CN201259638Y - 自适应温度控制器 - Google Patents

自适应温度控制器 Download PDF

Info

Publication number
CN201259638Y
CN201259638Y CNU2008200591711U CN200820059171U CN201259638Y CN 201259638 Y CN201259638 Y CN 201259638Y CN U2008200591711 U CNU2008200591711 U CN U2008200591711U CN 200820059171 U CN200820059171 U CN 200820059171U CN 201259638 Y CN201259638 Y CN 201259638Y
Authority
CN
China
Prior art keywords
module
degree
adaptive
temperature
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2008200591711U
Other languages
English (en)
Inventor
王士杰
盛范成
王健安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI YATAI INSTRUMENTATION CO Ltd
Original Assignee
SHANGHAI YATAI INSTRUMENTATION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI YATAI INSTRUMENTATION CO Ltd filed Critical SHANGHAI YATAI INSTRUMENTATION CO Ltd
Priority to CNU2008200591711U priority Critical patent/CN201259638Y/zh
Application granted granted Critical
Publication of CN201259638Y publication Critical patent/CN201259638Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本实用新型涉及以应用直接对热敏感的电或磁性元件为基础的温度测量仪器,具体为一种自适应温度控制器。一种自适应温度控制器,包括数据采集模块(1)、控制输出模块(2)、显示电路模块(3)、越限报警模块(4)、键盘输入模块(5)和包括单片机(6),采集模块(1)、显示电路模块(3)、越限报警模块(4)和键盘输入模块(5)的信号输出端都和单片机(6)的信号输入端连接,单片机(6)的信号输出端和控制输出模块(2)的信号输入端连接。本实用新型使过程控制始终处于最佳控制状态,简化了对象的辨识过程,同时也为为集约化,小型化的制造自适应控制器奠定了基础。

