CN201525026U - Modular disaster relief robot - Google Patents

Modular disaster relief robot Download PDF

Info

Publication number
CN201525026U
CN201525026U CN2009202241971U CN200920224197U CN201525026U CN 201525026 U CN201525026 U CN 201525026U CN 2009202241971 U CN2009202241971 U CN 2009202241971U CN 200920224197 U CN200920224197 U CN 200920224197U CN 201525026 U CN201525026 U CN 201525026U
Authority
CN
China
Prior art keywords
module
robot
modular
connected
control unit
Prior art date
Application number
CN2009202241971U
Other languages
Chinese (zh)
Inventor
张凯
张晨峰
李俊
李路
王清川
Original Assignee
李路
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李路 filed Critical 李路
Priority to CN2009202241971U priority Critical patent/CN201525026U/en
Application granted granted Critical
Publication of CN201525026U publication Critical patent/CN201525026U/en

Links

Abstract

The utility model discloses a modular disaster relief robot, which comprises a hexagonal main body module and a manipulator arranged on the main body module. The main body module is connected with a moving mechanism. The main body module comprises an identification unit, a movement control unit, a communication unit and a total control unit which are mutually communicated with by using bus technology, wherein the identification unity identifies movement means of the moving mechanism, and the movement control unit establishes a kinematical model according to the movement means and drives the moving mechanism in motion. A main body of the manipulator is a five-degree-of-freedom robot manipulator, a steering engine and a hand holding mechanism are arranged on the manipulator, and the steering engine is connected with the total control unit. By adopting the modular mechanical connection scheme of 'building block type', the modular disaster relief robot utilizes a mechanical self-adaptive double-track guide rail to fulfill the function of 'plug and play', realizes one object serving multiple purposes by using the main body module as a platform, and can quickly assemble various task modules according to environment and mission types kinematic.

Description

模块化的灾害救援机器人 Modular disaster relief robot

技术领域 FIELD

[0001] 本实用新型涉及一种机器人,具体地说涉及一种可以应用在灾害救援中的模块化 [0001] The present invention relates to a robot can be applied particularly to a disaster relief in modular

机器人。 robot. 背景技术 Background technique

[0002] 近年来我国及世界范围内地震、火灾、洪水等自然灾害频发。 [0002] In recent years, our country and the world earthquakes, fires, floods and other natural disasters. 尤其在今年5月12 号发生的8. 0级汶川大地震中有69207遇难。 In particular, there are 69,207 killed in the 8.0 earthquake on May 12 this year occurred in. 抗震救灾过程中许多救援行动,因为救援现场情况复杂而搁浅。 Earthquake relief in many rescue operations, rescue site because the situation is complex and stranded. 其中大多由于救援人员无法进入狭小危险的废墟中为幸存者提供有效的帮助。 Because most of which aid workers can not enter the narrow dangerous to provide effective help for survivors in the rubble. 将机器人技术、营救行动技术、灾难学等多学科知识有机融合,研制与开发用于搜寻和营救的多功能灾难救援机器人,是机器人学研究中一个富有挑战性的新领域,更是新时代背景下急需解决的新难题。 The multi-disciplinary knowledge of robotics, technical rescue operations, disaster and other organic integration of science, research and development for search and rescue in disaster relief multifunction robot, is the study of robotics in a new and challenging field, but New Era under the urgent need to solve new problems.

[0003] 于是,国内外的许多高校和研究所在救援机器人、自主救援无人机和地面移动特种作业机器人等救援机器人技术方面开展了研究。 [0003] As a result, many universities and research institutes at home and abroad to carry out research in the technical aspects of rescue robots rescue robots, autonomous unmanned aircraft rescue and special operations ground mobile robots. 然而现有救援、侦测设备又种类复杂,并无一个整体系统将各种设备结合在一起实现,实现模块化的多用途应用,如将各种设备取长补短,以技术方式将其整合为统一的、具备互换性的任务系统,必将大大加强灾害救援能力与力度。 However, the existing rescue, detection equipment and the type of complex, not a whole system will combine a variety of devices to achieve, modular multi-purpose applications, such as the variety of devices from each other, with technology as a way to integrate its unified , with interchangeable mission system, will greatly enhance the ability and disaster relief efforts. 同时,国外一些较为成熟的救援机器人造价昂贵,单价均在数十万美元以上,不适合大量装备,及灾害发生时大规模使用,难以适应中国国情。 Meanwhile, some of the more mature foreign rescue robots are expensive, are priced at more than several hundred thousand dollars, not suitable for heavy equipment, and the use of large-scale disaster occurs, it is difficult to adapt to China's national conditions.

[0004] 为适应多种空间环境与任务需求,机器人需要具备各种地形的适应能力和各种功能组件的兼容性与互换性。 [0004] In order to meet a variety of space environment and mission requirements, the robot needs to have compatibility and interchangeability ability to adapt to a variety of terrain and various functional components. 现有灾害机器人的研究可分为单一机械本体,分布式控制两大方向。 Study of existing disaster robot can be divided into single mechanical body, distributed control two directions.

[0005] 单一机械本体的多用途救援机器人机械体系固定,底盘模式单一,负载能力强。 Multipurpose rescue robot system [0005] of a single mechanical fixing body, the single chassis mode, high load capacity. 此方式发展较早,较为成熟,多为针对特殊的场合设计,由于固定的底盘模式,无法适应多种环境与不同任务功能的快速切换。 This way the older, more mature, mostly designed for special occasions, due to the fixed chassis mode, unable to adapt to multiple environments and quickly switch between different tasks function.

[0006] 而多机器人系统可实现机械外形的自组与重构。 [0006] Since the multi-robot system and reconstruction group profile may be implemented mechanically. 此种机器人多由若干个外形相同、功能各异的子机器人构成,并根据不同的环境进行组装,以适应不同需求。 Such multiple robot consists of several identical shape, different sub-function robot configuration, and assembled according to different environments, to adapt to different needs. 但是由于自身结构特点,负载能力较小。 However, due to the structural characteristics of their own, smaller load capacity.

实用新型内容 SUMMARY

[0007] 本实用新型的目的是提供一种应用在灾害救援中,具有单一本体式且具有强负载 [0007] The object of the present invention is to provide an application in the disaster relief, and having a unitary body having a high load of formula

能力又兼备多机器人的灵活互换性的机器人。 Capable and flexible interchangeability of both robots and more robots.

[0008] 为实现上述目的,本实用新型采用以下技术方案: [0008] To achieve the above object, the present invention adopts the following technical scheme:

[0009] 本实用新型包括六边形的主体模块以及位于主体模块上的机械臂,主体模块与移动机构相连接;主体模块包括利用总线技术进行相互通信的识别单元、运动控制单元、通信单元和总控单元,其中,识别单元识别移动机构的移动方式,运动控制单元根据该移动方式建立运动学模型并驱动移动机构运动;机械臂的本体是一个具有五个自由度的机器人操作臂,在操作臂上设有舵机和手部夹持机构,舵机与总控单元相连接。 [0009] The present invention comprises a robot arm and a hexagonal body module, and the module body moving mechanism located on the main module is connected; body module includes a recognition unit communicate with each other using the bus, the motion control unit, a communication unit, and master control unit, wherein the recognition unit moves the moving mechanism, the movement control unit established in accordance with the kinematic model and moves the drive mechanism moving motion; manipulator body is a five degree of freedom robot manipulator arm having, in operation Actuator arm and hand with the clamping mechanism, the servo unit is connected to the master control. [0010] 上述的移动机构包括轮式底盘模块以及与其相连接的四个轮模块,每个轮模块均与一个电机相连接;运动控制单元包括与轮模块相连接的电机及其速度传感器,电机的输入端与电机驱动器相连接,电机驱动器的输入端连接P丽信号发生器,P丽信号发生器的输入端连接PID控制器,PID控制器的输入端连接乘法器,所述的乘法器以速度传感器采样的当前速度值和历史速度值作为输入信号。 [0010] The movement mechanism includes a four wheeled chassis module and a module connected thereto wheels, each wheel modules are connected to a motor; motion control unit includes a motor and the wheel speed sensor connected to the module, the motor the input terminal is connected to the motor driver, the motor driver input terminal is connected to the signal generator P Li, P Li input of the PID controller is connected to the signal generator, the input of the PID controller is connected to a multiplier, said multiplier to the current velocity value and the historical value of the speed sensor sampling speed as an input signal.

