CN201598746U - Composite three-dimensional seismic isolation bearing - Google Patents
Composite three-dimensional seismic isolation bearing Download PDFInfo
- Publication number
- CN201598746U CN201598746U CN2010200042995U CN201020004299U CN201598746U CN 201598746 U CN201598746 U CN 201598746U CN 2010200042995 U CN2010200042995 U CN 2010200042995U CN 201020004299 U CN201020004299 U CN 201020004299U CN 201598746 U CN201598746 U CN 201598746U
- Authority
- CN
- China
- Prior art keywords
- vertical
- horizontal
- compartment
- protruding shaft
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 42
- 239000002131 composite material Substances 0.000 title abstract description 8
- 238000001125 extrusion Methods 0.000 claims abstract description 29
- 238000013016 damping Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 13
- 230000035939 shock Effects 0.000 claims abstract description 9
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 6
- 150000001875 compounds Chemical class 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 230000033001 locomotion Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
一种复合三维隔震支座,包括水平隔震支座,在水平隔震支座上竖向隔震器,竖向隔震器包括基座,在基座上设有竖向铅挤压阻尼器及对称布置的水平铅挤压阻尼器,且竖向铅挤压阻尼器的设置位置高于水平铅挤压阻尼器;水平铅挤压阻尼器包括设在基座上的水平隔间,在隔间上水平滑动连接有A型突轴并在隔间内填有阻尼材料;竖向铅挤压阻尼器包括设在基座上的竖向隔间,在隔间上竖向滑动连接有B型突轴并在竖向隔间内填充有阻尼材料,在A型突轴与B型突轴之间设有传动连杆,并且传动连杆的两端分别与A型突轴的一端及B型突轴的一端转动连接,在竖向铅挤压阻尼器上同心匹配蝶形弹簧组,在蝶形弹簧组设有上联板且上联板与B型突轴的另一端连接。
A composite three-dimensional shock-isolation support, including a horizontal shock-isolation support, a vertical shock isolator on the horizontal shock-isolation support, the vertical shock isolator includes a base, and a vertical lead extrusion damping is arranged on the base The horizontal lead extrusion damper and the symmetrically arranged horizontal lead extrusion damper, and the setting position of the vertical lead extrusion damper is higher than that of the horizontal lead extrusion damper; the horizontal lead extrusion damper includes a horizontal compartment on the base. The compartment is horizontally slidably connected with an A-shaped protruding shaft and filled with damping material; the vertical lead extrusion damper includes a vertical compartment on the base, and the compartment is vertically slidably connected with a B Type protruding shaft and filled with damping material in the vertical compartment, there is a transmission link between the A-type protruding shaft and B-type protruding shaft, and the two ends of the transmission connecting rod are respectively connected to one end of the A-type protruding shaft and the B-type protruding shaft. One end of the type protruding shaft is rotationally connected, and the butterfly spring group is concentrically matched on the vertical lead extrusion damper. The butterfly spring group is provided with an upper connecting plate and the upper connecting plate is connected with the other end of the B-shaped protruding shaft.
Description
技术领域technical field
本实用新型为一种三向建筑隔震支座的构造措施,解决目前普通隔震支座无法有效解决的竖向隔震问题,涉及一种复合三维隔震支座。The utility model relates to a structural measure for a three-way building shock-isolation support, which solves the vertical shock-isolation problem that cannot be effectively solved by ordinary shock-isolation supports at present, and relates to a composite three-dimensional shock-isolation support.
