuit nail is realized by using the existing via technology to connect a short-circuit piece to the ground of the third layer of the PCB, and the short-circuit piece is located on the left or right side of the transmission main line. The upper and lower layers of the PCB are conductor copper with a thickness of 0.004 mm, and the middle layer is a dielectric substrate with a dielectric constant of 1.07-13.6.
上述的多支节负载线移相器中,所述并联的传输支线可以是四根直线型或U型短截线,它们位于传输主线两侧,对称分布,每侧两根,构成四支节负载线移相器;所述并联的传输支线也可以是两根直线型或U型短截线,它们均位于传输主线同侧,构成双支节负载线移相器;还可以根据不同的使用要求,将两个或两个以上的多支节并联的微带传输线结构单元级联,即成为多位的微波毫米波数字式移相器。In the above-mentioned multi-branch load line phase shifter, the parallel transmission branch lines can be four straight or U-shaped stub lines, which are located on both sides of the transmission main line and distributed symmetrically, with two on each side to form four stub lines Load line phase shifter; the parallel transmission branch line can also be two straight or U-shaped stub lines, which are located on the same side of the transmission main line to form a double-branch load line phase shifter; it can also be used according to different It is required to cascade two or more multi-branch microstrip transmission line structural units in parallel to become a multi-bit microwave and millimeter wave digital phase shifter.
在实际的使用中,通常是先根据使用需要确定工作频带和中心频率,然后,根据特性阻抗,利用现有技术中的有关公式(可参阅《微波工程》,David M.Pozar著,Publishing House of Electronics Industry,2006)计算输入端、输出端、主线和支线的宽度。主线的特性阻抗Z01由下式得到:其中为所要求的移相器的移相量,Z0为输入输出端阻抗。支线的特性阻抗由支线结构决定,对于四支节负载线移相器,可令位于主线同侧的其中一对支节的特性阻抗等于输入端的特性阻抗,另一对支节的特性阻抗Z02可由式得到;对于双支节负载线移相器,两个支节的特性阻抗均等于输入端的特性阻抗。微带线宽度W可以利用以下计算公式得到:In actual use, it is usually first to determine the working frequency band and center frequency according to the needs of the use, and then, according to the characteristic impedance, use the relevant formulas in the prior art (see "Microwave Engineering", David M. Pozar, Publishing House of Electronics Industry, 2006) to calculate the width of the input terminal, output terminal, main line and branch line. The characteristic impedance Z 01 of the main line is obtained by the following formula: in It is the phase shift amount of the required phase shifter, and Z 0 is the impedance of the input and output terminals. The characteristic impedance of the branch line is determined by the structure of the branch line. For the four-branch load line phase shifter, the characteristic impedance of one pair of branch nodes located on the same side of the main line can be equal to the characteristic impedance of the input end, and the characteristic impedance of the other pair of branch nodes is Z 02 by formula Obtained; for the double branch load line phase shifter, the characteristic impedance of the two branches is equal to the characteristic impedance of the input terminal. The width W of the microstrip line can be obtained using the following formula:
本实用新型中的微波毫米波多支节负载线移相器是在传输线单元上并联多个短截线构成的。根据传输线理论,传输线上的电压和电流是由入射波和反射波叠加组成的,反射波强度越小,传输线的驻波比就越小,则传输线的能量损耗越小。本实用新型中,移相器上位于主线同侧的相邻传输支线的间距为四分之一波长,通过相邻传输支线反射回来的电磁波的波程差是半个波长,从而使反射波反相叠加后削弱,因此该移相器损耗小。同时该移相器还具有其它很多优势,如体积小、结构灵活、易于制造、可根据不同的频段和相移要求进行设计,能够有效地克服传统移相器体积大、损耗大,实现大的相移量难度较大的缺点,在雷达、相控阵天线中应用具有很大优势。The microwave and millimeter wave multi-branch load line phase shifter in the utility model is formed by connecting a plurality of stub lines in parallel on the transmission line unit. According to the transmission line theory, the voltage and current on the transmission line are composed of incident waves and reflected waves. The smaller the reflected wave intensity is, the smaller the standing wave ratio of the transmission line is, and the smaller the energy loss of the transmission line is. In the utility model, the distance between the adjacent transmission branch lines on the same side of the main line on the phase shifter is a quarter wavelength, and the wave path difference of the electromagnetic wave reflected back through the adjacent transmission branch lines is half a wavelength, so that the reflected wave The phase shifter is weakened after being superimposed, so the loss of the phase shifter is small. At the same time, the phase shifter also has many other advantages, such as small size, flexible structure, easy to manufacture, and can be designed according to different frequency bands and phase shift requirements, which can effectively overcome the large volume and large loss of traditional phase shifters, and realize large The disadvantage that the phase shift is relatively difficult has great advantages in the application of radar and phased array antennas.