[0011] 上述的移动机构包括履腿底盘模块以及与其相连接的四个履腿模块,四个履腿模块对称分布。 [0011] The moving mechanism includes a chassis module and four legs crawler shoe leg modules connected thereto, four symmetrically shoe leg modules.

[0012] 上述的移动机构包括全向轮底盘模块以及在全向轮底盘模块周向均匀分布设置的三个90°瑞典轮。 [0012] The omnidirectional moving mechanism includes a wheel chassis module and three wheels 90 ° Sweden fully distributed uniformly to the periphery of the wheel chassis module.

[0013] 将机械臂各关节的电位器的阻值变化经过AD转换后传给总控单元,总控单元将 [0013] The robotic arm potentiometer resistance changes of the joints pass through the total AD conversion control unit, the master control unit

其转换成相应的角度值后,传给机械臂上各关节的舵机。 After it is converted to the corresponding angular value, pass on the robot arm of each joint servo.

[0014] 上述主体模块的实体架构采用光敏树脂材料,且其柱梁截面内嵌。 Physical Architecture [0014] The module body using a photosensitive resin material, and which column and beam sectional embedded.

[0015] 在主体模块上设有至少一个导轨,导轨与任务模块相连接;导轨是指主体模块与 [0015] provided with at least one guide rail, the guide rail and the task module is connected to the main body module; body module and guide means

任务模块的插接口。 Tasks plug interface module.

[0016] 上述的任务模块为影音传送模块、生命体征探测模块、空间环境测量模块、空间位置定位模块、医疗救护模块中的任意一种或几种组合。 [0016] The task module is a video transmission module, vital signs detection module, measurement module space environment, spatial positioning module, any one or combination of several modules in medical care.

[0017] 采用上述技术方案的本实用新型,采用"积木式"的模块化机械连接方案,运用独创的机械自适应双轨道导轨以完成"即插即用"功能,以主体模块为平台实现一物多用,可根据环境以及任务的种类快速组装多种任务模块,用最快的时间实现所需要的综合救援功能,既具有单一本体式机器人的强负载能力又兼备多机器人系统的灵活互换性。 [0017] By adopting the technical scheme of the present invention, "building blocks" modular mechanical connection scheme, the use of the original machine to perform an adaptive dual track rail "plug and play" function to a platform module body multi-purpose, can quickly assemble a variety of tasks module according to the type of environment and tasks, to achieve a comprehensive rescue function required with the fastest time, not only has the load capacity of a single robot body and both the multi-robot system is flexible interchangeability . 另外,它采用统一规格的航空插口进行线路整合,控制系统使用嵌入式微控制器实现分布式控制。 In addition, it uses a unified standard air jack for line integration, control system uses an embedded microcontroller to implement distributed control. 系统有机地将现有成熟技术整合,电子和程序设计采用开放式方案,因此产品更利于后续开发及更新换代。 System organically integrating the established technologies, electronics and programming an open program, so the product is more conducive to the development and subsequent replacement.

[0018] 本系统中主体模块的机械框架采用3D激光快速成型技术,使用SomosProtoTool 20L光敏树脂材料,将数字化三维模型经由3D激光快速成型生成为实体。 [0018] The machine frame of the main module of the present system using 3D laser rapid prototyping techniques, a photosensitive resin material using SomosProtoTool 20L, via the digital three-dimensional model rapid prototyping generated as 3D entities. 制造过程快捷、环保,最大程度利用CAD与CAM的技术优势,增强机械结构性能、节约成本。 Manufacturing process is quick, environmental protection, maximize the use of CAD and CAM technology advantages, and enhance the mechanical properties of structural cost savings. 经过有限元结构计算分析,发现主体框架横梁存在应力集中点,支柱耐压能力差等缺陷。 After computing the finite element structural analysis, we found stress concentration points of the body frame beams, pillars defects and poor pressure resistance. 为克服此缺陷,设计采用柱梁截面内嵌微结构技术,有效减轻重量,同时增强结构的力学性能。 To overcome this drawback, and column design uses a cross-sectional microstructure embedded technology to effectively reduce weight while enhancing the mechanical properties of the structure. [0019] 机器人系统采用分布式控制,采用一主机_多从机结构。 [0019] The robot system with distributed control, uses a multi-master slave structure _. 其中总控单元作为主机完成上位机通信、总线仲裁、任务调度、路径规划;运动控制单元等作为子控制器完成电机PID闭环、外部事件相应、周围环境传感等任务。 Wherein the master control unit as the host PC communication is completed, bus arbitration, task scheduling, path planning; motion control unit or the like as the sub-loop PID controller to complete the motor, the corresponding external event, surroundings sensor system tasks. 且主机与子控制器间通过高速总线连接。 Between the host and the sub-controller and connected via a high speed bus. 采用改进型UART通信协议,由主控制器进行总线仲裁,并通过广播进行设备握手并进行数据交换。 UART communication using a modified protocol, bus arbitration performed by the main controller, and through the broadcast and handshake data exchange. 由于仅使用两线制总线,设备间连接线数量显著减少,通过规定线制的航空插口, 快速热插拔配合机械连接实现模块化的设计。 Since only two-wire bus, the number of connection lines between the devices a significant reduction, by a predetermined wire air jack, with rapid mechanical connection hot plug modular design.

[0020] 另外,本实用新型中自行设计出的机械臂及其操纵方式,将无线视频传输技术与多自由度示教仪相结合,提供操作者第一视角的任务视野,并可将操作者的手臂动作经由示教设备直接控制机械臂的运动。 [0020] Further, the present invention is designed in a manner of manipulating robot arm and the wireless video transmission technology with multiple degrees of freedom of combining the teaching device, a first task of providing the operator's view of the viewing angle, and the operator controlling the movement of the manipulator arm movements via a direct teaching apparatus. 附图说明 BRIEF DESCRIPTION

[0021] 图1为本实用新型实施例1中轮式移动机构的结构图; [0021] FIG. 1 embodiment of the present invention, the structure of the wheeled mobile mechanism of FIG 1;

[0022] 图2为本实用新型主体模块的框架外形图; [0022] FIG invention FIG outline of the main module of the present frame;

[0023] 图3为本实用新型实施例1中机器人的整体结构图; FIG overall configuration of the new robot Example 1 [0023] FIG. 3 is useful;

[0024] 图4为本实用新型中主体模块的电气结构框图; [0024] FIG. 4 is an electrical block diagram of the main module of the invention;

[0025] 图5为本实用新型实施例1中运动控制单元的原理框图; [0025] FIG. 5 is a block diagram of the motion control unit of the embodiment of the invention;

[0026] 图6为本实用新型实施例1中PID控制框图; [0026] FIG. 6 embodiment of the present invention, PID control block diagram of an embodiment;

[0027] 图7为本实用新型实施例1中建立的运动学模型; [0027] Figure 7 is a kinematic model of the embodiment of the invention established;

[0028] 图8为本实用新型实施例1运动学模型中计算行驶阻力的原理图; [0028] FIG. 8 is a schematic diagram of running resistance calculating the kinematic model of the invention Example 1;

[0029] 图9为本实用新型中机械臂的结构简图; [0029] FIG. 9 is a schematic structural diagram of a robot arm in the invention;

[0030] 图10为本实用新型中机械臂与手部夹持机构的结构示意图; [0030] FIG. 10 is a schematic view of the robot arm in the new hand practical clamping mechanism;

[0031] 图11为本实用新型整体的电气工作原理图; [0031] FIG. 11 of the present invention the overall electrical operating principle;

