CN201351581Y - 高温超导风力发电机组 - Google Patents

高温超导风力发电机组 Download PDF

Info

Publication number
CN201351581Y
CN201351581Y CNU2009201053265U CN200920105326U CN201351581Y CN 201351581 Y CN201351581 Y CN 201351581Y CN U2009201053265 U CNU2009201053265 U CN U2009201053265U CN 200920105326 U CN200920105326 U CN 200920105326U CN 201351581 Y CN201351581 Y CN 201351581Y
Authority
CN
China
Prior art keywords
temperature superconducting
generating unit
winding
wind generating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2009201053265U
Other languages
English (en)
Inventor
王延军
米旺
涂凯
牛辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING MELST TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
BEIJING MELST TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING MELST TECHNOLOGY DEVELOPMENT Co Ltd filed Critical BEIJING MELST TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CNU2009201053265U priority Critical patent/CN201351581Y/zh
Application granted granted Critical
Publication of CN201351581Y publication Critical patent/CN201351581Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

本实用新型涉及一种高温超导风力发电机组,包括风轮、高温超导同步发电机、偏航系统,所述高温超导同步发电机的动力轴与所述风轮的轮毂的风轮轴不经过变速系统而直接连接。因此,本实用新型提出一种直驱式高温超导风力发电机组,能够大幅降低风力发电机组的重量,提高机组的发电效率,降低故障率。

