CN201607411U - Micro nanometer sensor for simultaneously detecting light signal and electric signal - Google Patents

Micro nanometer sensor for simultaneously detecting light signal and electric signal Download PDF

Info

Publication number
CN201607411U
CN201607411U CN2010201338563U CN201020133856U CN201607411U CN 201607411 U CN201607411 U CN 201607411U CN 2010201338563 U CN2010201338563 U CN 2010201338563U CN 201020133856 U CN201020133856 U CN 201020133856U CN 201607411 U CN201607411 U CN 201607411U
Authority
CN
China
Prior art keywords
nano
quartz ampoule
sensor
signal
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010201338563U
Other languages
Chinese (zh)
Inventor
刘名扬
蒋晓光
刘志红
王旭
邹明强
李晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING IMPORT & EXPORT INSPECTION AND QUARANTINE OFFICE PEOPLE'S REPUBLI
Original Assignee
LIAONING IMPORT & EXPORT INSPECTION AND QUARANTINE OFFICE PEOPLE'S REPUBLI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAONING IMPORT & EXPORT INSPECTION AND QUARANTINE OFFICE PEOPLE'S REPUBLI filed Critical LIAONING IMPORT & EXPORT INSPECTION AND QUARANTINE OFFICE PEOPLE'S REPUBLI
Priority to CN2010201338563U priority Critical patent/CN201607411U/en
Application granted granted Critical
Publication of CN201607411U publication Critical patent/CN201607411U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The utility model discloses a micro nanometer sensor for simultaneously detecting a light signal and an electric signal. Compared with the prior art, the utility model is characterized in that two ends of a nanometer semiconducting metal oxide (6) are respectively provided with a positive electrode (9) and a negative electrode (10), and current output between the positive electrode (9) and the negative electrode (10) and a light and electric signal switching device (8) are connected with an electric signal detection circuit (11). An injection port (2) and a vent nozzle (3) are positioned at the axis of a quartz tube (1). The micro nanometer sensor overcomes the defects of complex operating, long analysis time and poor accuracy of the existing sensor due to objective component catalytic light-emitting signal approaching and has the advantages of high detecting efficiency and precision, realization of multi-objective component detecting, short detecting time, and the like.