[0032] 图12为本实用新型中主体模块的主循环流程图; [0032] FIG. 12 is a main loop flow chart of the main module in the new utility;

[0033] 图13为本实用新型中主体模块的工作进程图; [0033] FIG 13 new body module present in practical work process diagram;

[0034] 图14为本实用新型实施例3中机器人的整体结构图; [0034] FIG. 14 embodiment of the present invention, an overall configuration of the robot of FIG 3;

[0035] 图15为本实用新型实施例3中机器人的伸展态运动姿态图; [0035] FIG. 15 embodiment of the present invention extends the state of motion of the robot posture in FIG 3;

[0036] 图16为本实用新型实施例3中机器人的单翼搭接态运动姿态图; [0036] FIG 16 Example 3 of the present invention the overlapping wing motion state of the robot posture drawing;

[0037] 图17为本实用新型实施例3中机器人的抬身态运动姿态图; [0037] FIG. 17 embodiment of the present invention carried on Body motion attitude of the robot in FIG 3;

[0038] 图18为本实用新型实施例4中机器人的整体结构图; [0038] FIG. 18 embodiment of the present invention an overall configuration of the robot of FIG Example 4;

[0039] 图19为本实用新型实施例4中建立的全局参考框架运动学模型图; [0039] FIG. 19 embodiment of the present invention with reference to the global frame kinematic model established in figure 4;

[0040] 图20为本实用新型实施例4中加上局部参考框架的运动学模型图; [0040] FIG. 20 plus the new embodiment of a kinematic model of FIG. 4 the local reference frame of the present utility;

[0041] 图21为本实用新型实施例6中机器人的整体结构图; [0041] FIG. 21 embodiment of the present invention, an overall configuration of the robot of FIG 6;

[0042] 图22为本实用新型实施例7中任务模块的工作流程图。 [0042] FIG. 7 is a flowchart of 22 new task module embodiment of the disclosure.

具体实施方式[0043] 实施例1 DETAILED DESCRIPTION Example 1 [0043]

[0044] 如图1、图3所示,本实施例包括六边形的主体模块1以及位于主体模块1上的机械臂4,主体模块1通过航空插头与移动机构3相连接,在本实施例中,移动机构3采用轮式移动机构。 [0044] FIG. 1, FIG. 3, the present embodiment includes a hexagonal body module and the robot arm 1 is positioned on the main body module 14, the module body 13 and connected by air plugs moving mechanism, the present embodiment embodiment, the moving mechanism 3 using wheeled mobile mechanism. 其中,主体模块1为各移动机构3提供动力及总控,像心脏与大脑一样,保证整体的正常运行。 Wherein each of the body module 1 powered movement mechanism 3 and the total control, as the heart and brain as to ensure the normal operation of the whole. 并且航空插头连接后,主体模块1会自动识别移动机构3的移动底盘方式,从而应用相应的移动程序,达到"即插即用"的效果。 And the air plug connector, the body module 1 will automatically identify the mobile chassis moving mechanism 3 of the embodiment, so that the application program corresponding movement, to "plug" effect. 这种模块化设计,可以根据不同的救援环境改变移动机构,选择适应该环境的移动机构,从而可以最大程度上发挥救援机器人的功效,有效的提高其利用效率。 This modular design can be changed depending on the environment of aid agencies to move, choose to adapt to the environment of the moving mechanism, which can be effective rescue robot to the maximum extent, effectively improve the efficiency of its utilization.

[0045] 如图2所示,在本实用新型中,主体模块1采用六边形作为本体核心模块框架外形。 [0045] As shown in FIG 2, in the present invention, the body module 1 to the hexagonal shape as a bulk core module frame. 首先,六边形空间利用率高。 First, the hexagonal space utilization high. 从蜂房中采用六边形作为基础形态可知,本体模块l采用六边形外框架可以充分增大内部空间,同时与外界插接时有效减少空间占用;其次,六边形结构稳固,力学性能好,这一点从晶体中六边形结构较为稳固就可以看出。 Using as a basis a hexagonal shape seen from the hive, the body l to the hexagonal outer frame module can sufficiently increase the internal space, while effectively reduce the space occupied when the external connector; secondly, hexagonal structure stability, good mechanical properties this is from the hexagonal crystal structure can be seen more stable. 在实际设计中, 采用有限元分析软件C0SM0SWorks进行结构设计分析,优化设计出最为合适的六边形外框架,使得其强度、刚度、抗压能力优异,同时重量轻、造价合理,满足设计要求。 In the actual design, finite element analysis software C0SM0SWorks structural design analysis, optimization of the design of the most appropriate hexagonal outer frame, so that the strength, stiffness, excellent in compressive strength, at the same time light weight, reasonable cost, to meet the design requirements. [0046] 如图4所示,从内部电气控制上来讲,主体模块1包括利用总线技术进行相互通信的识别单元、运动控制单元、通信单元和总控单元,其中,识别单元识别移动机构3的移动方式,运动控制单元根据该移动方式建立运动学模型并驱动移动机构3运动;总控单元对整体系统实施监控;通信单元提供通信协议,负责系统内部各个功能单元之间的通信和系统与外部指令设备的通信工作。 [0046] As shown in FIG. 4, from the internal electrical control terms, comprises a main body 1 by a bus module technology recognition unit communicate with each other, the motion control unit, a communication unit and a master control unit, wherein the identifying unit identifies moving mechanism 3 moves, the motion control unit based on the establishment of the kinematic model and the drive moves the moving mechanism 3 to move; master control unit to monitor the overall system embodiment; communication unit provides communication protocol, the internal communication between the various functional units and is responsible for the system and the external system communication operation instruction device.

[0047] 在本实施例中,移动机构3采用轮式移动机构。 [0047] In the present embodiment, the moving mechanism 3 using wheeled mobile mechanism. 如图1所示,移动机构3包括轮式 1, the moving mechanism 3 comprises a wheel

底盘模块5以及与其相连接的四个轮模块6,每个轮模块6均与一个电机12相连接。 Four wheel chassis 5 and the module connected thereto modules 6, 6 each wheel module 12 are connected to a motor. 其中 among them

轮式底盘模块5采用差动驱动,它们对四个电机12进行独立驱动,此种驱动方式不但可以 A wheeled chassis module 5 a differential drive, which independently drives the four motors 12, this driving method can only

提供强劲的驱动能力,也拥有强大的越障和爬坡能力,特别适合室外的应用。 Provide a strong driving ability, but also has a strong obstacle and climbing ability, especially suitable for outdoor applications.

[0048] 在采用轮式移动机构的基础上,本实施例的运动控制单元如图5所示,该控制采 [0048] On the basis of the use of wheeled mobile mechanism, the movement control unit according to the present embodiment is shown in Figure 5, the control Mining

用的是闭环伺服控制,可以保证电机比较准确地运行,它包括与轮模块6相连接的电机12 Using a closed loop servo control can be more accurately ensure the motor running, the motor comprising a wheel 12 connected to the module 6

及其速度传感器,电机的输入端与电机驱动器相连接,电机驱动器的输入端连接P丽信号 And a speed sensor, the motor and the motor driver input terminal is connected to the input terminal P is connected to the motor drive signal Li

发生器,P丽信号发生器的输入端连接PID控制器,PID控制器的输入端连接乘法器,上述的 Generator, an input terminal P is connected to the signal generator Korea PID controller, PID controller connected to the input of the multiplier, the above-described

乘法器以速度传感器采样的当前速度值n(t)和历史速度值n。 Multiplier current speed sensor sampling speed value n (t) and the historical speed value n. (t)作为输入信号。 (T) as an input signal.

[0049] —侧轮子的等速控制采用的是PID控制器,即将偏差的比例P、积分I和微分D通 [0049] - the wheel side constant velocity control using the PID controller, a proportional deviation upcoming P, integral and differential D through I

过线性组合构成控制量,用这一控制量对被控对象进行控制。 Through linear combination constitute a control amount for controlling the controlled object the controlled variable.