下面通过实施例及附图作进一步描述。Further description will be made below through embodiments and accompanying drawings.
附图说明Description of drawings
图1为本实用新型所述四支节负载线移相器的一种实施例结构示意图。FIG. 1 is a structural schematic diagram of an embodiment of the four-branch load line phase shifter of the present invention.
图2为图1的A向视图。Fig. 2 is a view along the direction A of Fig. 1 .
图3为本实用新型的实施例1四支节负载线移相器的相移度数曲线图。其中,横坐标表示频率,纵坐标表示相移度数。以下图8的坐标名称与此相同。Fig. 3 is a graph of the phase shift degrees of the four-branch load line phase shifter in
图4为本实用新型的实施例1四支节负载线移相器上面一对开关断开而下面一对开关闭合时的电压驻波比示意图,其中,横坐标表示频率,纵坐标表示电压驻波比。以下图5、图9、图10的坐标名称与此相同。Fig. 4 is a schematic diagram of the voltage standing wave ratio when the upper pair of switches of the four-branch load line phase shifter in
图5为本实用新型的实施例1四支节负载线移相器下面一对开关断开而上面一对开关闭合时的电压驻波比曲线图。Fig. 5 is a graph of voltage standing wave ratio when the lower pair of switches of the four-branch load line phase shifter in
图6为本实用新型所述双支节负载线移相器的另一种实施例结构示意图Fig. 6 is a structural schematic diagram of another embodiment of the double-branch load line phase shifter described in the present invention
图7为图6的B向视图。FIG. 7 is a view taken along direction B of FIG. 6 .
图8为本实用新型实施例3双支节负载线移相器的相移度数示意图。Fig. 8 is a schematic diagram of the phase shift degree of the double-branch load line phase shifter in
图9为本实用新型实施例3双支节负载线移相器开关断开时的电压驻波比示意图。Fig. 9 is a schematic diagram of the voltage standing wave ratio when the switch of the phase shifter of the double-branch load line in
图10为本实用新型实施例3双支节负载线移相器开关闭合时的电压驻波比示意图。Fig. 10 is a schematic diagram of the voltage standing wave ratio when the switch of the dual-branch load line phase shifter in
具体实施方式Detailed ways
实施例1Example 1
参见图1和图2,多支节并联的微带传输线结构单元是设置在方形PCB板1上的,该PCB板由上下两层金属铜与中间的介质基板组成,上层金属铜用作构成传输线路,下层金属构成传输线路的接地。传输主线7为直线形,位于方形PCB板1中间,四根传输支线2也为直线状,并联在传输主线两侧;3为接地短路钉,即采用过孔技术,将上、下两层金属相连。在传输主线7两端分别设有输入和输出端口4,5;在并联的四根传输支线上分别设有一个用于控制移相器的PIN开关6。本实施例中,PCB板上、下导体铜厚度为0.004mm,中间层介质基板(Rogers RT/duroid 6006)的厚度为0.254mm,介电常数为6.15。传输主线长度为3.1mm,宽度为0.29mm。左侧一对传输支线的长度为5.28mm,宽度为0.18mm,两线间距为3.1mm;右侧一对传输支线的长度为5.13mm,宽度为0.28mm,两线间距2.9mm。在两对传输支线对称位置上安装两对PIN开关,其与主线之间的距离分别1.71mm(左侧)、1.73mm(右侧),该开关的尺寸为0.35mm×0.35mm×0.13mm。输入、输出端线宽为0.28mm。主线左侧设置有一个大小为0.5mm×0.5mm的短路片,短路片的中心与传输主线侧边相距0.35mm,并且与设在同侧的两根传输支线之间的距离相等,短路片通过1个短路钉(实心圆柱形金属铜,半径0.1mm,高度0.254mm)与下层地线相连,短路钉垂直穿过介质层,短路钉在上层金属面投影为圆形,圆形的最外侧与短路片边界的距离为0.15mm。Referring to Figures 1 and 2, the multi-branch parallel microstrip transmission line structural unit is set on a
用ie3d软件对本实施例的四支节负载线移相器进行仿真测试,其结果见图3、图4和图5。由图可看出,当开关断开和闭合时移相器的驻波比均小于1.3。该实施例所能实现的电气性能为:中心频率10.8GHz,工作带宽1GHz,两对开关状态同时改变时移相22.5°。The four-node load line phase shifter of this embodiment is simulated and tested with ie3d software, and the results are shown in Fig. 3, Fig. 4 and Fig. 5. It can be seen from the figure that the VSWR of the phase shifter is less than 1.3 when the switch is opened and closed. The electrical properties that can be realized in this embodiment are: a center frequency of 10.8 GHz, a working bandwidth of 1 GHz, and a phase shift of 22.5° when the states of the two pairs of switches change simultaneously.