背景技术Background technique
隔震支座是近些年来发展的一种用于建筑结构底部的消能减震(振)技术,其特点是有效隔断水平地震作用力经基础传递至上部结构,以此减小上部结构的水平振动因而有效保护了上部结构。现有产品有铅芯橡胶隔震支座,即由多层薄钢板和橡胶片交替叠合经热硫化而成并在其中心孔压入铅棒。现有种类繁多的隔震支座产品已经广泛应于多、高层结构的隔震中。多维地震(三个平移自由度和三个旋转自由度)的研究虽已取得某些突破性进展,但应用于实践较少;目前较为成熟应用于实际工程结构地震计算分析的理论水平已达三维(三个平移自由度),故针对结构三维地震的隔震研究尤为重要。三维地震作用下,由于建筑结构竖向刚度要求和竖向隔震的冲突,目前用于竖向隔震的装置较少,并且现阶段的研究、试验多局限于两个水平方向的地震隔震。本实用新型在传统水平隔震支座的基础上,构造一种能够用于三维隔震的复合支座,是解决结构竖向隔震难题的一种有效方式。Seismic isolation bearing is a kind of energy dissipation and shock absorption (vibration) technology developed in recent years for the bottom of building structures. Horizontal vibrations thus effectively protect the superstructure. The existing products include lead-core rubber shock-isolating bearings, which are formed by alternately laminating multiple layers of thin steel plates and rubber sheets through thermal vulcanization, and pressing a lead rod into the center hole. A wide variety of seismic isolation bearing products have been widely used in the seismic isolation of multi-level and high-rise structures. Although some breakthroughs have been made in the study of multi-dimensional earthquakes (three translational degrees of freedom and three rotational degrees of freedom), they are rarely used in practice; currently, the theoretical level that is relatively mature and applied to actual engineering structure earthquake calculation and analysis has reached the three-dimensional (three translational degrees of freedom), so the seismic isolation research for structural three-dimensional earthquake is particularly important. Under the three-dimensional earthquake, due to the conflict between the vertical stiffness requirements of the building structure and the vertical isolation, there are currently few devices for vertical isolation, and the current research and tests are mostly limited to seismic isolation in two horizontal directions. . The utility model constructs a composite support that can be used for three-dimensional seismic isolation on the basis of the traditional horizontal seismic isolation support, which is an effective way to solve the problem of vertical seismic isolation of structures.
实用新型内容Utility model content
本实用新型提供一种结构紧凑并能降低隔震支座高度、提高隔震效果的复合三维隔震支座。The utility model provides a composite three-dimensional shock-isolation support which has a compact structure and can reduce the height of the shock-isolation support and improve the shock-isolation effect.
一种复合三维隔震支座,包括:水平隔震支座,在水平隔震支座上设有竖向隔震器,所述竖向隔震器包括:基座,在基座上设有竖向铅挤压阻尼器及对称布置的水平铅挤压阻尼器,且竖向铅挤压阻尼器的设置位置高于水平铅挤压阻尼器;所述水平铅挤压阻尼器包括设在基座上的水平隔间,在隔间上水平滑动连接有A型突轴并在隔间内填充有阻尼材料;所述竖向铅挤压阻尼器包括设在基座上的竖向隔间,在隔间上竖向滑动连接有B型突轴并在竖向隔间内填充有阻尼材料;在A型突轴与B型突轴之间设有传动连杆,并且传动连杆的两端分别与A型突轴的一端及B型突轴的一端转动连接;在竖向铅挤压阻尼器上同心匹配蝶形弹簧组,在蝶形弹簧组设有上联板且上联板与B型突轴的另一端连接。A composite three-dimensional shock-isolation support, comprising: a horizontal shock-isolation support, a vertical shock isolator is arranged on the horizontal shock-isolation support, and the vertical shock isolator includes: a base, on which a The vertical lead extrusion damper and the symmetrically arranged horizontal lead extrusion damper, and the setting position of the vertical lead extrusion damper is higher than the horizontal lead extrusion damper; the horizontal lead extrusion damper includes The horizontal compartment on the seat is horizontally slidably connected with an A-shaped protruding shaft and filled with damping material in the compartment; the vertical lead extrusion damper includes a vertical compartment arranged on the base, A B-type protruding shaft is vertically slidably connected to the compartment and damping material is filled in the vertical compartment; a transmission link is arranged between the A-type protruding shaft and the B-type protruding shaft, and the two ends of the transmission link Rotately connected with one end of the A-type protruding shaft and one end of the B-type protruding shaft respectively; the butterfly spring group is concentrically matched on the vertical lead extrusion damper, and the butterfly spring group is provided with an upper connecting plate and the upper connecting plate is connected to the B The other end of the type protruding shaft is connected.
