CN201367706Y - Installation component for photovoltaic module - Google Patents

Installation component for photovoltaic module Download PDF

Info

Publication number
CN201367706Y
CN201367706Y CNU2009200672060U CN200920067206U CN201367706Y CN 201367706 Y CN201367706 Y CN 201367706Y CN U2009200672060 U CNU2009200672060 U CN U2009200672060U CN 200920067206 U CN200920067206 U CN 200920067206U CN 201367706 Y CN201367706 Y CN 201367706Y
Authority
CN
China
Prior art keywords
frame
photovoltaic module
links
left frame
installation component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2009200672060U
Other languages
Chinese (zh)
Inventor
于霄童
郝国强
黄勇
赵欣侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Solar Energy Research Center Co Ltd
Original Assignee
Shanghai Solar Energy Research Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Solar Energy Research Center Co Ltd filed Critical Shanghai Solar Energy Research Center Co Ltd
Priority to CNU2009200672060U priority Critical patent/CN201367706Y/en
Application granted granted Critical
Publication of CN201367706Y publication Critical patent/CN201367706Y/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/13Overlaying arrangements similar to roof tiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

An installation component for a photovoltaic module is mounted on a group of inclined brackets pre-arranged on an inclined plane of a building and comprises a plurality of groups of rectangular frameworks, wherein the size of each rectangular framework is matched with that of the photovoltaic module. Each group of rectangular frameworks are formed by fixedly connecting a left frame, a right frame, an upper frame and a lower frame; a clamping groove for mounting the photovoltaic module is formed on the inner side of each frame; the upper and the lower rectangular frameworks are nested and connected in an overlapping manner through a hook and the upper and lower frames correspondingly; the left and the right rectangular frameworks are mutually buckled and connected through the left and the right frames; and long-waisted mounting holes used for connecting the pre-arranged inclined bracket are formed at the bottom parts of the upper frame and the hook. The utility model has the advantages of simple structure, rain proofness, convenient installation, aesthetic appearance and the like.