Description

高温超导风力发电机组
技术领域
本发明涉及一种风力发电机组,尤其涉及一种应用了高温超导发电机的直驱式的高温超导风力发电机组。
背景技术
进入21世纪,全球可再生能源不断发展,风电作为一种高效清洁的能源正受到越来越多国家的高度重视。目前,风电正在以超出预期的、每年两位数的速度飞速增长。在风力发电技术日趋成熟的今天,风力发电机组的装机容量也正不断向大型化发展。2002年前后,国际风力发电市场上的主流机型已经达到1.5MW以上。但从技术上看,MW级常规风力发电机组还存在以下矛盾:
1、叶轮超低转速与发电机经济转速之间的矛盾
大型风力发电机组的叶轮转速通常在30rpm以下。这种极低的转速与发电机的经济转速相距甚远,而直接连轴的驱动方式,将导致发电机的体积、重量和成本大幅增加。为实现转速的匹配,增加机械变速装置(齿轮增速箱)是必需的,但同时也引入了一些不利因素,如齿轮增速箱的重量仅次于塔架而大于叶轮,是重达50-100吨的部件,运输和安装起重的难度都很大。多级齿轮增速箱的插入还会引起损耗的增加和机组整体效率的降低(约5%),造成配套资源的浪费。齿轮增速箱的成本约占风力发电系统总成本的13%,同时,齿轮增速箱的故障占大型风力发电机组整体故障的20-30%以上。
2、效率问题
螺桨式风力发电机组的理论风能利用系数为0.59,现有的大型风力发电机组的整机效率约为40%左右,有的甚至还在30%以下。在常规风力发电系统中,多级行星齿轮增速箱的插入,不但使机组的效率和可靠性降低,而且增大了成本投入,同时机组变得异常的庞大笨重。并且,对常规发电系统来说,当发电机处于轻载或较低转速时,其效率较低,实际的风力发电机组在绝大部分时间都运行在这种情况下。
发明内容
本发明的目的是为了解决现有技术中存在的风力发电机组的体积、重量和简化机组的结构问题,提供了一种高温超导风力发电机组,以直接驱动方式进行风力发电,从而简化了机组结构、减小了机组的体积和重量。
为了实现上述目的,本发明提供了一种高温超导风力发电机组,包括:
风轮,该风轮的轮毂具有风轮轴;
高温超导同步发电机,具有动力轴,该动力轴与所述风轮的轮毂的风轮轴直接连接;和
常规的偏航系统。
进一步地,该高温超导同步发电机具有高温超导励磁绕组的转子,以及常规的定子和电枢绕组。
进一步地,所述高温超导同步发电机的转子包括:
十字形的转子铁芯;
隔热套筒,被所述转子铁心所支撑;
绕组支架,包覆在所述隔热套筒的外表面;
励磁绕组,被所述绕组支架所支撑;和
绝热屏蔽层,包覆在所述励磁绕组的外围。
进一步地,所述转子铁芯是由铁磁性材料制成的转子铁芯。
进一步地,所述绕组支架是由非铁磁性材料制成的绕组支架。
进一步地,所述励磁绕组为Bi-2223高温超导导线绕制而成的励磁绕组。
进一步地,所述绕组支架具有延圆周均匀分布的外齿,用以支撑所述励磁绕组。
进一步地,所述励磁绕组的数量为所述绕组支架的外齿的数量的一半。
进一步地,所述隔热套筒与所述绝热屏蔽层之间的空间抽成真空状态,用以降低热损耗。
进一步地,所述绕组支架的内部设置有阵列分布的贯通的冷却介质的通道,用于冷却介质以接触传导的方式冷却所述绕组支架及励磁绕组。
进一步地,所述高温超导同步发电机附设有外置的制冷源,用于制造高温超导材料正常工作所需的深冷环境。
因此,本发明提出的一种直驱式高温超导风力发电机组,能够大幅降低风力发电机组的重量,提高机组的发电效率,降低故障率。
附图说明
图1为本发明直驱式的高温超导风力发电机组的示意图。
图2为本发明高温超导同步发电机的转子的横截面示意图。
具体实施方式
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。
如图1所示,图1显示了本发明直驱式的高温超导风力发电机组的示意图。风力发电机组包括风轮1,高温超导同步发电机2和常规的偏航系统(图中未示出)。在风机舱5的内部,连接风轮1的轮毂的风轮轴3与高温超导同步发电机2的动力轴直接连接。并且,高温超导同步发电机2还附带有外置的制冷源4,用于制造超导材料正常工作所需的深冷环境。在图1中并没有显示风机舱内的现有冷却系统。本发明提出的直驱式的高温超导风力发电机组与常规的风力发电机组在以下方面存在差别:使用高温超导发电机替代机组中的常规发电机;采用直驱式设计,叶轮轴与发电机轴直接相连,省掉齿轮增速箱部分;本发明风力发电机组需要独立的冷却系统来实现超导体正常工作所需的深冷环境,因此发电机组配置专门的低温冷却系统即外置的制冷源4,以便使高温超导材料进入超导态。该冷却系统与发电机组现有的冷却系统相互隔离,保证了高温超导同步发电机2的转子上的超导励磁绕组的正常工作。
本发明高温超导发电机同现有的发电机一样,具有固定的定子和在定子内可旋转的如图2所示的转子。本发明转子的励磁绕组采用高温超导材料制成,其定子部分及电枢绕组与常规的同步发电机基本相同。同时,综合比较超导励磁绕组的各种布置方式,超导励磁绕组在内旋转,电枢绕组在外静止的布置方式最适合制造大装机容量的发电机,因此本发明采用此种结构的高温超导发电机来取代机组中的常规发电机。基于高温超导导线的高载流能力,超导励磁绕组产生的磁场比常规发电机高出2-3倍,因此在相同装机容量的情况下,高温超导发电机的体积和重量只有不到常规发电机的1/3。此外,本发明涉及的高温超导发电机采用多极结构,通过增加转子励磁绕组的极数来达到降低发电机额定转速的目的,实现了机组的直驱式结构。
如图2示出了本发明高温超导同步发电机的转子的横截面示意图。整个转子横截面呈同心分层结构,十字形的转子铁芯6位于正中心,转子铁芯6为整个转子的支撑构件,十字的四个短臂支撑着绝热材料制成的隔热套筒7。绕组支架8,包覆在隔热套筒7的外表面;绕组支架8采用非铁磁性材料优选地采用铝合金材料制成的,这是因为铝合金在低温下仍然能够保持一定的韧性。接着参见图2,在绕组支架8的外层是高温超导的励磁绕组10,绕组支架8被用来支撑励磁绕组10;以及在转子的最外层是绝热屏蔽层11,包覆在励磁绕组10的外围,该绝热屏蔽层11起到隔热和密封的作用。
由于现有技术制备的高温超导材料,如Bi-2223高温超导导线在直流条件下的电阻基本为零,几乎没有损耗,但在交流磁场下损耗严重,因此本发明使用高温超导导线来制备超导交流同步发电机的转子上的励磁绕组部分,这保证了高温超导导线的高载流能力(其载流能力比同等截面积的铜导线高100倍以上)。即,励磁绕组10优选地为Bi-2223高温超导导线绕制而成,之后经环氧树脂浸渍形成特定的形状和尺寸,以配合绕组支架8进行装配。并且,转子铁芯6优选地由铁磁性材料制成。在低功率密度的超导发电机中,可用铁磁性的转子铁芯来减少磁动势,从而节省所用的高温超导导线。
继续参见图2,在转子上的绕组支架8上具有延圆周均匀分布的外齿12,用以支撑励磁绕组10。励磁绕组10的数量为绕组支架8的外齿12的数量的一半,取决于所设计的超导同步发电机的极数,同时也决定了该超导同步发电机的额定转速。
继续参见图2,绕组支架8的内部设置有阵列分布的贯通的冷却介质的通道9,与外置的制冷源4相通,用于冷却介质以接触传导的方式冷却绕组支架8及励磁绕组10。冷却介质由外置的制冷源4泵入通道9,将绕组支架8中的热量不断带走,起到制冷的作用。本发明制冷源4采用分置式制冷机对超导体部分进行循环冷却。由于所使用的超导体为Bi-2223高温超导材料,冷却介质选定为液氮。绕组支架8依靠接触传导对励磁绕组10进行冷却,从而使励磁绕组10的高温超导导线进入超导态。在使用过程中,将隔热套筒7与绝热屏蔽层11之间的部分抽成真空状态,以减少辐射散热,节省制冷功耗。在这种条件下,转子铁芯6为常温,绕组支架8及励磁绕组10为低温。
因此,通过以上设计完全能够达到减轻风力发电机组的体积、重量和简化机组的结构(采用直驱式结构)的目的。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (11)