传统隔震支座仅仅在水平方向上起到隔震的作用,但其竖向因承载结构自重,故其竖向刚度很大,无法隔离地震对结构的竖向作用。通过构造转换装置将竖向振动转换成水平振动,并设置相应阻尼部件,以此解决传统支座无法竖向隔震的难题。本装置原理清晰,性能稳定,可广泛应用于结构的三维隔震。The traditional seismic isolation bearing only plays the role of seismic isolation in the horizontal direction, but its vertical stiffness is very large due to the self-weight of the bearing structure, which cannot isolate the vertical effect of the earthquake on the structure. The vertical vibration is converted into horizontal vibration through the structural conversion device, and corresponding damping components are installed to solve the problem that the traditional support cannot be vertically isolated. The device has clear principle and stable performance, and can be widely used in three-dimensional seismic isolation of structures.
三向地震荷载作用下,水平方向上的两个作用分量通过支座上下联板间水平向相对位移,以此隔断水平方向上传递至上部结构的大部分动力荷载。蝶形弹簧组因竖向地震作用产生变形,一方面以弹性势能的形式存储部分能量;另一方面,研究表明,蝶形弹簧组通过接触面的摩擦亦可消耗一定的能量。目前有的三维隔震支座的竖向耗能装置仅依靠蝶形弹簧组变形耗能,显然其竖向耗能能力相对有限,本实用新型在此基础上增加考虑A型突轴、B型突轴与阻尼材料间的相对运动耗能消耗部分竖向振动能量。传动连杆将B型突轴的竖向运动分量转换成A型突轴的水平运动:一方面,B型突轴竖向与阻尼材料间往复相对运动可以耗能;另一方面,两个A型突轴在水平向上与阻尼材料的往复相对运动消耗能量。Under the action of three-dimensional seismic load, the two acting components in the horizontal direction pass through the relative displacement in the horizontal direction between the upper and lower connecting plates of the support, so as to isolate most of the dynamic load transmitted to the superstructure in the horizontal direction. The Belleville springs are deformed due to vertical earthquake action. On the one hand, some energy is stored in the form of elastic potential energy; on the other hand, studies have shown that the Belleville springs can also consume a certain amount of energy through the friction of the contact surface. At present, the vertical energy dissipation device of the three-dimensional shock-isolation bearing only relies on the deformation of the butterfly spring group to dissipate energy. Obviously, its vertical energy dissipation capacity is relatively limited. On this basis, the utility model adds A-type protruding shaft and B-type The energy consumption of the relative motion between the protruding shaft and the damping material consumes part of the vertical vibration energy. The transmission link converts the vertical motion component of the B-type protruding shaft into the horizontal motion of the A-type protruding shaft: on the one hand, the reciprocating relative motion between the vertical and damping material of the B-type protruding shaft can consume energy; on the other hand, the two A The reciprocating relative movement of the protruding shaft and the damping material in the horizontal direction consumes energy.
本实用新型提供了一种构造简单的三维隔震支座,通过在传统水平隔震支座上附加垂直--水平转换措施和附加阻尼装置,有效解决目前结构竖向隔震的问题的一条途径。通过正交方向上垂直-水平位移连杆转化,将竖向往复运动转换为水平运动,具有结构紧凑、稳定性好的特点:一方面可以有效利用水平反复位移增加耗能装置;另一方面采用水平放置的耗能装置可有效降低隔震支座的总体高度,有利于提高支座的稳定性。该支座可广泛应用于多、高层建筑结构的三维隔震,并具有良好的经济性。The utility model provides a three-dimensional shock-isolation support with a simple structure, which is a way to effectively solve the problem of vertical shock-isolation in the current structure by adding vertical-horizontal conversion measures and additional damping devices to the traditional horizontal shock-isolation support . Through the conversion of vertical-horizontal displacement connecting rods in the orthogonal direction, the vertical reciprocating motion is converted into horizontal motion, which has the characteristics of compact structure and good stability: on the one hand, it can effectively use horizontal repeated displacement to increase energy consumption devices; on the other hand, it adopts The energy-dissipating device placed horizontally can effectively reduce the overall height of the shock-isolation support, which is conducive to improving the stability of the support. The support can be widely used in three-dimensional seismic isolation of multi-story and high-rise building structures, and has good economy.
附图说明Description of drawings
下面结合附图和实施方式进一步对本实用新型进行说明。The utility model is further described below in conjunction with accompanying drawings and embodiments.