Description

The installation component of photovoltaic module
Technical field
The utility model relates to a kind of installation component, particularly a kind of installation component of photovoltaic module.
Background technology
BIPV (Building Integrated PV) is the important application form of solar electrical energy generation in the city, and most important link during the BIPV (Building Integrated PV) assembly is used as BIPV (Building Integrated PV) has decisive action to the development of BIPV (Building Integrated PV).Roofing is that BIPV (Building Integrated PV) is used and built the desired site that combines, photovoltaic module mostly is with combining of roof conventional photovoltaic module is laid immediately on the original roof of building at present, not only structure is loaded down with trivial details, and destroyed the whole structure of building, can't reach the practicality of BIPV (Building Integrated PV), functional requirement.
The utility model content
The purpose of this utility model exactly in order to address the above problem, provides a kind of installation component of photovoltaic module.
In order to achieve the above object, the utility model has adopted following technical scheme: a kind of installation component of photovoltaic module, be used to be installed in one group of tilt stand that is preset on the building inclined-plane, comprise many groups and the adaptive rectangular frame of photovoltaic module size, every group of rectangular frame is respectively by left frame, left frame, upper side frame is fixedlyed connected formation with lower frame, each scuncheon is respectively equipped with the draw-in groove that is used to install photovoltaic module, up and down between two groups of rectangular frames by a hook with corresponding on, the nested overlap joint of lower frame links to each other, about between two groups of rectangular frames by a left side, the mutual hasp of left frame links to each other, and on top the bottom of frame and hook is provided with and is used for the long waist shaped installing hole that is connected with the tilt stand of presetting.
Described left frame and left frame have eaves structure, and hasp links to each other mutually.
Described left frame is provided with the water delivery tank of two upward openings, described left frame is provided with two grooves under shed, when left and right frame hasp linked to each other, two grooves on the left frame linked to each other with two water delivery tank interlocks on the left frame, formed the pipeline of leaking water of two sealings.
Described upper side frame top stretches out and is useful on and links up with the lapping plate that overlap joint links to each other, and the outer end of lapping plate upwards bends, and the middle part of lapping plate is provided with barb-shaped water bar, and this water bar is separated into inside and outside two grooves with lapping plate.
Described hook is five sections broken line slab structure parts, first, second and third section broken line plate is configured for embedding the draw-in groove of lower frame, third and fourth section broken line plate is configured for connecting the right angle of upper side frame, wherein be provided with at the 3rd section broken line plate downside and be used for the barb that links to each other with the barb-shaped water bar overlap joint of upper side frame, second section broken line plate is provided with a plurality of drain holes.
The installation component of the utility model photovoltaic module is fit to open roofing and bicycle shed structure fully, simple installation.Because of there is certain gradient in integral planar, rainwater can flow out by the pipeline of leaking water that left frame and left frame interlock form, and row finally flows into roofing or bicycle shed outside tank to next row's photovoltaic module surface; The barb-shaped water bar of upper side frame can prevent effectively that rainwater from flowing backwards, and need not additionally to carry out waterproofing work.
Description of drawings
Fig. 1 is the basic structure schematic diagram of the installation component of the utility model photovoltaic module;
Fig. 2 is the cross-member overlap joint sectional structure schematic diagram in the utility model;
Fig. 3 is the vertical package overlap joint sectional structure schematic diagram in the utility model;
Fig. 4 is the sectional structure schematic diagram of the left frame in the utility model;
Fig. 5 is the sectional structure schematic diagram of the left frame in the utility model;
Fig. 6 is the sectional structure schematic diagram of the upper side frame in the utility model;
Fig. 7 is the sectional structure schematic diagram of the lower frame in the utility model;
Fig. 8 is the sectional structure schematic diagram of the hook in the utility model.
The specific embodiment
Referring to Fig. 1, Fig. 2, Fig. 3, cooperate referring to Fig. 4, Fig. 5, Fig. 6, Fig. 7.The installation component of photovoltaic module of the present utility model, be used to be installed in one group of tilt stand that is preset on the building inclined-plane, comprise many groups and the adaptive rectangular frame of photovoltaic module 1 size, every group of rectangular frame is respectively by left frame 2, left frame 3, upper side frame 4 is fixedlyed connected formation with lower frame 5, each scuncheon is respectively equipped with the draw-in groove 21 that is used to install photovoltaic module, 31,41,51, up and down between two groups of rectangular frames by a hook 6 with corresponding on, the nested overlap joint of lower frame links to each other, about between two groups of rectangular frames by a left side, the mutual hasp of left frame links to each other, and on top the bottom of frame 4 and hook 6 is provided with and is used for the long waist shaped installing hole 42 that is connected with the tilt stand of presetting, 61.
Cooperation is referring to Fig. 4, Fig. 5, and left frame in the utility model and left frame are provided with eaves formula bridging arrangement 23,33, and hasp links to each other mutually.
Cooperation is referring to Fig. 4, Fig. 5, left frame 2 in the utility model is provided with the water delivery tank 22 of two upward openings, left frame 3 is provided with two grooves 32 under shed, when left and right frame hasp links to each other, two grooves on the left frame link to each other with two water delivery tank interlocks on the left frame, form leak water pipeline a, the b (cooperating referring to Fig. 2) of two sealings.24,34 for being used for the screw of fixedlying connected with upper side frame or lower frame shown in the figure.
Cooperation is referring to Fig. 6, the top of the upper side frame 4 in the utility model stretches out and is useful on and links up with the lapping plate 43 that links to each other of overlap joint, the outer end of lapping plate is bending upwards, and the middle part of lapping plate is provided with barb-shaped water bar 44, and this water bar is separated into inside and outside two grooves 45 with lapping plate.
Cooperation is referring to Fig. 7, and the side of the lower frame 5 in the utility model is provided with a plurality of drain holes (not shown come out).
Cooperation is referring to Fig. 8, hook 6 in the utility model is five sections broken line slab structure parts, first, second and third section broken line plate is configured for embedding the draw-in groove 62 of lower frame, third and fourth section broken line plate is configured for connecting the right angle 63 of upper side frame, wherein be provided with 64, the second sections broken line plates of barb that are used for linking to each other and be provided with a plurality of drain holes 65 (cooperation) referring to Fig. 1 with the barb-shaped water bar overlap joint of upper side frame at the 3rd section broken line plate downside.

