CN201497766U - 采用线性光耦实现分流器电压采样的电流传感器 - Google Patents

采用线性光耦实现分流器电压采样的电流传感器 Download PDF

Info

Publication number
CN201497766U
CN201497766U CN2009203115529U CN200920311552U CN201497766U CN 201497766 U CN201497766 U CN 201497766U CN 2009203115529 U CN2009203115529 U CN 2009203115529U CN 200920311552 U CN200920311552 U CN 200920311552U CN 201497766 U CN201497766 U CN 201497766U
Authority
CN
China
Prior art keywords
module
links
output terminal
shunt
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009203115529U
Other languages
English (en)
Inventor
康尔良
卫爱平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN2009203115529U priority Critical patent/CN201497766U/zh
Application granted granted Critical
Publication of CN201497766U publication Critical patent/CN201497766U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

采用线性光耦实现分流器电压采样的电流传感器,属于电气测量领域,目的是为解决现有分流器测量结果经过长距离传输导致测量精度低的问题。本实用新型的分流器的采样电阻Ri两端引出线为分流器的电压信号输出端,所述分流器的电压信号输出端与运算放大和线性光耦隔离模块的输入端相连,运算放大和线性光耦隔离模块的输出端与A/D转换电路的输入端相连,A/D转换电路的输出端与数字信号处理和运算模块DSP的输入端相连,运算放大和线性光耦隔离模块的极性信号输出端与极性判断电路的输入端相连,极性判断电路的输出端与数字信号处理和运算模块DSP的控制端相连。本实用新型用于在现场精确测量电流。