实施例2Example 2
本实施例2采用的PCB板特性与实施例1相同,其设置的多支节并联的微带传输线结构单元也与实施例1相同。本实施例的具体尺寸如下:传输主线的长度为2.5mm,宽度为0.32mm。在传输主线左右两侧分别并联两根同样的传输支线,左侧一对传输支线的长度为5.26mm,宽度为0.41mm,间距为2.3mm;右侧一对传输支线的长度为5.58mm,宽度为0.19mm,间距为2.5mm。在两对传输支线对称位置上安装两对PIN开关,其与主线之间的距离分别为1.64mm(左侧)、1.73mm(右侧),所用的开关与实施例一相同。输入、输出端口分别位于主线两端,线宽为0.28mm。The characteristics of the PCB used in
用ie3d软件对本实施例的四支节负载线移相器进行仿真测试,其结果表明:当开关断开和闭合时移相器的驻波比均小于1.38。本实施例所能实现的电气性能为:中心频率10.8GHz,工作带宽1GHz,两对开关状态同时改变时移相45°。The four-branch load line phase shifter of this embodiment is simulated and tested with ie3d software, and the results show that the VSWR of the phase shifter is less than 1.38 when the switch is opened and closed. The electrical properties that can be realized in this embodiment are: a center frequency of 10.8 GHz, a working bandwidth of 1 GHz, and a phase shift of 45° when the states of the two pairs of switches change simultaneously.
实施例3Example 3
参见图6和图7,本实施例3采用的PCB板特性与实施例1相同。其设置的多支节并联的微带传输线结构单元与实施例1有区别。两根同样的U型传输支线2并联在传输主线7的同侧,其余结构与实施例1相同。本实施例的具体尺寸为:传输主线的长度为7.1mm,宽度为0.5mm;传输支线长度为15.3mm,宽度为0.28mm,两者间隔为7.1mm。在传输支线的对称位置处分别安装有一对PIN开关,该位置距离主线5.5mm处,所用的开关与实施例一相同。接地短路钉的结构和设置也与实施例1相同。输入、输出端口分别位于主线两端,线宽为0.28mm。Referring to FIG. 6 and FIG. 7 , the characteristics of the PCB used in
用ie3d软件对本实施例的双支节负载线移相器进行仿真测试,其结果见图8、图9和图10。由图可看出,当开关断开和闭合时移相器的驻波比均小于1.5。该实施例所能实现的电气性能为:中心频率4GHz,工作带宽0.4GHz,两个开关状态同时改变时移相90°。Use ie3d software to simulate and test the dual-node load line phase shifter of this embodiment, and the results are shown in Fig. 8, Fig. 9 and Fig. 10 . It can be seen from the figure that the VSWR of the phase shifter is less than 1.5 when the switch is opened and closed. The electrical properties that can be realized in this embodiment are: a center frequency of 4 GHz, a working bandwidth of 0.4 GHz, and a phase shift of 90° when the two switch states change simultaneously.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201803435U CN201623242U (en) | 2009-11-06 | 2009-11-06 | Microwave and millimeter wave multi-drop load line phase shifter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201803435U CN201623242U (en) | 2009-11-06 | 2009-11-06 | Microwave and millimeter wave multi-drop load line phase shifter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201623242U true CN201623242U (en) | 2010-11-03 |
Family
ID=43026699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201803435U Expired - Fee Related CN201623242U (en) | 2009-11-06 | 2009-11-06 | Microwave and millimeter wave multi-drop load line phase shifter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201623242U (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102420351A (en) * | 2012-01-04 | 2012-04-18 | 镇江中安通信科技有限公司 | Power dividing phase shifter |
CN103594802A (en) * | 2013-11-21 | 2014-02-19 | 天津中兴智联科技有限公司 | Butler matrix structure |
CN104201440A (en) * | 2014-08-21 | 2014-12-10 | 摩比天线技术(深圳)有限公司 | Dielectric phase shifter of base station electric tunable antenna |
WO2015042974A1 (en) * | 2013-09-30 | 2015-04-02 | 华为技术有限公司 | Broadband phase shifter and broadband beam-forming network |
CN106356593A (en) * | 2016-08-31 | 2017-01-25 | 安徽赛福电子有限公司 | High-accuracy and low-loss loaded line microwave phase shifter |
CN110459838A (en) * | 2019-08-16 | 2019-11-15 | 深圳市闻耀电子科技有限公司 | Phase shifter, phased array antenna equipment and phase-moving method |
CN110690536A (en) * | 2018-08-29 | 2020-01-14 | 电子科技大学 | Terahertz phase shifter based on WR3 standard waveguide loading phase-shifting microstructure |
CN111786058A (en) * | 2020-07-03 | 2020-10-16 | 北京华镁钛科技有限公司 | Low-loss phase shifter |
CN114246964A (en) * | 2020-09-21 | 2022-03-29 | 陕西青朗万城环保科技有限公司 | Multimode mixed cavity adjusting method and control system thereof |
-
2009
- 2009-11-06 CN CN2009201803435U patent/CN201623242U/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102420351A (en) * | 2012-01-04 | 2012-04-18 | 镇江中安通信科技有限公司 | Power dividing phase shifter |
CN102420351B (en) * | 2012-01-04 | 2014-06-11 | 镇江中安通信科技有限公司 | Power dividing phase shifter |
