CN201520930U - 连续配筋水泥混凝土路面端部制动板 - Google Patents

连续配筋水泥混凝土路面端部制动板 Download PDF

Info

Publication number
CN201520930U
CN201520930U CN2009201267599U CN200920126759U CN201520930U CN 201520930 U CN201520930 U CN 201520930U CN 2009201267599 U CN2009201267599 U CN 2009201267599U CN 200920126759 U CN200920126759 U CN 200920126759U CN 201520930 U CN201520930 U CN 201520930U
Authority
CN
China
Prior art keywords
keep plate
concrete pavement
brake plate
length
cement concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2009201267599U
Other languages
English (en)
Inventor
岳军声
陈克群
何兆益
魏建明
石飞
魏河广
周家明
王强
危接来
熊卫士
蒋祖恩
曾好
吴宏宇
姚博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHONGQING TRAFFIC BUILDING (GROUP) Co Ltd
GUIZHOU HIGHWAY BUREAU
Chongqing Jiaotong University
Original Assignee
CHONGQING TRAFFIC BUILDING (GROUP) Co Ltd
GUIZHOU HIGHWAY BUREAU
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHONGQING TRAFFIC BUILDING (GROUP) Co Ltd, GUIZHOU HIGHWAY BUREAU, Chongqing Jiaotong University filed Critical CHONGQING TRAFFIC BUILDING (GROUP) Co Ltd
Priority to CN2009201267599U priority Critical patent/CN201520930U/zh
Application granted granted Critical
Publication of CN201520930U publication Critical patent/CN201520930U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

本实用新型公开了一种连续配筋水泥混凝土路面端部制动板,制动板的纵截面为ab、bc、cd、de、ef、fa六段顺次连接组成的多边型,其中,ab平行于ef,fa、bc、de三者互相平行且都垂直于ab,ab长度大于ef长度,bc和de的总长度小于fa长度;ef所在的制动板端面与新修的水泥混凝土路面端部连接,且ef段高度与新修的水泥混凝土路面厚度相同,ab所在的制动板端面与原有路面结构连接。本实用新型有益技术效果:开挖量小、岩土强度破坏小、成本低廉、可有效防止混凝土板的挤压破坏。