Description

采用线性光耦实现分流器电压采样的电流传感器
技术领域
本实用新型涉及一种采用线性光耦实现分流器电压采样的电流传感器,属于电气测量领域。
背景技术
目前应用于电气测量系统的电流传感器常用的有电流互感器和基于霍尔效应的霍尔电流传感器,但是它们又都有应用的局限性。电流互感器受到频带的限制只能检测额定频率±5%附近频带的电流信号,且信号为非直流信号;霍尔电流传感器使用的频带为0-100kHz,虽然能够满足现有电气测量频带要求和电流控制精度,但是它很难在整个频带和量程范围内满足高精度的测量要求。它们的应用成本都远高于分流器。因此,分流器在电气测量领域得到了广泛应用。
电气测量领域中应用分流器检测电流的方式,以其结构最简单、反应电流变化实时性最高等优点曾经得到广泛应用,但是,现有的分流器长距离传输的结构特点影响测量精度,导致测量精度低:分流器采样电流后的电压参数要经过长距离传输到后台PC机进行统一应用及处理,电流采样所得电压信号在传输过程中会产生线路压降,进而影响电流的检测精度;由于长距离传输,采样回路易受电磁环境干扰引起采样信号非线性变化从而影响检测精度等缺点又制约了其应用的广泛性。
实用新型内容
本实用新型的目的是解决现有分流器测量结果经过长距离传输导致测量精度低的问题,提供一种采用线性光耦实现分流器电压采样的电流传感器。
本实用新型包括分流器、运算放大和线性光耦隔离模块、A/D转换电路、极性判断电路和数字信号处理和运算模块DSP,分流器的采样电阻Ri两端引出线为分流器的电压信号输出端,所述分流器的电压信号输出端与运算放大和线性光耦隔离模块的输入端相连,运算放大和线性光耦隔离模块的输出端与A/D转换电路的输入端相连,A/D转换电路的输出端与数字信号处理和运算模块DSP的输入端相连,运算放大和线性光耦隔离模块的极性信号输出端与极性判断电路的输入端相连,极性判断电路的输出端与数字信号处理和运算模块DSP的控制端相连。
本实用新型的优点是:分流器进行电流采样获得的电压信号不用长距离传输给后台进行处理,直接在现场利用数字信号处理和运算模块DSP进行处理,直接获得要用到的结果,如信号的基波有效值、基波频率、相位、谐波分量等等,这样,不会因为长距离传输时导致线路压降,保证了测量的高精度。
附图说明
图1是本实用新型的结构示意图,图2是具体实施例的结构示意图。
具体实施方式
具体实施方式一:下面结合图1和图2说明本实施方式,本实施方式所述的采用线性光耦实现分流器电压采样的电流传感器包括分流器1、运算放大和线性光耦隔离模块2、A/D转换电路3、极性判断电路4和数字信号处理和运算模块DSP5,分流器1的采样电阻Ri两端引出线为分流器1的电压信号输出端,所述分流器1的电压信号输出端与运算放大和线性光耦隔离模块2的输入端相连,运算放大和线性光耦隔离模块2的输出端与A/D转换电路3的输入端相连,A/D转换电路3的输出端与数字信号处理和运算模块DSP5的输入端相连,运算放大和线性光耦隔离模块2的极性信号输出端与极性判断电路4的输入端相连,极性判断电路4的输出端与数字信号处理和运算模块DSP5的控制端相连。
分流器1具有采样电阻Ri,分流器1的采样电阻Ri串联于被测的回路中,知道所述采样电阻Ri两端的电压u即可求得电流i,i=u/Ri,采样所述采样电阻Ri两端的电压信号输送给运算放大和线性光耦隔离模块2。
结合一个具体的实施例对本发明进行详细说明,运算放大和线性光耦隔离模块2包括两大部分,一部分是运算放大,另一部分是线性光耦,能实现该功能的电路有很多,本实施方式给出的电路如图2所示,运算放大和线性光耦隔离模块2包括第一线性光耦OC1、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第一集成运放A1、第二集成运放A2、第三集成运放A3、第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一电容C1、第二电容C2和第三电容C3,第一线性光耦OC1由第一发光二极管LED、反馈光电二极管PD1和第一输出光电二极管PD2组成,第一电阻R1的一端与分流器1的电压信号输出端相连,第一电阻R1的另一端与第一二极管D1的正极相连,第一电阻R1的另一端同时与第二二极管D2的负极相连,第一二极管D1的负极同时与第一集成运放A1的反相输入端和反馈光电二极管PD1的负极相连,第一电容C1并联在第一集成运放A1的反相输入端和输出端之间,第三二极管D3反向并联在第一集成运放A1的反相输入端和输出端之间,第一集成运放A1的输出端与第四电阻R4的一端相连,第四电阻R4的另一端与发光二极管LED的负极相连;
第二二极管D2的正极与反馈光电二极管PD1的正极相连,第二二极管D2的正极同时与第二集成运放A2的反相输入端相连,第二电容C2并联在第二集成运放A2的反相输入端和输出端之间,第四二极管D4正向并联在第二集成运放A2的反相输入端和输出端之间,第二集成运放A2的输出端与发光二极管LED的正极相连;
第一集成运放A1的正相输入端和第二集成运放A2的正相输入端的连接点引出线与第三电阻R3的一端相连,第三电阻R3的另一端接地,第一集成运放A1的正相输入端和第二集成运放A2的正相输入端的连接点引出线同时与第二电阻R2的一端相连,第二电阻R2的另一端与极性判断电路4相连。