Description

自适应温度控制器
技术领域
本实用新型涉及以应用直接对热敏感的电或磁性元件为基础的温度测量仪器,具体为一种自适应温度控制器。
背景技术
温度控制已成为工业生产、科研活动中很重要的一个环节,能否成功地将温度控制在所需的范围内关系到整个活动的成败。由于控制对象的多样性和复杂性,导致采用的温控手段的多样性。温度控制必须满足实际工作的要求,能限制在一定的范围内,才能保证相关仪器的正常工作。在温度调节系统中,其过程控制方式就是将被测量温度由传感器变换成统一的标准信号送入调节器,在调节器中,与给定值进行比较,然后把比较出的差值进行PID运算。所谓PID运算就是比例、积分、微分运算。P调节就是调节器的输出和输入成比例。调比例带,也就是调比例系数,比例带就是输出与输入之比(放大倍数)的倒数。I调节就是输出是输入量(即偏差)的积分,只要有偏差,调节器就会不断积分,使输送到执行器的信号变化,校正被控量,直到达到无偏差为止,所以有了积分调节器就会消除稳态偏差。所谓整定积分时间就是调积分的快慢,这要取决于对象的特性。D调节就是微分调节,也就是输出对输入的微分。微分调节的优点在于它的超前性,当输入发生变化时,马上就有微分信号产生,使被控量得以提前校正,然后再由P、I进行校正,这样可以使整个调节的过渡过程时间缩短,有利于调节质量的提高。但是,实际工业过程常具有非线性、时变性和不确定性,且很多工业过程是多变量的,难于建立其精确的数学模型。即使一些对象能够建立起数学模型,其结构也往往十分复杂。难于设计并实现有效控制。由于这种原因,工业过程控制领域应用现代控制理论设计的过程控制器的控制效果收效甚少,经典PID控制器仍然占有重要地位,而自适应控制算法尚未真正用于实际,尤其在温度控制这一领域,还没有真正实用的应用自适应算法而的温度控制器。而普通的温度控制器,在控制纯滞后是时间常数一倍以上的对象时,效果并不理想。
实用新型内容
为了克服现有技术的缺陷,提供一种真正应用自适应算法的实用的温度控制仪器,本实用新型公开了一种自适应温度控制器。
本实用新型通过如下技术方案达到发明目的:
一种自适应温度控制器,包括数据采集模块、控制输出模块、显示电路模块、越限报警模块和键盘输入模块,其结构在于:自适应温度控制器还包括单片机,采集模块、显示电路模块、越限报警模块和键盘输入模块的信号输出端都和单片机的信号输入端连接,单片机的信号输出端和控制输出模块的信号输入端连接。
所述的自适应温度控制器,其特征在于:单片机用于实现预整定控制算法和自适应控制算法,自适应控制算法如下所述:
新的对象的参数估计量=老的对象的参数估计量+修正向量×(新的测量值一新测量值的一步预测)
所述的自适应温度控制器,其结构在于:自适应温度控制器还包括PLC,采集模块、显示电路模块、越限报警模块和键盘输入模块的信号输出端都和PLC的信号输入端连接,PLC的信号输出端和控制输出模块的信号输入端连接。PLC用于实现预整定控制算法和自适应控制算法,预整定控制算法的作用是一次性辩识加热对象的纯滞后,自适应控制算法如下所述:
新的对象的参数估计量=老的对象的参数估计量+修正向量×(新的测量值—新测量值的一步预测)
本实用新型采用连续辨识对象数学模型,不断修正控制参数的原理,使过程控制始终处于最佳控制状态。考虑到实际情况下对象数学模型变化时,往往纯滞后时间变化不大的事实,我们在实施对象数学模型的辨识时,采用了预整定(start-tuning)辨识对象纯滞后时间;采用离散化被控对象参数,用最小二乘法递推的办法辨识对象其他参数的方法,大大简化了对象的辨识过程,同时也为为集约化,小型化的制造自适应控制器奠定了基础。
附图说明
图1为本实用新型采用单片机的结构示意图;
图2为本实用新型工作时的结构示意图;
图3为本实用新型采用PLC的结构示意图。
具体实施方式
以下通过实施例进一步说明本实用新型:
实施例1
一种自适应温度控制器,如图1所示,包括数据采集模块1、控制输出模块2、显示电路模块3、越限报警模块4、键盘输入模块5和单片机6,采集模块1、显示电路模块3、越限报警模块4和键盘输入模块5的信号输出端都和单片机6的信号输入端连接,单片机6的信号输出端和控制输出模块2的信号输入端连接。
工作时如图2所示,温度传感器8的感应探头置于加热对象9中,温度传感器8的信号输出端与自适应温度控制器的数据采集模块1的信号输入端连接,控制输出模块2的加热装置置于加热对象9中。
单片机6用于实现预整定控制算法和自适应控制算法,自适应控制算法如下所述:新的对象的参数估计量=老的对象的参数估计量+修正向量×(新的测量值—新测量值的一步预测)
实验证明:在实时控制时,无论对象的数学模型如何变化(如电加热控制中的电源电压变化,负载变化,散热效果变化等);无论控制器初始的控制参数(P、I、D)是多少,系统都能在3~5倍的对象纯滞后时间(τ)内稳定,而且系统超调很小。
实施例2
一种自适应温度控制器,如图3所示,包括数据采集模块1、控制输出模块2、显示电路模块3、越限报警模块4、键盘输入模块5和PLC7,采集模块1、显示电路模块3、越限报警模块4和键盘输入模块5的信号输出端都和PLC7的信号输入端连接,PLC7的信号输出端和控制输出模块2的信号输入端连接。
PLC7用于实现预整定控制算法和自适应控制算法,自适应控制算法如下所述:新的对象的参数估计量=老的对象的参数估计量+修正向量×(新的测量值—新测量值的一步预测)
对比实验1
将实施例1控制DHG-9240A型电热恒温箱闭环试验:
1.将输入和输出线,电源线接好,上电起动;设定温度为60度,经过预整定环节,得出比例带参数P为20.0度,积分时间I为300秒,微分时间D为100秒;控制器再运行自适应控制算法程序,大约10多分钟就能达到稳定状态,无过冲,比例带P在21.3度到34.9度之间变化,测量温度稳定后,比例带P也稳定在25.2度。然后稳定半个小时后,将设定温度升高到100度,控制器运行自适应控制算法程序,大约20多分钟就能达到稳定状态,无过冲,比例带P在9.1度到36.4度之间变化,测量温度稳定后,比例带P也稳定在12.8度。再将设定温度升高到120度,控制器运行自适应控制算法程序,大约15多分钟就能达到稳定状态,无过冲,比例带P在15度到25.6度之间变化,测量温度稳定后,比例带P也稳定在15度。测量值稳定一段时间后,将DHG-9240A型电热恒温箱开门一分钟后关上,运行自适应控制算法程序,大约30分钟测量值就能达到稳定状态,无超调,比例带在7.5度到30度之间变化,最终稳定在17.4度。测量温度稳定一段时间后,断电,充分自然冷却,再进行步骤2。
2.继步骤1,上电冷启动,设定温度为120度,控制器运行自适应控制算法程序,大约40多分钟就能达到稳定状态,过冲1.8度,比例带P在17.4度到34.7度之间变化,测量温度稳定后,比例带P也稳定在20.5度。测量值稳定一段时间后,将DHG-9240A型电热恒温箱开门二分钟后关上,运行自适应控制算法程序,大约15分钟测量值就能达到稳定状态,无超调,比例带在19.8度到41度之间变化,最终稳定在33.6度。然后稳定半个小时后,将设定温度降低到60度,控制器运行自适应控制算法程序,大约90多分钟就达到稳定状态,测量温度最低到57.4度,比例带P在16.8度到30.0度之间变化,测量温度稳定后,比例带P也稳定在27.4度。
对比实验2
将实施例1控制水炉试验:
将输入和输出线,电源线接好,上电起动;设定温度为40度,经过预整定环节,得出比例带参数P为10.0度,积分时间I为200秒,微分时间D为100秒;控制器再运行自适应控制算法程序,大约10多分钟就能达到稳定状态,过冲约2.3度。比例带在16.6度到20.0度之间变化,测量温度稳定后,比例带P也稳定在16.6度。温度半个小时后,将水炉里面的水加满,控制器运行自适应控制算法程序,大约20多分钟达到稳定状态,测量温度最低到35度,比例带P在16.6度到19.7度之间变化,测量温度稳定后,比例带P也稳定在19.7度。
对比实验3
将实施例1控制GRX-9003型热空气消毒箱试验:
将输入和输出线,电源线接好,上电起动;设定温度为80度,经过预整定环节,得出比例带参数P为48.0度,积分时间I为800秒,微分时间D为200秒;控制器再运行自适应控制算法程序,大约15多分钟就能达到稳定状态,无过冲,比例带P在28.2度到61.7度之间变化,测量温度稳定后,比例带P也稳定在44.5度。测量值稳定一段时间后,将GRX-9003型热空气消毒箱开门2分钟后关上,运行自适应控制算法程序,大约40分钟测量值就能达到稳定状态,超调3度,比例带在23.6度到44.5度之间变化,最终稳定在34.2度。稳定半个小时后,将设定温度升高到100度,控制器运行自适应控制算法程序,大约60多分钟能达到稳定状态,过冲2.6度,比例带P在33度到53.5度之间变化,测量温度稳定后,比例带P也稳定在53.4度。稳定半个小时后,将设定温度降低到80度,控制器运行自适应控制算法程序,大约80多分钟达到稳定状态,测量温度最低到74.7度,比例带P在51.1度到57度之间变化,测量温度稳定后,比例带P也稳定在55.5度。
对比实验4
将实施例1控制加热铜板:
将输入和输出线,电源线接好,上电起动;设定温度为60度,经过预整定环节,得出比例带参数P为50.0度,积分时间I为100秒,微分时间D为25秒;再断电后充分自然冷却,进行如下试验。
升温(常温升到60℃)约需25分钟能达到稳定状态,过冲约13.4℃。稳定状态时,温度上下波动约±0.3℃,比例带P稳定在33.6度。
升温(60℃→80℃)约需16分钟能达到稳定状态,过冲约12.8℃。稳定状态时,温度上下波动约±0.3℃,比例带P稳定在34.4度。
降温(80℃→60℃)约需19分钟能达到稳定状态,过冲约3.8℃。稳定状态时,温度上下波动约±0.3℃,比例带P稳定在32.0度。
经多种功率不同的温度对象如热水加热器、恒温箱、加热铜板等对象试验,当其负荷及环境条件变化很大时,本实用新型都能自动改变比例带,以取得满意的控制效果。比例带可以从小于10自动变化到数百。究竟变化多少视被控制对象的情况而定。本实用新型可以自适应的范围是使控制器从全部吸合,到全部释放,即输出全部功率到全部停止输出。
本实用新型技术先进,结构简单,应用可靠,适应的被控对象的面广,几乎原来采用本公司温度控制的场合均可使用。这种自适应控制器使用方法十分方便,控制性能良好,性能价格比高。