Description

连续配筋水泥混凝土路面端部制动板
技术领域
本实用新型涉及一种水泥混凝土路面加固技术,尤其涉及一种连续配筋水泥混凝土路面端部制动板。
背景技术
水泥混凝土是我国采用的主要路面结构形式之一,其特点为:刚度大、强度高、稳定性好、耐疲劳、抗冻性和耐磨性优良。但是,由于普通水泥混凝土路面在施工时不得不设置很多的接缝(如胀缝、缩缝和施工缝等),雨水容易透过接缝渗透到路面基层而产生唧泥、错台等病害;同时由于接缝处存在一定间隙,在车辆荷载冲击作用下,容易造成接缝边缘混凝土碎裂。为了克服普通水泥混凝土的上述缺点,提高行车舒适性,道路工作者提出了连续配筋混凝土路面(Continuously Reinforced Concrete Pavement,以下简称CRCP)的路面结构形式。CRCP在路面纵向配有足够数量的钢筋,以控制混凝土路面板纵向收缩产生的裂缝的扩展,因此,CRCP在施工时完全不设胀、缩缝(除施工缝及构造所需的胀缝外),形成一条完整而平坦的行车表面,改善了行车平稳性和舒适性,同时也增加了路面板的整体强度。
CRCP在季节性温度变化下将产生周期性移动,虽然板中由于受到土体约束而无位移,但CRCP的两端在一定长度范围内将会产生移动,这种移动量有时高达10cm左右,如此大的移动量必须采取一定的措施加以限制,以避免混凝土板被挤压破坏。目前国内外常见及我国规范推荐的端部设置主要结构有如下四类:
1、端部锚固地梁:构造如图1所示,路面端部的变形控制主要依靠端部地梁所依靠的土基的抗剪强度予以平衡;锚固设施一般无法完全限制CRCP的端部变形,所以还应在与CRCP连接的路面一定范围内设置几条胀缝以消除残余变形。
2、混凝土灌注桩锚固:构造如图2所示,在纵向设置多排(一般一个车道一排)混凝土灌注桩,桩顶与路面联成整体;该构造也是靠土的抗力来限制端部变形。
3、宽翼缘工字梁锚固:构造如图3所示,设置一条宽翼缘工字梁接缝,接缝下面设枕垫板,CRCP端部搁置在枕垫板上,可以自由活动,与工字钢连接的部位以胀缝填缝料填塞,工字梁下翼缘埋入混凝土枕垫板内;在与CRCP相连的普通混凝土路面中设置数条胀缝,以分散接缝处残留的端部位移。
4、连续设置多条胀缝:构造如图4所示,在CRCP与普通混凝土路面连接处设置多条胀缝,将变形消除在这些胀缝中。
上述的四类结构,都需要在原地面开挖较大深度(一般大于1M),当原地基为软弱土体时,较大的开挖量必然会导致土体在修筑锚固段以前发生溃散,失去强度;而当原地基为岩石时,较大的开挖变得更加的困难,而爆破又有可能导致岩石的碎裂,同样失去强度,而且经济成本大幅度提高。
实用新型内容
本实用新型提出了一种连续配筋水泥混凝土路面端部制动板,其结构如下:制动板的纵截面为ab、bc、cd、de、ef、fa六段顺次连接组成的多边型,其中,ab平行于ef,fa、bc、de三者互相平行且都垂直于ab,ab长度大于ef长度,bc和de的总长度小于fa长度;ef所在的制动板端面与新修的水泥混凝土路面端部连接,且ef段高度与新修的水泥混凝土路面厚度相同,ab所在的制动板端面与原有路面结构连接。
制动板内设置有双层钢筋网,均采用HRB335级螺纹钢筋,制动板保护层厚度为10cm;钢筋网纵向钢筋间距45cm,上层纵向钢筋直径为16mm,下层纵向钢筋直径为25mm;横向钢筋间距14cm,上层横向钢筋直径为16mm,下层横向钢筋直径为20mm。
本实用新型的有益技术效果是:开挖量小、岩土强度破坏小、成本低廉、可有效防治混凝土板的挤压破坏。
附图说明
图1,端部锚固地梁构造示意图;
图2,混凝土灌注桩锚固构造示意图;
图3,宽翼缘工字梁锚固构造示意图;
图4,连续设置多条胀缝构造示意图;
图5,本实用新型制动板纵截面结构示意图;
图6,制动板所受被动土压力示意图;
图7,制动板所受主动土压力示意图。
具体实施方式
制动板具体结构为:制动板的纵截面为ab、bc、cd、de、ef、fa六段顺次连接组成的多边型,其中,ab平行于ef,fa、bc、de三者互相平行且都垂直于ab,ab长度大于ef长度,bc和de的总长度小于fa长度;ef所在的制动板端面与新修的水泥混凝土路面端部连接,且ef段高度与新修的水泥混凝土路面厚度相同,ab所在的制动板端面与原有路面结构连接。