线性光耦随市场出现的转换精度最高的和频带最高的来选型,本实施例中,第一线性光耦OC1采用HCNR200型线性光耦或HCNR201型线性光耦。电压信号u的线性转换一次侧由第一线性光耦OC1的反馈光电二极管PD1和第一发光二极管LED,第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4;第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4;第一集成运放A1、第二集成运放A2;第一电容C1、第二电容C2组成。
线性转换二次侧由第一线性光耦OC1的第一输出光电二极管PD2,第三集成运放A3,第五电阻R5、第六电阻R6和第三电容C3组成,第六电阻R6的作用为信号的增益GAIN调节。
当第一发光二极管LED通过驱动电流If时,发出红外光(伺服光通量)。该光分别照射在反馈光电二极管PD1、第一输出光电二极管PD2上,反馈光电二极管PD1吸收伺服光通量的一部分,从而产生控制电流I1(I1=0.005If)。该电流用来调节If以补偿第一发光二极管LED的非线性。第一输出光电二极管PD2产生的输出电流I2与第一发光二极管LED发出的伺服光通量成线性比例。令伺服电流增益K1=I1/If,正向增益K2=I2/If;则传输增益K3=K2/K1=I2/I1,K3的典型值为1。电压信号u为正极性输入时,第一二极管D1、第一集成运放A1这一路参与工作,正极性输出;电压信号u为负极性输入时,第二二极管D2、第二集成运放A2这一路参与工作,负极性输出,也就是说,电压信号u可以是正也可以是负,即电压信号u可以是直流,也可以是交流。在电气测量现场一般测量都是交流信号,下面以采样交流信号为对象进行说明。
电压信号u的极性的判断由极性判断电路4来完成,极性判断电路4包括第四集成运放A4、第五集成运放A5、第七电阻R7、第八电阻R8和第二线性光耦OC2,第二线性光耦OC2包括第二发光二极管LED2、第二输出光电二极管PD3、第一三极管T1、第二三极管T2,第二输出光电二极管PD3的正极与第一三极管T1的基极相连,第二输出光电二极管PD3的负极与第一三极管T1的集电极相连,第一三极管T1的发射极与第二三极管T2的基极相连,第二三极管T2的发射极接地,
第四集成运放A4的反相输入端与运算放大和线性光耦隔离模块2的第一电阻R1的另一端相连,第四集成运放A4的正相输入端接地,第四集成运放A4的输出端与运算放大和线性光耦隔离模块2的第二电阻R2的另一端相连,第四集成运放A4的输出端同时与第五集成运放A5的正相输入端相连,第五集成运放A5的反相输入端接地,第五集成运放A5的输出端与第七电阻R7的一端相连,第七电阻R7的另一端与第二发光二极管LED2的正极相连,第二发光二极管LED2的负极接地,
第一三极管T1的集电极同时与电源Vcc和第八电阻R8的一端相连,第八电阻R8的另一端与第二三极管T2的集电极相连,第八电阻R8的另一端与第二三极管T2的集电极的连接点引出线作为极性判断电路4的输出端,输出极性标识Vsign
电压信号u为正极性时,极性判断电路4输出极性标识Vsign=0,电压信号u为负极性时,极性判断电路4输出极性标识Vsign=1,极性标识这个开关量给数字信号处理和运算模块DSP5,用于判断信号处于正半周期还是负半周期。
运算放大和线性光耦隔离模块2输出模拟电压信号Uout,所述模拟电压信号Uout端口连接A/D转换电路3,A/D转换电路3将模拟电压信号Uout转换成16位的数字信号,并输出给数字信号处理和运算模块DSP5。数字信号处理和运算模块DSP5按照一定的采样时间控制A/D转换电路3并读取其输出数字信号,存储实时数据,计算采集的数据得出被测电流的基本性质,在数字信号处理和运算模块DSP5中完成如下参量的获取:信号的基波有效值、基波频率、相位、谐波分量等等,这样,用户在现场就获得了想要得到的最终测量结果,不会因为长距离传输时导致线路压降,保证了测量的高精度。
本发明的主要指标:本实用新型测量的频带宽,频带为0-10kHz;测量精度高准确度优于0.2级,量程范围可以按照一定应用标准划分,如100A、500A、1000A、2000A、3000A。满足现有电力计量和电机测试国家标准对电流传感器的要求。
具体实施方式二、本实施方式与实施方式一的不同之处在于,它还包括光纤通讯发送模块OTS6、光纤通讯接收模块OTR7和光纤通讯接口电路8,数字信号处理和运算模块DSP5的输出端通过BUS总线与光纤通讯发送模块OTS6的输入端相连,光纤通讯发送模块OTS6的输出端和光纤通讯接收模块OTR7的输入端之间光信号耦合连接,光纤通讯接收模块OTR7的输出端通过BUS总线与光纤通讯接口电路8相连,其它与实施方式一相同。
实施方式一在数字信号处理和运算模块DSP5中获得一系列计算数据,这些数据是用户要用到的最终结果,这些数据通过光纤通讯传送给用户,BUS总线采用RS485总线,光纤通讯接口电路8采用RS485接口电路,或BUS总线采用CAN总线,光纤通讯接口电路8采用CAN接口电路。即BUS总线与用户端的光纤通讯接口电路8保持一致。
这样,在现场计算好的高精度的数据经过光纤传输给用户端不会降低测量的精度。而且,本实施方式传输的手段是采用光纤通讯,受到的干扰弱,整个量程检测精度一致、抗干扰能力强,实现了数字化通讯功能。