[0050] 模拟系统中PID算法的表达式为: Expression of the PID algorithm [0050] simulation system:

[0051] [0051]

<formula>formula see original document page 6</formula> <Formula> formula see original document page 6 </ formula>

[0052] 式(1)中:P(t)为调节器的输出;e(t)为调节器的偏差信号,等于测量值与给定值之差;Kp为调节器的比例系数A为调节器的积分时间;TD为调节器的微分时间。 [0052] Formula (1): P (t) is the output of the regulator; e (t) is the deviation signal conditioner, equal to the measured value differs from reference value; Kp of the proportional coefficient A regulator to adjust 's integration time; TD is the differential time regulator. [0053] 计算机控制是一种采样控制,只能根据采样时刻的偏差值来计算控制量,所以必须先对上式进行离散化处理,积分项可用求和表达式表示,微分项可用增量表达式表示: [0053] Computer control is a control sample, only the control amount calculated in accordance with deviation of the sampling time, it must first be discretized formula, available summation expression represents the integral term, a differential term of available delta Expression represented by:

[0054] <formula>formula see original document page 6</formula>[0056] 将上面二式代入(1)式可得到用数字形式的差分方程代替连续系统的微分方程式: [0054] <formula> formula see original document page 6 </ formula> [0056] The above two equations are substituted into equation (1) is obtained by difference equations instead of a continuous system of differential equations in digital form:

[0057] <formula>formula see original document page 6</formula>[0058] 式(2)中U(n)为采样时刻n时的电机控制信号输出,e (n)为采样时刻n时的位置误差值,Kp、Ki、Kd分别为PID控制器的比例、积分、微分系数,n'为微分采样时间。 [0057] <formula> formula see original document page 6 </ formula> [0058] Formula (2) U (n) for the sampling control signal output of the motor at time n, e (n) is the position of the sampling instant n error value, Kp, Ki, Kd PID controller are the proportional, integral, differential coefficient, n 'is a differential sampling time. 对应(2)式的PID控制框图如图6所示。 Corresponds to (2) a PID control block diagram shown in Fig.

[0059] 在图5中,Kp起比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用以减少偏差。 [0059] In FIG. 5, since Kp of proportional control action: scale of the reaction system deviation, once the system deviation, proportional control regulation is immediately generated to reduce bias. 比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降。 The proportion of effect, and can speed up the adjustment, reduce the error, but the proportion is too large, so that the stability of the system decreases. 仅有比例控制的系统会存在稳态误差。 The system will only control the ratio of the steady state error exists.

[0060] Ki起积分调节作用:控制器的输出与输入误差信号的积分(历次误差值求和)成正比关系,可以消除系统的稳态误差,提高无差度。 [0060] Ki integral regulatory role play: the error signal output of the integrator input controller (previous error sum value) proportional, can eliminate the steady-state error, no difference degree increase. 加入积分调节会使系统稳定性下降,动态响应变慢,常与另两种调节规律结合使用。 Add integral controller causes the system to decreased stability, slow dynamic response, often used in combination with two other regulation law.

[0061] Kd起微分调节作用:控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系,微分作用反映系统偏差信号的变化率,具有预见性,能产生超前的控制作用,其引入的超前量将抵消惯性环节和滞后元件产生的误差。 [0061] Kd Differential regulation play: the error signal output of the differential input of the controller (i.e. the rate of change of error) proportional, derivative action is reflected in the rate of change of the system deviation signal, predictability, can produce advanced control action , the amount of lead introduced errors will cancel inertia and hysteresis generating element. 因此,可以改善系统动态性能,减少超调和调节时间。 Thus, the system can be improved dynamic performance, reduced overshoot and settling time. 但过强的微分调节,对系统抗干扰性能不利。 But after a strong differential regulation, interference detrimental to system performance. 微分作用同样需要与另两种调节规律结合使用。 Similarly derivative action used in conjunction with two other regulation law.

[0062] 在此过程中,运动控制单元将轮式移动机构等效为两履带运动方式建立运动学模型。 [0062] In this process, the movement control unit moving mechanism kinematics model is equivalent to a two wheeled track motion. 首先假定机器人履带在平整路面内接地比压平均分布,建立起如图7所示的X0Y基础坐标系: First assumed grounding robotic crawler evenly distributed than the pressure in the flat road, X0Y base coordinate system set up as shown in FIG 7:

[0063] (1)平均着地压强: [0063] (1) Average ground pressure:

[0064] 计算时假定车辆重量平均分布在着地面上,但很难做到载荷完全均匀分布,实际 [0064] assumed that the vehicle weight distribution on the ground in the calculation, but it is difficult to achieve completely uniform distribution of the load, the actual

上,位于诱导轮、主动轮正下方的载荷较大。 , The idler wheel is located, just below the driving wheel load is large. "

[0065] P = i其中,W为车辆重量;b为履带宽度;L为着地长度,这里是一侧两条履带 [0065] P = i where, W is vehicle weight; B is the track width; L is the length of the ground, this is the side of two tracks

的总长度。 The total length.

[ooee] (2)旋转半径: [Ooee] (2) the radius of rotation:

<formula>formula see original document page 7</formula> <Formula> formula see original document page 7 </ formula>

车辆等效线速度、^ An equivalent linear velocity of the vehicle, ^

2 2

车辆旋转半径;=7〃 Radius of rotation of the vehicle; = 7〃

[0067] [0067]

[0068] [0068]

[0069] [0069]

旋转。 Rotation. [0070] [0071] [0070] [0071]

式行驶系统中,若设车辆重量为w,则左右履带的阻力 Type travel system, assuming that the vehicle weight is w, the left and right track resistance

[0072] [0072]

2 V! 2 V! —v2 -v2

将左右履带/车轮反向驱动可得到自旋旋转;将单边履带/车轮停止可得到枢轴(3)行驶阻力: The right and left track / reverse drive wheel spin rotation can be obtained; the unilateral track / wheel pivot stop is obtained (3) running resistance:

如图8所示,移动机构的行驶阻力为平均阻力与旋转阻力之和,在通常的两履带 8, the moving mechanism driving resistance with an average resistance and the rotational resistance, in the usual two-track

[0073] [0073]

<formula>formula see original document page 7</formula>[0074] 式中,i! <Formula> formula see original document page 7 </ formula> [0074] wherein, i! . 为滚动阻力系数;P为行驶路面与履带的摩擦系数。 Rolling resistance coefficient; P is the track with the road surface friction coefficient.

[0075] 这样,在PID控制和已建立的运动学模型下,运动控制单元将轮式移动分为直线运动和转弯两种情况,机器人两侧的轮模块6等速运动实现直线运动功能;两侧的轮模块6 反向或不等速运动实现机器人滑差转向。 [0075] Thus, under the PID control and kinematic model established, the control unit motion into linear motion to move the wheel and cornering both cases, both sides of the wheel module robot 6 isokinetic linear motion function; two reverse side wheel module 6 for robot or isokinetic slip steering. 在具体实施时,外部指令设备发出控制指令,主体模块1中的总控单元接收该控制指令并传达给各个功能单元,各个功能单元联合动作,最后使得电机12动作,这样机器人就能够按照设定的指令运作。 In a specific embodiment, the external device sends a control instruction command, the main body 1 of the master control module receives the control instruction unit and communicated to the respective functional units, each functional unit joint operation, so that the final operation of the motor 12, so that the robot can be set in accordance with the instruction operation.

[0076] 另外,在本实施例中,机械臂4的本体是一个具有五个自由度的机器人操作臂,在操作臂上设有舵机和手部夹持机构,其中,舵机与总控单元相连接,并根据总控单元的指令完成各种夹持等动作。 [0076] Further, in the present embodiment, the body 4 is a manipulator with five degrees of freedom robot manipulator arm, and hand with steering operation arm clamping mechanism, wherein the servo control total means connected to complete a variety of clamping and the like according to an instruction operation of the master control unit.