图1为复合三维隔震支座剖面;Figure 1 is the section of the composite three-dimensional seismic isolation bearing;
图2(a)为基座立面图;Figure 2 (a) is the elevation of the base;
图2(b)为基座平面图;Figure 2(b) is a plan view of the base;
图2(c)为基座三视图;Fig. 2 (c) is three views of the base;
图3为突轴与传动连杆装配示意图;Figure 3 is a schematic diagram of the assembly of the protruding shaft and the transmission connecting rod;
图4为上联板示意图;Fig. 4 is a schematic diagram of the upper connecting plate;
图5为A型突轴示意图;Figure 5 is a schematic diagram of the A-type protruding shaft;
图6为B型突轴图;Figure 6 is a B-type protruding axis diagram;
图7为传动连杆示意图;Fig. 7 is a schematic diagram of the transmission connecting rod;
以上的图中有:水平隔震支座1、A型突轴2、基座3、蝶形弹簧组4、传动连杆5、B型突轴6、上联板7、防护罩8、阻尼填充材料9、水平阻尼器10、竖向阻尼器11、水平隔间12、竖向隔间13、凸缘14。The above figure includes: horizontal shock-
具体实施方式Detailed ways
一种复合三维隔震支座,包括:水平隔震支座1,在水平隔震支座1上竖向隔震器,所述竖向隔震器包括:基座3,在基座3上设有竖向铅挤压阻尼器11及对称布置的水平铅挤压阻尼器10,且竖向铅挤压阻尼器11的设置位置高于水平铅挤压阻尼器10,所述水平铅挤压阻尼器10包括设在基座3上的水平隔间12,在隔间12上水平滑动连接有A型突轴2并在隔间12内填充有阻尼材料9,所述竖向铅挤压阻尼器11包括设在基座3上的竖向隔间13,在隔间13上竖向滑动连接有B型突轴6并在竖向隔间13内填充有阻尼材料,在A型突轴2与B型突轴6之间设有传动连杆5,并且传动连杆5的两端分别与A型突轴2的一端及B型突轴6的一端转动连接,在竖向铅挤压阻尼器11上同心匹配蝶形弹簧组4,在蝶形弹簧组4设有上联板7且上联板7与B型突轴6的另一端连接;所述的在B型突轴6上设有兼有对B型突轴6限位的凸缘,并且,B型突轴6通过凸缘与传动连杆实现转动连接。A composite three-dimensional shock-isolation support, comprising: a horizontal shock-
如图1所示,基座3位于水平隔震支座1正上方并与其顶板通过螺栓连接;A型突轴2装配至水平隔间12限位孔中;B型突轴6装配至竖向隔间11限位孔中;水平隔间12与竖向隔间内填阻尼材料9;A型突轴2与B型突轴6各自一端分别与传动连杆5端部销接,如图3所示;基座3上部竖向阻尼器11与蝶形弹簧组4同心匹配;蝶形弹簧组4由多片蝶形弹簧单片按照一定形式叠合而成,经预压后,其上端部与上联板7接触顶紧;防护罩8下周圈与基座3外边缘焊接连接;上联板7中心孔与B型突轴6顶部匹配并焊接固定。As shown in Figure 1, the
蝶形弹簧组4的刚度、数量以及叠放形式需根据支座竖向承载力设计要求选取;水平隔震支座1可以根据上部荷载、上部建筑地震作用下允许变位以及现行隔震支座相关规定设计,一般可以直接采用目前较为成熟的铅芯橡胶隔震支座设计方法进行。A型突轴2和B型突轴6的设计根据为竖向阻尼输出力要求以及相关构件的强度、刚度要求。The stiffness, quantity and stacking form of the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010200042995U CN201598746U (en) | 2010-01-22 | 2010-01-22 | Composite three-dimensional seismic isolation bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010200042995U CN201598746U (en) | 2010-01-22 | 2010-01-22 | Composite three-dimensional seismic isolation bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201598746U true CN201598746U (en) | 2010-10-06 |
Family
ID=42809797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010200042995U Expired - Lifetime CN201598746U (en) | 2010-01-22 | 2010-01-22 | Composite three-dimensional seismic isolation bearing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201598746U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102587530A (en) * | 2012-02-17 | 2012-07-18 | 华中科技大学 | Design method of viscous liquid damper for adjacent building structures |
CN104481046A (en) * | 2014-12-03 | 2015-04-01 | 上海大学 | Energy dissipation three-dimensional isolation bearing with oblique slide damping |
CN108317300A (en) * | 2018-03-29 | 2018-07-24 | 东南大学 | A kind of multi-direction viscoplasticity of pipeline is every vibration absorber and pipeline every oscillation damping method |
CN109057398A (en) * | 2018-09-06 | 2018-12-21 | 郑州大学西亚斯国际学院 | A kind of architectural engineering support device |
-
2010
- 2010-01-22 CN CN2010200042995U patent/CN201598746U/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102587530A (en) * | 2012-02-17 | 2012-07-18 | 华中科技大学 | Design method of viscous liquid damper for adjacent building structures |