Claims (4)

1.采用线性光耦实现分流器电压采样的电流传感器,其特征在于,它包括分流器(1)、运算放大和线性光耦隔离模块(2)、A/D转换电路(3)、极性判断电路(4)和数字信号处理和运算模块DSP(5),分流器(1)的采样电阻Ri两端引出线为分流器(1)的电压信号输出端,所述分流器(1)的电压信号输出端与运算放大和线性光耦隔离模块(2)的输入端相连,运算放大和线性光耦隔离模块(2)的输出端与A/D转换电路(3)的输入端相连,A/D转换电路(3)的输出端与数字信号处理和运算模块DSP(5)的输入端相连,运算放大和线性光耦隔离模块(2)的极性信号输出端与极性判断电路(4)的输入端相连,极性判断电路(4)的输出端与数字信号处理和运算模块DSP(5)的控制端相连。
2.根据权利要求1所述的采用线性光耦实现分流器电压采样的电流传感器,其特征在于,它还包括光纤通讯发送模块OTS(6)、光纤通讯接收模块OTR(7)和光纤通讯接口电路(8),数字信号处理和运算模块DSP(5)的输出端通过BUS总线与光纤通讯发送模块OTS(6)的输入端相连,光纤通讯发送模块OTS(6)的输出端和光纤通讯接收模块OTR(7)的输入端之间光信号耦合连接,光纤通讯接收模块OTR(7)的输出端通过BUS总线与光纤通讯接口电路(8)相连。
3.根据权利要求2所述的采用线性光耦实现分流器电压采样的电流传感器,其特征在于,BUS总线采用RS485总线,光纤通讯接口电路(8)采用RS485接口电路。
4.根据权利要求2所述的采用线性光耦实现分流器电压采样的电流传感器,其特征在于,BUS总线采用CAN总线,光纤通讯接口电路(8)采用CAN接口电路。
CN2009203115529U 2009-09-27 2009-09-27 采用线性光耦实现分流器电压采样的电流传感器 Expired - Fee Related CN201497766U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009203115529U CN201497766U (zh) 2009-09-27 2009-09-27 采用线性光耦实现分流器电压采样的电流传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009203115529U CN201497766U (zh) 2009-09-27 2009-09-27 采用线性光耦实现分流器电压采样的电流传感器

Publications (1)

Publication Number Publication Date
CN201497766U true CN201497766U (zh) 2010-06-02

Family

ID=42440970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009203115529U Expired - Fee Related CN201497766U (zh) 2009-09-27 2009-09-27 采用线性光耦实现分流器电压采样的电流传感器

Country Status (1)