连续配筋混凝土路面在端部范围内发生纵向位移时,将对路面端部和桥头连接等部位产生水平推力。制动板的作用是借助地基的被动土压力对连续配筋混凝土路面端部的纵向位移进行约束。路面端部的最大容许纵向位移量δ0越小,制动板所承受的水平推力就越大;δ0越大,则水平推力越小。随δ0最大容计量的变化,对制动板提供的水平推力的要求也随之变化。
路面板(连续配筋混凝土路面)和制动板一起作为一个整体结构物,在没有水平荷载作用的情况下,结构物无水平移动的趋向。制动板的ab、cd、ef面承受着相等的静止土压力,bc面不产生摩阻力。参见图5,若结构物承受水平荷载N1,N2,且N1>N2,则结构物产生具有向左移动的趋势,ab面上的土压力将减少,cd面上的土压力将增大,而且在bc面上,将产生与移动方向相反的摩擦阻力,以表达式描述,可写为:式中,PL’为沿bc面上的极限塑性剪力,Pp-Pa cos(δ+α)为制动板ab、cd面的被动土压力与主动土压力之差。
参见图6,制动板所受被动土压力分析:
在ab面上,按水平荷载N1-N2的方向,制动板产生水平移动,推挤土体,从而逐渐增大墙对土体的侧向应力,而土中逐渐增大的抗剪力阻止这一滑动的产生。当制动板对土体的侧向应力增大到某一数值,使土的抗剪强度充分发挥时,土压力增大到最大值,即为被动土压力值Pp。如图6所示:
在ab面上的被动土压力Pp值的计算采用朗金土压力理论,设:
①土体是地表为一平面的半无限体,土压力方向与地表面平行;
②达到被动应力状态时,土体向侧向压缩;
③被动应力状态只存在于破裂棱体之内,即局部土体中出现极限状态,而破裂棱体之外仍处于弹性平衡状态。
④伸张与压缩对土的影响很小,忽略竖直方向上土的变形对土压力的影响。
若土体表面为水平面的均质弹性半无限体,即水平面垂直向下和沿水平方向都为无限伸展。出于土体内任一竖直面都是对称面,因此,地面以下h深度处的M点在土的自重作用下竖直面和水平面上的剪应力都为零,故该点处于弹性平衡状态,其应力状态为:
竖向应力:σz=γh;水平应力:σx=K0γh,其中,h为连续配筋水泥混凝土路面深度,γ为填土容重,K0为主动土压力系数
由于制动板与土体间无摩擦力,因而无剪应力,亦即制动板ab面为主应力面。当制动板无位移时,它不影响土体中原有的应力状态,制动板后(cd段所在面)土体仍处于弹性状态。
制动板在外力作用下挤压土体,σz仍不变,σx随着制动板位移增加而逐步增大。当制动板位移挤压土体使σx增大到土体达到极限平衡状态时,σx达到最大值σp,土体形成一系列破裂面,此时制动板ab面上水平应力σx为最大主应力,即朗金被动土压力。破裂面与水平面成此时大、小主应力σ1和σ3有如下关系式:
Figure G2009201267599D00033
式中:σp沿墙深度方向被动土压力分布强度;
Figure G2009201267599D00041
朗金被动土压力系数
参见图7,制动板所受主动土压力分析:
在cd段的制动板面上,制动板在土压力作用下离开土体产生一微小的移动,从而使制动板对土体的侧向应力(它与土压力大小相等、方向相反)逐渐减小,土体出现向下滑动的趋势。这时,土中逐渐增大的抗剪力抵抗着这一滑动的产生。当制动板的侧向应力减小到某一数值,且土的抗剪强度充分发挥时,土压力减小到最小值,土体即处于极限平衡状态,此时相应的土压力即为土体的主动土压力pa
在cd面上的主动土压力计算采用库仑土压力理论,设:
①制动板后(cd段所在面)土体为均质散粒体,粒间仅有内摩擦力而无粘聚力;
②当制动板产生一定位移时,制动板后(cd段所在面)土体将形成破裂棱体,并沿制动板cd面和破裂面滑动;
③破裂面为通过制动板板踵的一平面;
当制动板后土体开始滑动时,土体处在极限平衡状态,破裂棱体在其自重W、土压力E和破裂面反力R作用下维持静力平衡。ab为制动板背面,bc为破裂面,bc与竖直方向的夹角θ为破裂角,abc即为破裂棱体。其中破裂角θ是未知的,当θ等于某一定值时,Ea(主动土压力的反力)值达最大,而后又逐渐减小。Ea的最大值即为库仑主动土压力。相应的bc面即为主动状态最危险破裂面。
令:
Figure G2009201267599D00042
可解出主动土压力的表达式为:
ρ为制动板所用混凝土材料密度;
H为制动板纵截面ab段高度;
c为原有路面结构粘聚力;
γ为填土的容重;