Claims (5)

1, a kind of installation component of photovoltaic module, be used to be installed in one group of tilt stand that is preset on the building inclined-plane, it is characterized in that: comprise many groups and the adaptive rectangular frame of photovoltaic module size, every group of rectangular frame is respectively by left frame, left frame, upper side frame is fixedlyed connected formation with lower frame, each scuncheon is respectively equipped with the draw-in groove that is used to install photovoltaic module, up and down between two groups of rectangular frames by a hook with corresponding on, the nested overlap joint of lower frame links to each other, about between two groups of rectangular frames by a left side, the mutual hasp of left frame links to each other, and on top the bottom of frame and hook is provided with and is used for the long waist shaped installing hole that is connected with the tilt stand of presetting.
2, the installation component of photovoltaic module as claimed in claim 1 is characterized in that: described left frame and left frame have eaves structure, and hasp links to each other mutually.
3, the installation component of photovoltaic module as claimed in claim 1, it is characterized in that: described left frame is provided with the water delivery tank of two upward openings, described left frame is provided with two grooves under shed, when left and right frame hasp links to each other, two grooves on the left frame link to each other with two water delivery tank interlocks on the left frame, form the pipeline of leaking water of two sealings.
4, the installation component of photovoltaic module as claimed in claim 1, it is characterized in that: described upper side frame top stretches out and is useful on and links up with the lapping plate that links to each other of overlap joint, the outer end of lapping plate is bending upwards, the middle part of lapping plate is provided with barb-shaped water bar, and this water bar is separated into inside and outside two grooves with lapping plate.
5, the installation component of photovoltaic module as claimed in claim 1, it is characterized in that: described hook is five sections broken line slab structure parts, first, second and third section broken line plate is configured for embedding the draw-in groove of lower frame, third and fourth section broken line plate is configured for connecting the right angle of upper side frame, wherein be provided with at the 3rd section broken line plate downside and be used for the barb that links to each other with the barb-shaped water bar overlap joint of upper side frame, second section broken line plate is provided with a plurality of drain holes.
CNU2009200672060U 2009-01-20 2009-01-20 Installation component for photovoltaic module Expired - Lifetime CN201367706Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2009200672060U CN201367706Y (en) 2009-01-20 2009-01-20 Installation component for photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2009200672060U CN201367706Y (en) 2009-01-20 2009-01-20 Installation component for photovoltaic module

Publications (1)

Publication Number Publication Date
CN201367706Y true CN201367706Y (en) 2009-12-23

Family

ID=41486600

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2009200672060U Expired - Lifetime CN201367706Y (en) 2009-01-20 2009-01-20 Installation component for photovoltaic module

Country Status (1)