[0077] 如图9所示,机械臂4共有五个可动部件,五个关节组成,故其自由度为F = 5X3-5X2 = 5。 [0077] As shown in FIG. 9, the movable robot arm 4 a total of five members, composed of five joints, so the degree of freedom F = 5X3-5X2 = 5. 因此,在实施时,其机座转动关节采用TowerPro MG945舵机进行驱动,肘部和腕部关节则采用TowerPro SG90舵机进行驱动, Thus, in the implementation, which uses a revolute joint base driving servo TowerPro MG945, elbow and wrist joints are employed TowerPro SG90 servo drives,

[0078] <formula>formula see original document page 8</formula>[0079] [0080] [0078] <formula> formula see original document page 8 </ formula> [0079] [0080]

表l Table l

由上述表1的操作臂连杆参数,可求得连杆变换矩阵如下<formula>formula see original document page 8</formula> From the above Table 1 the operating arm link parameters, the transformation matrix can be obtained as link <formula> formula see original document page 8 </ formula>

[0083] 手部夹持机构13如图10所示,它采用TowerPro SG90舵机驱动,两模数、齿数相同,带夹持手爪的齿轮相互啮合而形成,其夹持范围9为0〜18(T 。 [0084] 手部夹持机构13的夹持力F由下式计算可得M^ n2 = FXL 上式中,M为舵机的输出力矩,为1.3kgcm; 1为齿轮之间的啮合效率,为0. 9 ; ^为机械摩擦效率,为0.9; L为力臂长度,为5cm [0083] the hand holding mechanism 13 shown in Figure 10, which uses servo drive TowerPro SG90, modulo two, the same number of teeth, the gears engaged with each other with the clamping gripper is formed, which clamping range of 0~ 9 a gear between 1; 18 (T [0084] the hand holding force of the clamping mechanism 13 is calculated by the formula F can be obtained M ^ n2 = FXL the above formula, M is a servo output torque, as 1.3kgcm. the engagement efficiency of 0.9; ^ mechanical friction efficiency, 0.9; L is the arm length of 5cm

^/帮2 1.3x9.8x0.9x0.9 — 厂^ 2N ^ / Help 2 1.3x9.8x0.9x0.9 - Factory ^ 2N

N = 2iiF = 2X0.3X2 = 1.2N, 其中y为机械爪与物体之间的摩擦系数,约为O. 2〜0.4。 N = 2iiF = 2X0.3X2 = 1.2N, wherein y is the coefficient of friction between the object and gripper, about O. 2~0.4.

[0085] [0086] [0087] [0088] [0085] [0086] [0087] [0088]

[0089] <formula>formula see original document page 8</formula> [0089] <formula> formula see original document page 8 </ formula>

0090] [0091] [0092] 0090] [0091] [0092]

在本实用新型中,主体模块1中的通信单元提供通信协议,并负责系统内部各个功能单元之间的通信和系统与外部指令设备的通信工作。 Providing a communication protocol in the present invention, the main body 1 of the communicating unit, and is responsible for a communication operation of the communication system and the external command device between the individual functional units within the system.

[0093] 在通信单元提供的通信协议中,其每次通信包含两个8位2进制信息,即首位字节和次位字节。 [0093] In the communication protocol of the communication unit provided in which each communication consists of two 8-bit binary information, i.e., the first byte and byte times. 设备通信时,总控单元发送首位字节,通过总线进行广播,ADD3〜ADDO构成指定的设备地址,Mod2〜ModO构成指定设备的工作模式;然后总控单元再发送次位字节, 通过总线进行广播;接着,指定设备接收到广播后,对比自身设备地址,如与ADD3〜ADD0对应,读取次位字节,执行指定操作;最后,指定设备根据执行状况发送应答信息。 When the communication device, the total control unit transmits the first byte, broadcast by a bus, ADD3~ADDO constituting the specified device address, Mod2~ModO constituting the operating mode designated device; master control unit and retransmission order bit byte, via bus broadcast; Next, after specifying the broadcast receiving device, compare its own device address, such as corresponding to the ADD3~ADD0 reading order bit byte, the specified action; and finally, the specified device transmits response information according to the execution condition. [0094] 其中,首位字节的定义如表2所示:<table>table see original document page 9</column></row> <table> [0094] wherein, the first byte are defined as shown in Table 2: <table> table see original document page 9 </ column> </ row> <table>

[0096] 表2 [0096] TABLE 2

[0097] 次位字节的定义如表3所示: [0098] Defined bit bytes [0097] As shown in Table 3 times: [0098]

<table>table see original document page 9</column></row> <table>[0099] 表3 <Table> table see original document page 9 </ column> </ row> <table> [0099] TABLE 3

[0100] 如图11所示,在本实用新型的整体电气系统中,主体模块1中的主控单元采用ARM 进行开发,它与各个移动机构3中的电机控制器、机械臂4中的舵机控制器、通信单元、加速度传感器以及其他传感器相通信,获取综合信息后下达控制指令。 [0100] As shown, in the present invention, the entire electrical system, the body module 1 uses the main control unit 11 ARM developed, it means moving the respective motor controller 3, the robot arm 4 rudder controller, a communication unit, an acceleration sensor and other sensors in communication, the control instruction issued obtain comprehensive information.

[0101] 如图12所示,在机器人开机的状态下,外部指令设备先对主体模块1进行无线通信检测,若出现错误则发出蜂鸣报警;无错误时,主体模块1开始对各设备进行广播点名, 各设备依次应答,并将应答信息传给主体模块1,主体模块1判断机体的状态后,开始工作进程。 [0101] 12, in the boot of the state of the robot, the external command to the first device body detecting radio communication module 1, an error occurs when the alarm buzzer; when no error, the main module 1 starts each device broadcast name, each device sequentially response, and the response information to the main module 1, after determining the state of a main body of the module, the process to work.

[0102] 如图13所示,当主体模块1开始工作进程后,首先接收外部指令设备发出的控制指令,并对当前状态进行分析决策,即主体模块l自动识别移动机构3的移动底盘方式,是轮式移动方式、或履腿式移动方式、或全向轮式移动方式中的哪一种。 [0102] As shown, when the module main body 1 after the process to work, the first 13 receives an external instruction control command sent from the device, and to analyze the current state of the decision, i.e., automatic identification of the mobile body module l chassis moving mechanism 3 of the embodiment, a wheel moves, or shoe leg moves, or the whole of which moves in the wheel. 当确定是轮式移动方式后,继续接收外部指令设备的控制指令,然后在运动控制单元中进行运动规划并最终执行命令。 When the wheel moves is determined, control continues to receive an external command instruction device, and motion in the motion planning and control unit eventually execute the command.

[0103] 实施例2 [0103] Example 2

[0104] 本实施例与实施例1不同的是,在本实施例中,主体模块1的实体架构采用光敏树脂材料,且其柱梁截面内嵌。 [0104] Example of the present embodiment in Example 1 except that, in the present embodiment, the entity body module architecture using a photosensitive resin material, and which column and beam sectional embedded.

[0105] 在制备过程中,主体模块1的机械加工工艺采用了先进的激光快速成形技术,使用Somos ProtoTool 20L光敏树脂材料,将数字化三维模型经由3D激光快速成型生成为实体。 [0105] In the manufacturing process, a machining process module body using advanced laser rapid prototyping technology, the use of a photosensitive resin material Somos ProtoTool 20L, via the digital three-dimensional model rapid prototyping generated as 3D entities. 制造过程快捷、环保,最大程度利用CAD与CAM的技术优势,增强机械结构性能、节约成本。 Manufacturing process is quick, environmental protection, maximize the use of CAD and CAM technology advantages, and enhance the mechanical properties of structural cost savings. 经过有限元结构计算分析,发现主体框架横梁存在应力集中点,支柱耐压能力差等缺陷。 After computing the finite element structural analysis, we found stress concentration points of the body frame beams, pillars defects and poor pressure resistance. 为克服此缺陷,设计采用柱梁截面内嵌微结构技术,有效减轻重量,同时增强结构的力学性能。 To overcome this drawback, and column design uses a cross-sectional microstructure embedded technology to effectively reduce weight while enhancing the mechanical properties of the structure.