1、一种高温超导风力发电机组,其特征在于包括:
风轮,该风轮的轮毂具有风轮轴;
高温超导同步发电机,具有动力轴,该动力轴与所述风轮的轮毂的风轮轴直接连接;和
常规的偏航系统。
2、根据权利要求1所述的高温超导风力发电机组,其特征在于所述高温超导同步发电机具有高温超导励磁绕组的转子,以及常规的定子和电枢绕组。
3、根据权利要求2所述的高温超导风力发电机组,其特征在于所述转子包括:
十字形的转子铁芯;
隔热套筒,所述转子铁芯支撑该隔热套筒;
绕组支架,包覆在所述隔热套筒的外表面;
励磁绕组,由所述绕组支架支撑该励磁绕组;和
绝热屏蔽层,包覆在所述励磁绕组的外围。
4、根据权利要求3所述的高温超导风力发电机组,其特征在于所述转子铁芯的材质是铁磁性材料。
5、根据权利要求4所述的高温超导风力发电机组,其特征在于所述绕组支架的材质是非铁磁性材料。
6、根据权利要求5所述的高温超导风力发电机组,其特征在于所述励磁绕组为Bi-2223高温超导导线绕制而成的励磁绕组。
7、根据权利要求3所述的高温超导风力发电机组,其特征在于所述绕组支架具有延圆周均匀分布的外齿,用于支撑所述励磁绕组。
8、根据权利要求7所述的高温超导风力发电机组,其特征在于所述励磁绕组的数量为所述绕组支架的外齿的数量的一半。
9、根据权利要求2-8任一所述的高温超导风力发电机组,其特征在于所述隔热套筒与所述绝热屏蔽层之间的空间抽成真空状态。
10、根据权利要求2-8任一所述的高温超导风力发电机组,其特征在于所述绕组支架的内部设置有阵列分布的贯通的冷却介质的通道,用于冷却介质以接触传导的方式冷却所述绕组支架及励磁绕组。
11、根据权利要求1-8任一所述的高温超导风力发电机组,其特征在于所述高温超导同步发电机还设有外置的制冷源,用于制造高温超导材料正常工作所需的深冷环境。
CNU2009201053265U 2009-01-22 2009-01-22 高温超导风力发电机组 Expired - Lifetime CN201351581Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2009201053265U CN201351581Y (zh) 2009-01-22 2009-01-22 高温超导风力发电机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2009201053265U CN201351581Y (zh) 2009-01-22 2009-01-22 高温超导风力发电机组