Country Link
CN (1) CN201367706Y (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783618A (en) * 2009-01-20 2010-07-21 上海太阳能工程技术研究中心有限公司 Mounting assembly of photovoltaic assemblies
CN101806135A (en) * 2010-03-17 2010-08-18 芜湖升阳光电科技有限公司 Connecting component of photovoltaic component
CN102296759A (en) * 2011-05-26 2011-12-28 泰通(泰州)工业有限公司 Embedded type photovoltaic roof component and roof mounting structure thereof
CN102544142A (en) * 2011-01-01 2012-07-04 江苏新大陆太阳能电力有限公司 Solar battery module frame
CN102683457A (en) * 2012-05-31 2012-09-19 马鞍山晶威电子科技有限公司 Novel solar battery component frame
CN104110107A (en) * 2013-04-20 2014-10-22 江苏通灵电器股份有限公司 Method for combining solar photovoltaic modules with building
CN104253579A (en) * 2013-06-28 2014-12-31 江苏通灵电器股份有限公司 Photovoltaic module mounting method
CN104731114A (en) * 2015-01-23 2015-06-24 北京雷蒙赛博机电技术有限公司 Staggered type photovoltaic component arrangement used for photovoltaic support
CN105244398A (en) * 2015-10-23 2016-01-13 上海篆阳新能源科技有限公司 Environment-friendly energy saving solar energy panel
CN107086850A (en) * 2017-05-25 2017-08-22 甘肃省科学院自然能源研究所 Buckle type photovoltaic module building element
CN109194264A (en) * 2018-08-01 2019-01-11 东莞南玻光伏科技有限公司 The border structure of photovoltaic module
CN109797913A (en) * 2019-01-14 2019-05-24 中来智联能源工程有限公司 A kind of connector and its mounting structure for the installation of photovoltaic tile system
CN110752817A (en) * 2019-10-29 2020-02-04 宁波市广德太阳能科技有限公司 Double-glass photovoltaic panel roof mounting structure
CN110748095A (en) * 2019-10-29 2020-02-04 宁波市广德太阳能科技有限公司 Solar photovoltaic board roof mounting structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783618A (en) * 2009-01-20 2010-07-21 上海太阳能工程技术研究中心有限公司 Mounting assembly of photovoltaic assemblies
CN101806135A (en) * 2010-03-17 2010-08-18 芜湖升阳光电科技有限公司 Connecting component of photovoltaic component
CN102544142A (en) * 2011-01-01 2012-07-04 江苏新大陆太阳能电力有限公司 Solar battery module frame
CN102296759A (en) * 2011-05-26 2011-12-28 泰通(泰州)工业有限公司 Embedded type photovoltaic roof component and roof mounting structure thereof
CN102683457A (en) * 2012-05-31 2012-09-19 马鞍山晶威电子科技有限公司 Novel solar battery component frame
CN102683457B (en) * 2012-05-31 2014-12-24 马鞍山晶威电子科技有限公司 Novel solar battery component frame
CN104110107A (en) * 2013-04-20 2014-10-22 江苏通灵电器股份有限公司 Method for combining solar photovoltaic modules with building
CN104253579A (en) * 2013-06-28 2014-12-31 江苏通灵电器股份有限公司 Photovoltaic module mounting method
CN104731114A (en) * 2015-01-23 2015-06-24 北京雷蒙赛博机电技术有限公司 Staggered type photovoltaic component arrangement used for photovoltaic support
CN105244398A (en) * 2015-10-23 2016-01-13 上海篆阳新能源科技有限公司 Environment-friendly energy saving solar energy panel
CN107086850A (en) * 2017-05-25 2017-08-22 甘肃省科学院自然能源研究所 Buckle type photovoltaic module building element
CN109194264A (en) * 2018-08-01 2019-01-11 东莞南玻光伏科技有限公司 The border structure of photovoltaic module
CN109797913A (en) * 2019-01-14 2019-05-24 中来智联能源工程有限公司 A kind of connector and its mounting structure for the installation of photovoltaic tile system
CN109797913B (en) * 2019-01-14 2024-05-14 中来智联能源工程有限公司 Connecting piece for photovoltaic tile system installation and installation structure thereof
CN110752817A (en) * 2019-10-29 2020-02-04 宁波市广德太阳能科技有限公司 Double-glass photovoltaic panel roof mounting structure
CN110748095A (en) * 2019-10-29 2020-02-04 宁波市广德太阳能科技有限公司 Solar photovoltaic board roof mounting structure
CN110752817B (en) * 2019-10-29 2022-08-05 宁波市广德太阳能科技有限公司 Double-glass photovoltaic panel roof mounting structure

Similar Documents

Publication Publication Date Title
CN201367706Y (en) Installation component for photovoltaic module
CN101783618B (en) Mounting assembly of photovoltaic assemblies
CN204282671U (en) A kind of maintenance corridor structure for architecture-integral roof electricity generation system
CN102709369B (en) Tile solar photovoltaic module
CN213572699U (en) Building photovoltaic integration photovoltaic roof
CN201835452U (en) Water-guide aluminum rail draining-type photovoltaic installation structure
CN204282664U (en) A kind of draining braced structures for architecture-integral roof electricity generation system
CN209760618U (en) Photovoltaic waterproof roof
CN201351337Y (en) Integral roof of automatic drain type full-seal photovoltaic building
CN102893833B (en) Photovoltaic power generation agricultural greenhouse installation system
CN202394994U (en) Integrated roof photovoltaic device
CN104863313A (en) Application structure of solar photovoltaic wall tiles on roof
CN208572012U (en) Bindiny mechanism, solar photovoltaic assembly and solar energy top surface between solar energy layer casting die
CN207700562U (en) Photovoltaic roof drainage system
CN203188499U (en) Guide rail water drainage component for guide rail splicing type building integrated photovoltaic roof
CN205502343U (en) Two -way photovoltaic bicycle shed with vertically and horizontally staggered drainage system
CN212969514U (en) Modular curved surface photovoltaic tile subassembly
CN210780636U (en) Full-structure waterproof photovoltaic support
CN210597914U (en) Structural waterproof photovoltaic system
CN212613410U (en) Water leakage prevention device
CN202678361U (en) Tile solar photovoltaic module
CN104022722B (en) Standing-seam color steel roofing photovoltaic support structure
CN221118970U (en) Diversion trench and photovoltaic building integrated waterproof structure
CN206537461U (en) Three-dimensional limit-type photovoltaic module support and attachment means
CN210927520U (en) Photovoltaic board installation node structure

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20091223

Effective date of abandoning: 20090120

RGAV Abandon patent right to avoid regrant