[0106] 其他技术特征与实施例1相同。 [0106] Other technical features same as in Example 1. [0107] 实施例3 [0107] Example 3

[0108] 本实施例与实施例1不同的是,在本实施例中,移动机构3采用履腿式移动机构。 [0108] Example of the present embodiment is different from embodiment 1 is that, in the embodiment, the moving mechanism using the shoe 3 legged moving mechanism in the present embodiment. 如图14所示,移动机构3包括履腿底盘模块7以及与其相连接的四个履腿模块8,四个履腿模块8对称分布,控制履腿模块8的电机位于履腿底盘模块7上,且每个履腿模块8对应一个控制电机。 14, the moving mechanism 3 comprises a shoe leg and chassis module 7 shoe leg four modules 8 connected thereto, four shoe legs symmetrically module 8, the motor control module 8 of shoe leg situated on the shoe leg chassis module 7 and each shoe leg 8 corresponds to a motor control module. 另外,在履腿底盘模块7上可以装载各种仪器、设备用于完成各项作业任务, 它是运载平台,在运动中一般保持水平姿态。 Further, in the shoe leg 7 can be loaded module chassis variety of instruments, equipment for completion of the job task, it is the delivery platform, the movement is generally kept in a horizontal posture. 履腿模块8是运动单元,它可以绕机器人主体旋转辅助机器人攀爬越障。 8 is a shoe leg exercise unit module, which can be rotated about an auxiliary robot body of the robot to climb the barrier.

[0109] 如图14所示,履腿式移动机器人共有四个自由度,履带自身转动和腿结构绕主体转动。 [0109] As shown, the legged mobile robot carry out a total of 14 four degrees of freedom, the track itself and the leg structure is rotated about the rotational body. 其中,在履带自身转动中,机器人通过小履带轮处的电机直接驱动小履带轮,将小轮旋转,其自由度转变为履带转动自由度,实现机器人前进和后退;在腿结构绕主体转动中, 机器人履带模块内的两台直流电机驱动腿结构部分沿y轴方向绕主体转动产生2个旋转自由度。 Wherein, in the track itself is rotated, the robot through the motor pinion wheel track at a small Direct drive track wheel, rotation of the small wheel, which is converted to track rotational freedom degrees of freedom, for robot forward and backward; leg structure is rotated about the main body in the , DC motor drives two leg portions along the y-axis direction in the structure body is rotated about the robotic crawler module produces two rotational degrees of freedom.

[0110] —般来说,履腿式移动机器人在运动中有三种典型的运动姿态,即伸展态、单翼搭接态和抬身态。 [0110] - In general, the legged mobile robot has to fulfill in motion three typical motion attitude, i.e. stretched state, overlapped wing lift state and the body state. 上述的伸展态是机器人正常行进姿态,如图15所示,且正常行进分为直线运动和转弯两种情况,机器人两侧运动单元中的履带等速运动实现直线行走功能;反向或不等速运动实现机器人滑差转向。 UNFOLDED above normal traveling posture of the robot is shown in Figure 15, and the normal turning traveling into linear motion and in both cases, both sides of the track movement unit of the robot motion to achieve constant linear walking function; reverse or unequal slip speed steering motion for robot. 如图16所示,单翼搭接态是机器人越障、跨沟姿态,作用是在机器人越障、跨沟过程中能展开翼板搭接到高处的障碍物或是深沟对面,给机器人通过提供支撑力帮助攀爬,或者在机器人运动中作为复位姿态出现。 , The wing 16 is overlapped state Robot Obstacle, cross grooves posture, the robot obstacle role, cross grooves or the obstacle during deployment can be landed on the wing opposite the groove height, to by providing a supporting force to help the robot to climb, or as a reset occurs in the posture of the robot motion. 如图17所示,抬身态是机器人结构变形姿态,该姿态能抬升中间主体高度升起安装在主体上的监视器,从而拓宽机器人视线扩大侦查范围。 17, the configuration of the robot carrying state body is deformed posture, the posture can be raised lifting height monitor intermediate body mounted on the body so as to expand the detection range widening robot vision.

[0111] 由于上述履腿式移动机器人的运动特点,所以运动控制单元将履腿底盘模块也等效为两履带运动方式建立运动学模型,其模型的建立与实施例1中的相同。 [0111] Since the above-described movement characteristics legged mobile robot shoe, the shoe leg motion control unit chassis modules kinematics model equivalent two track motion, the same as their establishment and implementation of the model in Example 1. [0112] 其他技术特征与实施例1相同。 [0112] Other technical features same as in Example 1. [0113] 实施例4 [0113] Example 4

[0114] 本实施例与实施例1不同的是,在本实施例中,移动机构3采用全向轮式移动机构。 [0114] Example of the present embodiment is different from embodiment 1 is that, in the present embodiment, the moving mechanism 3 omnidirectional wheeled mobile mechanism. 如图18所示,移动机构3包括全向轮底盘模块9以及在全向轮底盘模块9周向均匀分布设置的三个90。 18, the moving mechanism 3 comprises a chassis module 9 and all-wheel all-wheel chassis module to 9 uniformly distributed circumferentially disposed at three to 90. 瑞典轮IO。 Sweden round IO. 瑞典轮为本领域普通技术人员所熟知的技术。 Sweden wheel known to those of ordinary skill in the art of technology. 三个90°的瑞典轮径向对称地安装,滚柱垂直于各主轮。 90 ° radial wheel Sweden three symmetrically mounted, each of the main rollers perpendicular to the wheel. 瑞典轮结构的这种特殊结构,产生了全去耦的运动,为滚柱和主轮提供了正交的运动方向,使得该机器人可以在任何时候任何方向上(x, y, 9)移动,从而达到全向运动的目的。 This particular configuration of the wheel structure, Sweden, produces a full decoupling movement, a movement direction orthogonal to the main wheel and the rollers, so that the robot can be (x, y, 9) move in any direction at any time, so as to achieve the purpose of the whole exercise.

[0115] 由于全向轮式移动机构的特点,运动控制单元建立运动学模型,它包括建立全局参考框架和局部参考框架。 [0115] Since the omnidirectional characteristics of wheeled mobile mechanism, the kinematics model of the motion control unit, which includes the establishment of a global reference frame and a local frame of reference. 其全局参考框架如图19所示,加上局部参考框架后如图20所示。 Its global reference frame 19 and, with the local reference frame 20 as shown in FIG. 在机器人上加上特定的局部参考框架后,通过在机器人中心选择点P,然后将机器人排列成与局部参老框架一致,使XR与轮2的轴重合。 After adding specific local frame of reference on the robot, by selecting the center point P of the robot, and the robot are arranged in line with the old local reference frame, the shaft XR 2 coincides with the wheel.

[0116] 由全局参考框架中的运动向量与局部参考框架中的运动向量之间的映射关系可得 [0116] by a mapping relationship between global reference frame motion vectors in the local reference frame motion vector can be obtained

[0117] [0117]

.如<formula>formula see original document page 10</formula>[0118] 其中<^ = As <formula> formula see original document page 10 </ formula> [0118] where <^ =

为全局参考框架中的运动向量,由2个移动速度和1个旋转速度表 Is a motion vector in the global reference frame, the table 2 and a moving speed of the rotational speed

不; Do not;

[0119] R( e)为正交旋转矩阵;Jlf为一个具有投影的矩阵,该矩阵投射到沿着它们各个轮子平面的运动上;卫为常对角3*3矩阵,它的实体是全部标准轮子的半径1~ ^为局部参考框架中的运动向量,由3个轮子的旋转速度表示。 [0119] R (e) is an orthogonal rotation matrix; JLF having a projection matrix, which is projected onto the plane of movement thereof along the respective wheel; Wei is normally 3x3 diagonal matrix, which is all entities 1 to the standard radius of the wheel as the motion vector ^ local reference frame, the rotation speed represented by the three wheels.