Publications (1)

Publication Number Publication Date
CN201351581Y true CN201351581Y (zh) 2009-11-25

Family

ID=41374969

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2009201053265U Expired - Lifetime CN201351581Y (zh) 2009-01-22 2009-01-22 高温超导风力发电机组

Country Status (1)

Country Link
CN (1) CN201351581Y (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539110B (zh) * 2009-01-22 2011-05-18 北京美尔斯通科技发展股份有限公司 高温超导风力发电机组
CN102668345A (zh) * 2010-11-08 2012-09-12 川崎重工业株式会社 转子芯和具有该转子芯的超导旋转电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539110B (zh) * 2009-01-22 2011-05-18 北京美尔斯通科技发展股份有限公司 高温超导风力发电机组
CN102668345A (zh) * 2010-11-08 2012-09-12 川崎重工业株式会社 转子芯和具有该转子芯的超导旋转电机
US9130447B2 (en) 2010-11-08 2015-09-08 Kawasaki Jukogyo Kabushiki Kaisha Rotor core and superconducting rotating machine with the rotor core
CN102668345B (zh) * 2010-11-08 2015-09-09 川崎重工业株式会社 转子芯和具有该转子芯的超导旋转电机

Similar Documents

Publication Publication Date Title
CN101539110B (zh) 高温超导风力发电机组
US7397142B1 (en) Renewable energy electric power generating system
Goudarzi et al. A review of the development of wind turbine generators across the world
Kalsi et al. Development status of rotating machines employing superconducting field windings
EP2521252B1 (en) Direct-action superconducting synchronous generator for a wind turbine
Zhang et al. High-power generators for offshore wind turbines
Abrahamsen et al. Large superconducting wind turbine generators
US20090224550A1 (en) Systems involving superconducting direct drive generators for wind power applications
CN102710200B (zh) 一种高温超导励磁磁通切换电机构成的直驱型风力发电系统
WO2015084790A1 (en) Superconducting generators and motors
Bensalah et al. Large wind turbine generators: State-of-the-art review
Snitchler Progress on high temperature superconductor propulsion motors and direct drive wind generators
Lee et al. Thermal and mechanical design for refrigeration system of 10 MW class HTS wind power generator
EP3814630B1 (en) Wind turbine having superconducting generator and method of operating the same
US9407126B2 (en) Direct-drive superconducting synchronous generator for a wind turbine
Kovalev et al. Superconducting technologies for renewable energy
CN201351581Y (zh) 高温超导风力发电机组
Kolchanova et al. Superconducting generators for wind turbines
CN107623420B (zh) 一种静态密封自预防失超高温超导电机
JP2011103708A (ja) 超電導回転機
EP3078104B1 (en) Superconducting generators and motors
CN207382174U (zh) 一种高温超导同步调相机
Keysan et al. Superconducting generators for renewable energy applications
Yamasaki et al. Feasibility study project to realize the merits of 10 MW class superconducting wind turbine generators
CN202334039U (zh) 海上型超导风力发电机

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20091125

Effective date of abandoning: 20090122