Description

Detect the miniature nano-sensor of photosignal simultaneously
Technical field:
The utility model relates to a kind of nano-sensor (nano-material surface-catalyzed luminescent sensor), especially a kind ofly shortens detection time, has the miniature nano-sensor that good stable and reappearance, detection efficiency and precision detect photosignal high the time.
Background technology:
The nano-material surface-catalyzed luminescent sensor applications is extensive, as can be used for quantitative evaluation nano material catalytic activity; The detection by quantitative that is used for ethanol, methyl alcohol and petroleum chemicals etc.; Be used for food hormone medicine residue detection; Be used for the selection type detecting device of capillary gas chromatograph etc.The structure of existing nano-material surface-catalyzed luminescent sensor is that the diameter that will scribble nano material is that to place diameter be that 12~20mm, length are in the quartz ampoule of 100~150mm to 4~7mm electric ceramic rod, diagonally opposing corner is provided with injection port, drain on quartz ampoule, corresponding optical filter or grating, the photosignal conversion equipment (Weak-luminescence measuring instrument, photomultiplier etc.) of being provided with nano material outside quartz ampoule.During measurement, resistance wire in the electric ceramic rod heats nano material, sampling systems such as pneumatic pump enter quartz ampoule with carrier gas from injection port with sample, the nano-material surface of flowing through is discharged from drain, the nano-material surface-catalyzed light that sends becomes the electric signal that is suitable for data processing units such as microcomputer through the photosignal conversion equipment again behind optical filter or grating removal parasitic light.But because the catalytic luminescence signal of target analytes is near (as ethanol and methyl alcohol, alcohols and ethers etc.), make the catalytic luminescence signal on the nano catalytic material surface of flowing through be difficult to differentiate, sometimes need to rely on the change analysis condition to distinguish signal, directly influence the accuracy of quantitative test and made complex operation, increased the time of analyzing and testing.In addition, because existing detecting device is that diagonally opposing corner is provided with injection port, drain on quartz ampoule, flow through time on nano catalytic material surface of sample and carrier gas is long and dead volume is big, easily cause problems such as emission response time length, luminous signal curve broadening, thereby make the stability and the poor reproducibility of luminous signal, measuring accuracy is lower, has directly influenced the accuracy of quantitative test.
Summary of the invention:
The utility model is in order to solve the above-mentioned shortcoming of existing in prior technology, provides a kind of and shorten detection time, had the miniature nano-sensor that good stable and reappearance, detection efficiency and precision detect photosignal high the time.
Technical solution of the present utility model is: a kind of nano-sensor that detects photosignal simultaneously, quartz ampoule is arranged, injection port and drain are arranged on the quartz ampoule, quartz ampoule is built-in with the ceramic heat rod, be built-in with heating element at the ceramic heat rod, outside the ceramic heat rod, scribble nano semi-conductor metal oxide, corresponding optical filter or grating and the photosignal conversion equipment of being provided with nano semi-conductor metal oxide, two ends at described nano semi-conductor metal oxide are respectively equipped with positive electrode, negative electrode, positive electrode, electric current output between the negative electrode and photosignal conversion equipment and electrical signal detection circuit join; Described injection port and drain are positioned on the axis of quartz ampoule.
2~3 centimetres of described quartzy pipe ranges, 1~2 centimetre of internal diameter; Long 1~1.5 centimetre of described ceramic heat rod, 0.2~0.4 centimetre of diameter.
The utility model is simultaneously as detection signal with the catalytic luminescence signal of nano-material surface and electrochemical signals, has good two dimensional character signal, resolution and detection sensitivity all improve greatly, fast quantification when can realize the multiple goal component has further reduced the detection cost, has improved detection efficiency; The center of injection port and drain all is positioned on the axial line of quartz ampoule, all target components all can fully be contacted with nano-material surface, make the concentration of two dimensional character signal and target components be good correlativity, have good stable and repeatability, improved accuracy of detection greatly; Miniaturized design, the flow path dead volume of sample carrier gas reduces greatly, make that the response time of tested component on nano material shortens greatly in the sample, signal response time is rapid, signal to noise ratio (S/N ratio) strengthens, signal bands of a spectrum narrow down (similar sharp-pointed chromatogram elution curve), detection efficiency, resolution and detection sensitivity all improve greatly, are easy to realize the array design.
Description of drawings:
Fig. 1 is the structural representation of the utility model embodiment 1.
Embodiment:
Below in conjunction with description of drawings embodiment of the present utility model.
As shown in Figure 1: quartz ampoule 1 is arranged, quartz ampoule 1 is provided with injection port 2 and drain 3, quartz ampoule 1 is built-in with ceramic heat rod 4, at ceramic heat rod 4 internal fixation heating element 5 is arranged, outside ceramic heat rod 4, scribble nano semi-conductor metal oxide 6, with nano semi-conductor metal oxide 6 corresponding optical filter or grating 7 and the photosignal conversion equipments 8 of being provided with, be respectively equipped with positive electrode 9 at the two ends of described nano semi-conductor metal oxide 6, negative electrode 10, can be at positive electrode 9, reometer (electrical signal detection circuit 11) joins between the negative electrode 10, also electric current can be drawn, current output terminal and mould/number conversion circuit 12 joins, and described photosignal conversion equipment 8 and mould/number conversion circuit 12 joins with microprocessor (electrical signal detection circuit 11) simultaneously.For fear of the big problem of dead volume that causes because of injection port 2 and drain 3 diagonal angle settings, described injection port 2 and drain 3 are positioned on the axis of quartz ampoule 1.According to the method for prior art heating element 5 and power supply are joined during detection, simultaneously positive and negative electrode 9,10 and power supply are joined, the nano material of the electric current that makes intensity 1~15Ma during by zero load.Sample atomized according to art methods and be carrier gas with the air, enter from injection port 2, flow out from drain 3, the sample nano semi-conductor metal oxide 6 of promptly flowing through produces the light signal and the electric signal that become correlativity with concentration.By light signal and electric signal are handled and detected, can measure the content of target component.