[0120] 所以,只要知道全局参考框架中的运动向量与局部参考框架中的运动向量中的任何一个,就可以求得另外一个,从而达到控制运动的目的。 [0120] Therefore, once any global motion vector of a reference frame in the local frame of reference, the other can be determined, so as to achieve control of movement. [0121] 其他技术特征与实施例1相同。 [0121] Other technical features same as in Example 1. [0122] 实施例5 [0122] Example 5

[0123] 本实施例与上述实施例1 、实施例2、实施例3、实施例4不同的是,本实施例中的机械臂4通过运行来"示教"位置和姿势。 [0123] Example embodiments of the present embodiment and the previous embodiment 1, Example 2, Example 3, Example 4 embodiment is different, in the robot arm embodiment of the present embodiment operates to "teach" the position and orientation through 4. 其原理是将同等大小的示教手臂各关节的电位器的阻值变化经过AD转换后传给总控单元,总控单元将其转换成相应的角度值,经通信协议传给实际机械臂4上各关节的舵机,从而达到控制的目的。 The principle is the same size as the change in resistance of the potentiometer arm teachings of the joints pass through the total AD conversion control unit, the master control unit converts into the corresponding angular value, the actual manipulator transmitted via the communication protocol 4 the steering of each joint, so as to achieve control. 这样,在实际操作时,可将机械臂4运行至一期望位置并将这一位置记录下来,在用这种方法示教时,机器人不必要求返回原来的坐标系,此坐标系可以是局部坐标系也可以是固定坐标系。 Thus, in the actual operation, the robot arm 4 can be run to a desired position and the position of the record, when this teaching method, the robot is not necessarily required to return the original coordinate system, the coordinate system may be local coordinates system may be a fixed coordinate system. [0124] 其他技术特征与实施例1 、实施例2、实施例3、实施例4相同。 [0124] Other technical features of Example 1, Example 2, Example 3, Example 4 the same embodiment. [0125] 实施例6 [0125] Example 6

[0126] 本实施例与实施例3不同的是,在本实施例中,在主体模块1上设有多个导轨11, 导轨11与任务模块2相连接;导轨11是指主体模块1与任务模块2的插接口,如图21所示。 [0126] This example is Example 3 except that, in the present embodiment, a plurality of guide rails 11 provided on the body module 1, two rails 11 are connected with the task module; body module rail 11 refers to the task 1 module sockets 2 shown in FIG. 21.

[0127] 需要说明的是,导轨ll的数量可以根据实际设置的任务模块2的数量而设定,可以为一个、二个、三个或甚至更多个,这可以大大提高机器人的救援工作效率,并且装拆方便、迅速、可靠。 [0127] Incidentally, the number of rails may be set in accordance ll number actually set task module 2, it may be one, two, three or even more, which can greatly improve the efficiency of rescue robot and easy assembly and disassembly, fast and reliable. 另外,导轨ll上可以设置七个定位位置,也可以设置四个定位位置。 In addition, position location can be provided on the rail seven ll, four positioning position may be provided. [0128] 在本实施例中,任务模块2为影音传送模块。 [0128] In the present embodiment, the AV task modules to the transfer module 2. 具体地说,它包括大小两个摄像头: 大摄像头为1. 2GHz红外防水摄像头,安装在六边形主体模块上面的定位滑道中,可以为操作者及时提供清晰的救援现场环境视屏,帮助救援人员获得第一手救援现场信息,同时为操作人员提供良好的视角,便于操作机器人进行各种运动,并且该摄像头具有红外夜视功能,可以在黑暗的环境下获得效果良好的视屏信息;小摄像头为微型针孔摄像头,安装在手部夹持机构13地上方,可以同机械臂4 一同运动,从而扩大视角范围,同时可以在机械臂4 伸到狭缝中夹取东西时,为操作者提供视屏资料,便于操作人员有效的完成夹取工作。 Specifically, the size of which comprises two cameras: 1. 2GHz is a large camera IR waterproof camera, mounted in the module body is positioned above the hexagonal chute may be provided clear Screen rescue scene environment for the operator in time, rescuers the scene firsthand information, while providing the operator with a good viewing angle, easy to operate various robot movement, and which has an infrared night vision camera, video screen can be obtained good results in a dark environment information; small camera is when micro-pinhole camera, mounted above the hand portion 13 to the clamping mechanism, it can be moved together with the robot arm 4, thereby expanding the viewing angle range, while the robot arm 4 in the gripping something out into the slot, providing the operator Screen data, easy operator gripping the work done efficiently. [0129] 其他技术特征与实施例3相同。 [0129] Other technical features and 3 the same embodiment. [0130] 实施例7 [0130] Example 7

[0131] 本实施例与上述实施例不同的是,本实施例可以在上述所有实施例的基础上,在主体模块1上增设导轨ll,通过导轨11与任务模块2相连,进行灾害救援机器人的功能拓展。 [0131] The present embodiment is different from the embodiment of the present embodiment may be based on all of the above embodiments, the addition of the main body module guide rail ll, connected by a guide rail 11 and the task module 2, disaster relief robot function expansion. 上述的任务模块2可以为生命体征探测模块、空间环境测量模块、空间位置定位模块、医疗救护模块中的任意一种或其几种组合。 2 above task module may be vital signs detection module, measurement module space environment, spatial positioning module, any one or a combination of several modules in medical care.

[0132] 其中,生命体征探测模块采用现有体温及电场生命体征探测仪技术,以机械臂为核心结合上述模块实现的综合系统。 [0132] wherein, vital signs and body temperature detection module using conventional vital signs field detector technology, in conjunction with the integrated core manipulator system to achieve the above-described modules.

[0133] 空间环境测量模块主要包含红外、超声波、激光测距单元,依照项目进展与自身能力,由易至难选择不同的测距方式进行模块设计。 [0133] The main space environment measuring module comprises an infrared, ultrasonic, laser ranging units, in accordance with the progress of the project and their ability from easy to difficult to choose different ways ranging modular design. 可采用具有通用数据总线的工业级传感器,将大大降低项目难度。 Industrial Sensors having common data bus may be employed, will greatly reduce the difficulty of the project.

[0134] 空间位置定位模块采用具有通用数据总线的商业级无线电定位及GPS定位模块, [0134] spatial positioning module uses commercial grade radio positioning and GPS positioning module having a common data bus,

实时对机器人的空间位置进行定位,并可通过路点轨迹进行存储并绘制出未知空间地图。 The spatial position of the robot in real-time locate, and can be stored by waypoint track and draw the unknown space map.

[0135] 另外,各个任务模块的工作流程图如图22所示:在机器人开机的状态下,当主体 [0135] Furthermore, each task work modules flowchart shown in Figure 22: in the boot of the state of the robot, when the main body

模块1的呼叫请求到来时,应答该呼叫请求,并制定相应的工作决策,从而开始工作进程。 Call request module 1 arrives, answering the call request, and to develop appropriate work decisions to start working process.

在此过程中,可接收主体模块1的控制指令;若有错误也可进行蜂鸣报警。 In this process, the main module may receive a control command; if the error can also be buzzer alarm.

[0136] 其他技术特征与实施例1 、实施例2、实施例3、实施例4、实施例5、实施例6相同。 [0136] Other technical features of Example 1, Example 2, Example 3, Example 4, Example 5, the same as in Example 6.