Figure G2009201267599D00044
为新路面结构内摩擦角角度;
δ为制动板ab面摩擦角;
β为土体表面的倾角;
α为制动板ab面倾角;
通过对路面板和制动板组成的整体结构物所受主动土压力和被动土压力的受力分析,可以按以下的设计步骤设计制动板尺寸:
1)确定新路面结构、旧路面结构、设计要求、自然环境的各项参数;
2)设定制动板尺寸;
3)根据确定的参数和制动板尺寸计算制动板所能承受的极限塑性剪力PL’;
4)计算约束力∑P;
5)计算制动板的容许抗力B为安全系数;
6)若PL>∑P则表明制动板尺寸满足要求;否则重新设定制动板的几何尺寸,重复步骤3)至6)。
实施例:
在云关坡互通匝道连续配筋混凝土路面设计中,采用了本实用新型的制动板,具体的设计过程如下:
云关坡互通匝道设计参数:
车辆荷载参数:标准轴载:P=100KN,轮胎压力:p=0.7MPa,荷载传递系数:J=2.2,使用初期设计车道每日通过标准轴载作用次数:Ns=1500辆/日,交通量年增长率:γ’=6%,设计使用年限:t=30年,轮迹横向分布系数:η=0.39,温度梯度:T=27℃,连续配筋水泥混凝土路面板(新路面结构)厚度:h=25cm,制动板末端(ab段)高度:H=100cm,最大温度梯度标准值:Tg=86(℃/m)
混凝土材料参数:弹性模量:Ec=28000MPa,泊松比:μ=0.15,温度变形系数:α=0.00001,收缩系数:Z=0.0005,密度:ρ=2400kg/m3,设计抗弯拉强度:fcm=4.5MPa,抗拉强度:σL=2.4MPa
钢筋参数:弹性模量:Es=2.0×105MPa,屈服强度:fsy=380MPa,抗拉强度:σs=450MPa,粘结强度:Rs=4.0MPa
旧路路基参数:基层顶面当量回弹模量:Et=100MPa,基层顶面计算回弹模量:Etc=nEt,修正系数:计算荷载应力时:
Figure G2009201267599D00061
计算温度应力时:n=0.35,表面磨擦系数:f=1.5,原有路面结构内磨擦角:粘聚力:c=0.08MPa
新路路基参数:基层顶面当量回弹模量:Et=100MPa,基层顶面计算回弹模量:Etc=nEt,修正系数:计算荷载应力时:计算温度应力时:n=0.35,密度:ρ=1920kg/m3,表面磨擦系数:f=1.5,内磨擦角:
Figure G2009201267599D00064
粘聚力:c=0.08MPa
计算步骤:
1)εT=-aTT=-0.00001×27=-0.00027,εT为该地区的年最大温度应变;
2)端部完全自由时的位移:
δ 0 = AE · 10 2 fω ( α T T ) 2 = 0.1875 × 28000 × 10 2 × 1.5 × 0.021 ( 0.00001 × 27 ) 2 = 6.075 cm
3)根据朗金理论,制动板末端的被动土压力为:
Figure G2009201267599D00068
4)根据库仑土压力理论,cd面上的主动土压力为:
Figure G2009201267599D00069
Figure G2009201267599D000610
Figure G2009201267599D000611
5)制动板锚固的极限抗剪力:
PL’=Pp-Pacos(δ+α)=4428.51-632.7×cos(30°+30°)=4428.51-316.35=4412.16kg/cm
6)计算被约束的端部位移δs
锚固系统要求完全约束,故被约束的端部位移等于路面端部最大容许纵向位移量,即δs=δ0=6.075
7)根据被约束位移计算土体对制动板的约束力∑P,为简化计算,假定路面端部最大容许纵向位移量δ0沿路面板长度呈直线分布,则:
ΣP = 2 δ 0 α T T · 10 2 fω = 2 × 6.075 0.00001 × 27 × 100 × 1.5 × 0.0021 = 1417.5 kg / cm
8)制动板安全系数计算
取安全系数为1.5,计算制动板容许抗力: P L = P L , 1.5 = 4412.16 1.5 = 2941.44 kg / cm
PL=2914.44>∑P=1417.5;
由计算可知,采用本实用新型的结构,可以有效地限制连续配筋混凝土路面的纵向位移。具体施工中,均采用常规技术和施工规范。