CN102587530B (en) * | 2012-02-17 | 2013-12-25 | 华中科技大学 | Design method of viscous liquid damper for adjacent building structures |
CN104481046A (en) * | 2014-12-03 | 2015-04-01 | 上海大学 | Energy dissipation three-dimensional isolation bearing with oblique slide damping |
CN104481046B (en) * | 2014-12-03 | 2017-06-06 | 上海大学 | A kind of oblique slip damping energy dissipation three-dimensional shock isolation support |
CN108317300A (en) * | 2018-03-29 | 2018-07-24 | 东南大学 | A kind of multi-direction viscoplasticity of pipeline is every vibration absorber and pipeline every oscillation damping method |
CN108317300B (en) * | 2018-03-29 | 2023-09-01 | 东南大学 | Multi-directional viscoelasticity vibration isolation and reduction device for pipeline and vibration isolation and reduction method for pipeline |
CN109057398A (en) * | 2018-09-06 | 2018-12-21 | 郑州大学西亚斯国际学院 | A kind of architectural engineering support device |
CN109057398B (en) * | 2018-09-06 | 2020-09-25 | 郑州大学西亚斯国际学院 | Strutting arrangement for building engineering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101725190B (en) | Composite three-dimensional seismic isolation bearing | |
CN103195168A (en) | Composite three-dimensional shock isolation support of sandwich rubber-high damping disc spring | |
CN212001610U (en) | A three-dimensional vibration isolation bearing with friction pendulum | |
CN2905932Y (en) | Horizontal-Vertical Composite Isolation Device | |
CN112240062B (en) | Three-dimensional shock insulation structure system | |
CN102337761A (en) | Ball disc spring shock isolation device | |
CN202767242U (en) | Three-direction shock insulation support | |
CN104455189A (en) | Three-dimensional isolation support | |
CN201730196U (en) | Ball disc spring shock isolation device | |
CN111305632B (en) | Three-dimensional vibration isolation device with sliding inclined spring | |
CN104389353B (en) | Integral ball vertical vibration isolation tube | |
CN201395764Y (en) | Universal spherical cast seismic isolation bearing | |
CN113374106B (en) | SMA high-energy-consumption self-resetting three-dimensional shock isolation device | |
CN201598746U (en) | Composite three-dimensional seismic isolation bearing | |
CN101029539A (en) | Vertical shock-absorbing stand with variable rigidity and damping | |
CN112281643A (en) | A composite vibration isolation and energy dissipation bearing | |
CN102182258A (en) | Double-layer multi-dimensional shock isolation/absorption device | |
CN204590297U (en) | A kind of multidimensional viscoplasticity seismic isolation device | |
CN204252314U (en) | Set ball vertical earthquake isolating cylinder | |
CN109594673B (en) | A two-way vibration isolation bearing system | |
CN202390755U (en) | Conversion device for multifunctional quake-absorbing and isolating support | |
CN208604473U (en) | A kind of novel bridge vibration absorber | |
CN214694913U (en) | 3D Vibration Isolation Device | |
CN104196144B (en) | A kind of separate type slip tensile device of shock isolating pedestal | |
CN200975036Y (en) | Bidirectional shearing type vibrating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20101006 Effective date of abandoning: 20100122 |