Claims (8)

  1. 一种模块化的灾害救援机器人,其特征在于:它包括六边形的主体模块(1)以及位于主体模块(1)上的机械臂(4),主体模块(1)与移动机构(3)相连接;所述的主体模块(1)包括利用总线技术进行相互通信的识别单元、运动控制单元、通信单元和总控单元,其中,识别单元识别移动机构(3)的移动方式,运动控制单元根据该移动方式建立运动学模型并驱动移动机构(3)运动;所述机械臂(4)的本体是一个具有五个自由度的机器人操作臂,在操作臂上设有舵机和手部夹持机构(13),所述的舵机与总控单元相连接。 A modular disaster relief robot, characterized in that: it comprises hexagonal body module (1) module located in the body and arm (4) on (1), the module body (1) and moving means (3) connected; said module body (1) comprises the use of bus technology recognition unit communicate with each other, the motion control unit, a communication unit and a master control unit, wherein the identifying unit identifies the movement mechanism (3) moves, the motion control unit the establishment of the kinematic model and the drive moves the moving mechanism (3) moving; said arm (4) is a body of five degrees of freedom of the robot manipulator arm having a hand with the steering gear and operating arm portion sandwiched holding means (13), and the servo unit is connected to the master control.
  2. 2. 根据权利要求l所述模块化的灾害救援机器人,其特征在于:所述的移动机构(3)包括轮式底盘模块(5)以及与其相连接的四个轮模块(6),每个轮模块(6)均与一个电机相连接;所述的运动控制单元包括与轮模块(6)相连接的电机及其速度传感器,电机的输入端与电机驱动器相连接,电机驱动器的输入端连接P丽信号发生器,P丽信号发生器的输入端连接PID控制器,PID控制器的输入端连接乘法器,所述的乘法器以速度传感器采样的当前速度值和历史速度值作为输入信号。 According to claim l modular disaster relief robot, wherein: said moving means (3) comprises a wheeled chassis module (5) and four wheel module (6) connected thereto, each wheel module (6) are connected to a motor; said motion control means comprises a motor and a speed sensor and the wheel module (6) connected to the motor input terminal and the motor driver is connected to the input terminal of the motor driver connected Lai P signal generator, an input terminal P is connected to the signal generator Korea PID controller, the input of the PID controller is connected to a multiplier, the multiplier of the current speed value and historical values ​​of the sampled velocity speed sensor as an input signal.
  3. 3. 根据权利要求l所述模块化的灾害救援机器人,其特征在于:所述的移动机构(3)包括履腿底盘模块(7)以及与其相连接的四个履腿模块(8),四个履腿模块(8)对称分布。 According to claim l modular disaster relief robot, wherein: said moving means (3) comprising a shoe leg chassis module (7) as well as four legs shoe module (8) connected thereto, four a shoe leg modules (8) symmetrically.
  4. 4. 根据权利要求l所述模块化的灾害救援机器人,其特征在于:所述的移动机构(3)包括全向轮底盘模块(9)以及在全向轮底盘模块(9)周向均匀分布设置的三个90。 According to claim l modular disaster relief robot, wherein: said moving means (3) comprises a chassis module omnidirectional wheel (9) and evenly distributed in the whole wheel to a chassis module (9) weeks 90 arranged three. 瑞典轮(10)。 Sweden wheel (10).
  5. 5. 根据权利要求1所述模块化的灾害救援机器人,其特征在于:将机械臂(4)各关节的电位器的阻值变化经过AD转换后传给总控单元,总控单元将其转换成相应的角度值后,传给机械臂(4)上各关节的舵机。 1 according to the modular disaster relief robot as claimed in claim, wherein: the resistance change arm (4) of each joint potentiometer after AD conversion pass master control unit, the control unit converts the total after the corresponding angular value, passed arm (4) on the steering gear of the joints.
  6. 6. 根据权利要求l所述模块化的灾害救援机器人,其特征在于:所述主体模块(1)的实体架构采用光敏树脂材料,且其柱梁截面内嵌。 According to claim l modular disaster relief robot, characterized in that: said module body (1) is an entity architecture uses a photosensitive resin material, and which column and beam sectional embedded.
  7. 7. 根据权利要求1〜6任一所述模块化的灾害救援机器人,其特征在于:在主体模块(1)上设有至少一个导轨(ll),导轨(11)与任务模块(2)相连接;所述的导轨(11)是指主体模块(1)与任务模块(2)的插接口。 According to any of claims 1~6 a modular said disaster relief robot, characterized in that: provided at least one rail (LL) in the module body (1), the guide rail (11) and task module (2) with ; said guide rail (11) refers to the module body (1) and task module (2) of sockets.
  8. 8. 根据权利要求7所述模块化的灾害救援机器人,其特征在于:所述的任务模块(2)为影音传送模块、生命体征探测模块、空间环境测量模块、空间位置定位模块、医疗救护模块中的任意一种或几种组合。 According to claim 7 modular disaster relief robot, wherein: said task module (2) for the video transmission module, vital signs detection module, measurement module space environment, spatial positioning module, medical attention module any one or more combinations thereof.
CN2009202241971U 2009-10-16 2009-10-16 Modular disaster relief robot CN201525026U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009202241971U CN201525026U (en) 2009-10-16 2009-10-16 Modular disaster relief robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009202241971U CN201525026U (en) 2009-10-16 2009-10-16 Modular disaster relief robot

Publications (1)

Publication Number Publication Date
CN201525026U true CN201525026U (en) 2010-07-14

Family

ID=42516323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009202241971U CN201525026U (en) 2009-10-16 2009-10-16 Modular disaster relief robot

Country Status (1)

Country Link
CN (1) CN201525026U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039589B (en) 2009-10-16 2012-06-13 李路 Modularized disaster rescue robot
CN102598903A (en) * 2012-02-21 2012-07-25 华南农业大学 Seedling avoidance control method for inter-row mechanical weeding claw
CN103786159A (en) * 2014-01-26 2014-05-14 叶炬锋 Robot
CN104898575A (en) * 2015-06-01 2015-09-09 中国人民解放军装甲兵工程学院 Multi-robot cooperation control system
CN106672095A (en) * 2016-12-05 2017-05-17 清华大学 Movable platform
US10035259B1 (en) 2017-03-24 2018-07-31 International Business Machines Corporation Self-assembling robotics for disaster applications

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039589B (en) 2009-10-16 2012-06-13 李路 Modularized disaster rescue robot
CN102598903A (en) * 2012-02-21 2012-07-25 华南农业大学 Seedling avoidance control method for inter-row mechanical weeding claw
CN103786159A (en) * 2014-01-26 2014-05-14 叶炬锋 Robot
CN104898575A (en) * 2015-06-01 2015-09-09 中国人民解放军装甲兵工程学院 Multi-robot cooperation control system
CN106672095A (en) * 2016-12-05 2017-05-17 清华大学 Movable platform
US10035259B1 (en) 2017-03-24 2018-07-31 International Business Machines Corporation Self-assembling robotics for disaster applications
US10265844B2 (en) 2017-03-24 2019-04-23 International Business Machines Corporation Creating assembly plans based on triggering events

Similar Documents

Publication Publication Date Title
Ambrose et al. Mobile manipulation using NASA's robonaut
Siciliano et al. Robotics: modelling, planning and control
Li et al. Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments
Edsinger-Gonzales et al. Domo: A force sensing humanoid robot for manipulation research
Hutter et al. Anymal-a highly mobile and dynamic quadrupedal robot
US9002519B2 (en) Robot control method, robot control device, and robot control system
Xu et al. Control system of the self-mobile space manipulator
US20140251702A1 (en) Humanoid robotics system and methods
US20090105878A1 (en) Control system, control method, and robot apparatus
EP1728600B1 (en) Controlling the trajectory of an effector
Bretl et al. Free-climbing with a multi-use robot
Hasunuma et al. A tele-operated humanoid robot drives a lift truck
US8473101B2 (en) Coordinated action robotic system and related methods
White et al. Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator
JP2006051564A (en) Motion controlling device and method for robot device
Nakanishi et al. Comparative experiments on task space control with redundancy resolution
CN101733749B (en) Multidomain uniform modeling and emulation system of space robot
Konno et al. Development of a light-weight biped humanoid robot
US5923139A (en) Passive robotic constraint devices using non-holonomic transmission elements
US9334002B2 (en) Balance control apparatus of robot and control method thereof
CN101804625B (en) Robot apparatus and method of controlling the same, and computer program
Li et al. Mechanical design and dynamic modeling of a two-wheeled inverted pendulum mobile robot
Lian et al. Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects
US8751041B2 (en) Method to generate humanlike motion of humanoid robot
Ott et al. Development of a biped robot with torque controlled joints

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
C17 Cessation of patent right