Claims (2)

1.一种连续配筋水泥混凝土路面端部制动板,其特征在于:制动板的纵截面为ab、bc、cd、de、ef、fa六段顺次连接组成的多边型,其中,ab平行于ef,fa、bc、de三者互相平行且都垂直于ab,ab长度大于ef长度,bc和de的总长度小于fa长度;ef所在的制动板端面与新修的水泥混凝土路面端部连接,且ef段高度与新修的水泥混凝土路面厚度相同,ab所在的制动板端面与原有路面结构连接。
2.根据权利要求1所述的连续配筋水泥混凝土路面端部制动板,其特征在于:制动板内设置有双层钢筋网,均采用HRB335级螺纹钢筋,制动板保护层厚度为10cm钢筋网纵向钢筋间距45cm,上层纵向钢筋直径为16mm,下层纵向钢筋直径为25mm;横向钢筋间距14cm,上层横向钢筋直径为16mm,下层横向钢筋直径为20mm。
CN2009201267599U 2009-03-25 2009-03-25 连续配筋水泥混凝土路面端部制动板 Expired - Lifetime CN201520930U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009201267599U CN201520930U (zh) 2009-03-25 2009-03-25 连续配筋水泥混凝土路面端部制动板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009201267599U CN201520930U (zh) 2009-03-25 2009-03-25 连续配筋水泥混凝土路面端部制动板

Publications (1)

Publication Number Publication Date
CN201520930U true CN201520930U (zh) 2010-07-07

Family

ID=42507106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009201267599U Expired - Lifetime CN201520930U (zh) 2009-03-25 2009-03-25 连续配筋水泥混凝土路面端部制动板

Country Status (1)

Country Link
CN (1) CN201520930U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666065B (zh) * 2009-03-25 2011-07-20 贵州省高等级公路管理局 连续配筋水泥混凝土路面端部制动板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666065B (zh) * 2009-03-25 2011-07-20 贵州省高等级公路管理局 连续配筋水泥混凝土路面端部制动板

Similar Documents

Publication Publication Date Title
Lee et al. A synthesis of case histories on GRS bridge-supporting structures with flexible facing
CN104358199B (zh) 适用于寒区短工期条件下的高等级公路路桥过渡段结构
CN111563341B (zh) 一种上承式拱桥拱座嵌固式基础锚固深度的评判方法
CN203080470U (zh) 桩-承台-挡墙组合支挡结构
Rele et al. Seismic behaviour of rocking bridge pier supported by elastomeric pads on pile foundation
CN208105091U (zh) 一种适用于抗落石冲击的缓冲耗能棚洞顶部复合结构
CN103306295A (zh) 刚架桩支挡结构
Qi et al. Failure characteristics and control technology of surrounding rock in deep coal seam roadway with large dip angle under the influence of weak structural plane
CN101666065B (zh) 连续配筋水泥混凝土路面端部制动板
CN204435412U (zh) 锚索桩基托梁挡土墙组合支挡装置
CN204738304U (zh) 锚索排架抗滑桩组合支挡结构
Rawat et al. Testing and Modelling of Soil Nailed Slopes
CN201520930U (zh) 连续配筋水泥混凝土路面端部制动板
CN210766863U (zh) 一种连拱肋锚定板挡土墙
CN111676740B (zh) 路堑地段无砟轨道抗上拱路基结构的施工及设计方法
CN106676992B (zh) 一种处治岸边软土路基的锚拉式桩承加筋堤设计方法
Lu et al. Roadway failure and support in a coal seam underlying a previously mined coal seam
CN111274647B (zh) 一种高速铁路膨胀土路堑重力平衡抗上拱结构及设计方法
CN210013239U (zh) 一种防山体滑坡保护挡土墙
Saiidi et al. Seismic retrofit of spread footings supporting bridge columns with short dowels
CN209039877U (zh) 一种无砟轨道结构
CN220978063U (zh) 拱形框架式边坡支挡结构
Wang et al. A new technique for repairing and controlling large-scale collapse in the main transportation shaft, Chengchao iron mine, China
CN115125830B (zh) 一种多年冻土区路桥过渡段刚度平衡结构及其施工方法
CN209493830U (zh) 一种公路高陡边坡预应力锚索桩基高桥墩结构

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20100707

Effective date of abandoning: 20090325