Claims (2)

1. miniature nano-sensor that detects photosignal simultaneously, quartz ampoule (1) is arranged, injection port (2) and drain (3) are arranged on the quartz ampoule (1), quartz ampoule (1) is built-in with ceramic heat rod (4), be built-in with heating element (5) at ceramic heat rod (4), outside ceramic heat rod (4), scribble nano semi-conductor metal oxide (6), corresponding optical filter or grating (7) and the photosignal conversion equipment (8) of being provided with nano semi-conductor metal oxide (6), it is characterized in that: be respectively equipped with positive electrode (9) at the two ends of described nano semi-conductor metal oxide (6), negative electrode (10), positive electrode (9), electric current output and photosignal conversion equipment (8) between the negative electrode (10) join with electrical signal detection circuit (11); Described injection port (2) and drain (3) are positioned on the axis of quartz ampoule (1).
2. the miniature nano-sensor that detects photosignal simultaneously according to claim 1 is characterized in that: long 2~3 centimetres of described quartz ampoule (1), 1~2 centimetre of internal diameter; Long 1~1.5 centimetre of described ceramic heat rod (4), 0.2~0.4 centimetre of diameter.
CN2010201338563U 2010-03-18 2010-03-18 Micro nanometer sensor for simultaneously detecting light signal and electric signal Expired - Fee Related CN201607411U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010201338563U CN201607411U (en) 2010-03-18 2010-03-18 Micro nanometer sensor for simultaneously detecting light signal and electric signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010201338563U CN201607411U (en) 2010-03-18 2010-03-18 Micro nanometer sensor for simultaneously detecting light signal and electric signal

Publications (1)

Publication Number Publication Date
CN201607411U true CN201607411U (en) 2010-10-13

Family

ID=42952116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010201338563U Expired - Fee Related CN201607411U (en) 2010-03-18 2010-03-18 Micro nanometer sensor for simultaneously detecting light signal and electric signal

Country Status (1)

Country Link
CN (1) CN201607411U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175725A (en) * 2011-02-21 2011-09-07 大连交通大学 Tin oxide-cerium oxide nanomaterial sensor and application thereof in MTBE (methyl tert-butyl ether) detection
CN108535335A (en) * 2018-04-13 2018-09-14 安徽建筑大学 A kind of organic contamination object detecting method based on the multiple independent signal of same material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175725A (en) * 2011-02-21 2011-09-07 大连交通大学 Tin oxide-cerium oxide nanomaterial sensor and application thereof in MTBE (methyl tert-butyl ether) detection
CN108535335A (en) * 2018-04-13 2018-09-14 安徽建筑大学 A kind of organic contamination object detecting method based on the multiple independent signal of same material

Similar Documents

Publication Publication Date Title
CN201476844U (en) Capacitive liquid-level detecting device
CN107818908B (en) A kind of difference ion mobility spectrometry and High-Field asymmetric waveform ion mobility spectrometry combination device
CN102368060A (en) Discharge ionization current detector
CN103822964B (en) Chloromycetin in neutral desorb-electron spray extraction MALDI-MS direct-detection honey
CN101793835B (en) Method for simultaneously detecting hydrogen sulfide and thiol in crude oil by using photoelectric double signals and detector thereof
CN201607411U (en) Micro nanometer sensor for simultaneously detecting light signal and electric signal
CN202837258U (en) Combined type multifunctional sample injector used for ion mobility spectrometry
CN201607410U (en) Nanometer sensor for simultaneously detecting light signal and electric signal
CN201607409U (en) Optical/electric dual-signal nanosensor
CN103926210B (en) Device for detecting species of gases
CN108956580A (en) A kind of Portable element analyzer can be used for field exploration
CN203216848U (en) Sample injection device of atomic fluorescence spectrometer
CN108535335B (en) Organic pollutant detection method based on multiple independent signals of same material
CN201237520Y (en) Level detector
CN1952654A (en) Gas detecting apparatus and method based on field ionization effect
CN101799424B (en) Method for simultaneously detecting ethanol and MTBE (methyl tert-butyl ether) in gasoline by photoelectric double-signal and detector
CN201983833U (en) Liquid level detection device of electrolyte analyzer
CN201917523U (en) Quartz ball-filled nanocatalysis luminous sensor
CN101853771A (en) Ionic migration spectrometer with inspiratory condenser structure
CN201637675U (en) Nano catalyzing and light-emitting miniature sensor for detecting content of sulphur in fuels
CN103852642A (en) Method for detecting electrical conductivity of small number of solids
CN201917524U (en) Nano catalytic illuminating ball sensor
CN201955307U (en) Nanometer catalyzed luminous spiral sensor
CN201945555U (en) Nanometer catalyzed light-emitting spiral sensor
CN201909761U (en) Quartz balls filled type nanometer-catalyst luminous sensor capable of realizing same-side in/out

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101013

Termination date: 20130318