WO2015042974A1 (en) * | 2013-09-30 | 2015-04-02 | 华为技术有限公司 | Broadband phase shifter and broadband beam-forming network |
CN103594802A (en) * | 2013-11-21 | 2014-02-19 | 天津中兴智联科技有限公司 | Butler matrix structure |
CN103594802B (en) * | 2013-11-21 | 2015-11-18 | 天津中兴智联科技有限公司 | Butler matrix structure |
CN104201440A (en) * | 2014-08-21 | 2014-12-10 | 摩比天线技术(深圳)有限公司 | Dielectric phase shifter of base station electric tunable antenna |
CN106356593A (en) * | 2016-08-31 | 2017-01-25 | 安徽赛福电子有限公司 | High-accuracy and low-loss loaded line microwave phase shifter |
CN110690536A (en) * | 2018-08-29 | 2020-01-14 | 电子科技大学 | Terahertz phase shifter based on WR3 standard waveguide loading phase-shifting microstructure |
CN110690536B (en) * | 2018-08-29 | 2021-09-03 | 电子科技大学 | Terahertz phase shifter based on WR3 standard waveguide loading phase-shifting microstructure |
CN110459838A (en) * | 2019-08-16 | 2019-11-15 | 深圳市闻耀电子科技有限公司 | Phase shifter, phased array antenna equipment and phase-moving method |
CN111786058A (en) * | 2020-07-03 | 2020-10-16 | 北京华镁钛科技有限公司 | Low-loss phase shifter |
CN111786058B (en) * | 2020-07-03 | 2021-07-02 | 北京华镁钛科技有限公司 | Low-loss phase shifter |
CN114246964A (en) * | 2020-09-21 | 2022-03-29 | 陕西青朗万城环保科技有限公司 | Multimode mixed cavity adjusting method and control system thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201623242U (en) | Microwave and millimeter wave multi-drop load line phase shifter | |
Yang et al. | A novel low-loss slow-wave microstrip structure | |
CN102117972B (en) | A frequency-swept antenna array based on coupled left-handed and left-handed composite transmission lines | |
CN101197460B (en) | Microwave phase shifter based on plane type left hand microstrip transmission line | |
CN108172958B (en) | Periodic slow wave transmission line unit based on coplanar waveguide | |
CN110021805A (en) | Based on the three-dimensional transition structure of the air gap waveguide in complicated feed network | |
Taringou et al. | New substrate-integrated to coplanar waveguide transition | |
Kumar et al. | Design of miniaturized 10 dB wideband branch line coupler using dual feed and T-shape transmission lines | |
CN115441198A (en) | A Bidirectional Radiating Planar Dipole Antenna Array Working in the Millimeter Wave Frequency Band | |
Liu et al. | Design of a compact ultra-wideband power divider | |
CN201153148Y (en) | Microwave phase shift device based on plane type micro-strip transmission line | |
Zhang et al. | Compact branch-line coupler using uniplanar spiral based CRLH-TL | |
Zhang et al. | Compact composite right/left-handed transmission line unit cell for the design of true-time-delay lines | |
Wang et al. | Design of a ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line | |
El Marini et al. | Broadband planar 90 degrees loaded-stub phase shifter | |
Wu et al. | A liquid-metal-enabled reconfigurable feed network for multipolarization arrays | |
Yang et al. | Novel approach to the design of unequal power divider with high‐dividing ratio | |
Mohammad Alibakhshi | New traveling-wave antenna resonating at 6 GHz based on artificial transmission line metamaterial structures for RF portable devices | |
Che et al. | Investigations of AMC and its applications for performance enhancement of planar antenna arrays | |
Labay et al. | Design of dual-band substrate-integrated waveguide E-plane directional couplers | |
Ghaly et al. | SIGW based bi-directional coupler for Ku-band applications | |
Hu et al. | Cost effective ferroelectric thick film phase shifter based on screen-printing technology | |
Lin et al. | Multilayer Slot-Coupler Based On Integrated Substrate Gap Waveguide | |
Vendik et al. | Design of miniature microwave devices based on a combination of natural right-handed and metamaterial left-handed transmission lines | |
Dey et al. | High gain and efficient patch antenna on micromachined GaAs EBGs with increased bandwidth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101103 Termination date: 20131106 |