Country Link
CN (1) CN201497766U (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662095A (zh) * 2012-05-07 2012-09-12 无锡智卓电气有限公司 三相电压采样电路
CN102818925A (zh) * 2011-06-06 2012-12-12 李尔公司 隔离的电阻式电流传感器
CN102818927A (zh) * 2012-06-29 2012-12-12 西安交通大学 直流配用电系统中逆向小电流的测量装置及测量方法
CN103522916A (zh) * 2013-10-31 2014-01-22 济南宏昌车辆有限公司 电动车双电源转换控制系统
CN105308466A (zh) * 2013-04-04 2016-02-03 威德米勒界面有限公司及两合公司 用于将导电体中流动的导体电流转换成输出信号的电流变压器和方法
CN106160727A (zh) * 2016-06-22 2016-11-23 青岛海信日立空调系统有限公司 一种隔离电路及隔离电路控制方法
CN106645872A (zh) * 2016-12-13 2017-05-10 芜湖市吉安汽车电子销售有限公司 基于分流器的电流采样装置
CN109254200A (zh) * 2018-11-16 2019-01-22 美钻深海能源科技研发(上海)有限公司 用于检测dc24v电压稳定性的隔离型直流电压传感器
CN113225069A (zh) * 2021-04-06 2021-08-06 中国船舶重工集团公司第七0三研究所 一种电流通信总线用防干扰隔离电路
CN113866479A (zh) * 2021-09-23 2021-12-31 安徽天尚清洁能源科技有限公司 一种隔离电流检测电路及方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818925A (zh) * 2011-06-06 2012-12-12 李尔公司 隔离的电阻式电流传感器
US8836525B2 (en) 2011-06-06 2014-09-16 Lear Corporation Isolated resistive current sensor
CN102818925B (zh) * 2011-06-06 2015-02-11 李尔公司 隔离的电阻式电流传感器
CN102662095A (zh) * 2012-05-07 2012-09-12 无锡智卓电气有限公司 三相电压采样电路
CN102818927A (zh) * 2012-06-29 2012-12-12 西安交通大学 直流配用电系统中逆向小电流的测量装置及测量方法
CN102818927B (zh) * 2012-06-29 2014-09-03 西安交通大学 直流配用电系统中逆向小电流的测量装置及测量方法
US9958481B2 (en) 2013-04-04 2018-05-01 Weidmueller Interface Gmbh & Co. Kg Current transformer and method for converting a conductor current flowing in an electrical conductor to an output signal
CN105308466A (zh) * 2013-04-04 2016-02-03 威德米勒界面有限公司及两合公司 用于将导电体中流动的导体电流转换成输出信号的电流变压器和方法
CN105308466B (zh) * 2013-04-04 2018-07-27 威德米勒界面有限公司及两合公司 用于将导电体中流动的导体电流转换成输出信号的电流变压器和方法
CN103522916A (zh) * 2013-10-31 2014-01-22 济南宏昌车辆有限公司 电动车双电源转换控制系统
CN106160727A (zh) * 2016-06-22 2016-11-23 青岛海信日立空调系统有限公司 一种隔离电路及隔离电路控制方法
CN106160727B (zh) * 2016-06-22 2018-12-11 青岛海信日立空调系统有限公司 一种隔离电路及隔离电路控制方法
CN106645872A (zh) * 2016-12-13 2017-05-10 芜湖市吉安汽车电子销售有限公司 基于分流器的电流采样装置
CN109254200A (zh) * 2018-11-16 2019-01-22 美钻深海能源科技研发(上海)有限公司 用于检测dc24v电压稳定性的隔离型直流电压传感器
CN113225069A (zh) * 2021-04-06 2021-08-06 中国船舶重工集团公司第七0三研究所 一种电流通信总线用防干扰隔离电路
CN113225069B (zh) * 2021-04-06 2022-11-01 中国船舶重工集团公司第七0三研究所 一种电流通信总线用防干扰隔离电路
CN113866479A (zh) * 2021-09-23 2021-12-31 安徽天尚清洁能源科技有限公司 一种隔离电流检测电路及方法

Similar Documents

Publication Publication Date Title
CN201497766U (zh) 采用线性光耦实现分流器电压采样的电流传感器
CN101661057B (zh) 采用线性光耦实现基于电阻采样的功率测量装置
CN203084068U (zh) 一种带隔离的模拟电压采集电路
CN202486199U (zh) 电子式互感器数据采集器
CN2938119Y (zh) 一种光电耦合型交流电压隔离测量电路
CN102508016A (zh) 一种电动汽车用电机控制器电压检测电路
CN204008845U (zh) 一种单相电能表计量电路
CN102435810A (zh) 一种交流电中检测直流分量的方法及装置
CN201497776U (zh) 采用线性光耦实现基于电阻采样的功率测量装置
CN103296955A (zh) 基于矩阵变换器的交流变频调速系统
CN203561689U (zh) 电子式电流互感器数据采集系统
CN205647498U (zh) 一种高精度pwm转模拟量输出电路
CN211720479U (zh) 用于电量交流电流变送的信号调理电路
CN102346216A (zh) 一种利用线性光耦实现交流电过零信号精确测量的电路
CN201392731Y (zh) 光电式直流电流互感器
CN201436638U (zh) 用于常规变电站的数字化电能计量装置
CN103197132A (zh) Tmr数字电流传感器
CN202494722U (zh) 远程费控三相智能电能表
CN202189088U (zh) 基于互感器和运算放大器结合的交流电压隔离测量电路
CN202182914U (zh) 一种利用线性光耦实现交流电过零信号精确测量的电路
CN202422405U (zh) 基于低压用户用电网络拓扑的电力线载波集中抄表系统
CN201788230U (zh) 双锰铜电流采样电路
CN201440449U (zh) 带相位检测功能的合路器
CN204789751U (zh) 一种智能电表
CN209088518U (zh) 一种用于双向电流输出的硬件过流保护系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100602

Termination date: 20130927