Claims (2)

1.一种自适应温度控制器,包括数据采集模块(1)、控制输出模块(2)、显示电路模块(3)、越限报警模块(4)和键盘输入模块(5),其特征在于:自适应温度控制器还包括单片机(6),采集模块(1)、显示电路模块(3)、越限报警模块(4)和键盘输入模块(5)的信号输出端都和单片机(6)的信号输入端连接,单片机(6)的信号输出端和控制输出模块(2)的信号输入端连接。
2.如权利要求1所述的自适应温度控制器,其特征在于:自适应温度控制器还包括PLC(7),采集模块(1)、显示电路模块(3)、越限报警模块(4)和键盘输入模块(5)的信号输出端都和PLC(7)的信号输入端连接,PLC(7)的信号输出端和控制输出模块(2)的信号输入端连接。
CNU2008200591711U 2008-05-30 2008-05-30 自适应温度控制器 Expired - Fee Related CN201259638Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2008200591711U CN201259638Y (zh) 2008-05-30 2008-05-30 自适应温度控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2008200591711U CN201259638Y (zh) 2008-05-30 2008-05-30 自适应温度控制器

Publications (1)

Publication Number Publication Date
CN201259638Y true CN201259638Y (zh) 2009-06-17

Family

ID=40773875

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2008200591711U Expired - Fee Related CN201259638Y (zh) 2008-05-30 2008-05-30 自适应温度控制器

Country Status (1)

Country Link
CN (1) CN201259638Y (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592960A (zh) * 2008-05-30 2009-12-02 上海亚泰仪表有限公司 自适应温度控制器
CN109324646A (zh) * 2018-12-05 2019-02-12 上海亚泰仪表有限公司 一种小振幅快速温度控制装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592960A (zh) * 2008-05-30 2009-12-02 上海亚泰仪表有限公司 自适应温度控制器
CN109324646A (zh) * 2018-12-05 2019-02-12 上海亚泰仪表有限公司 一种小振幅快速温度控制装置及方法

Similar Documents

Publication Publication Date Title
Mataušek et al. Control of stable, integrating and unstable processes by the Modified Smith Predictor
CN201196747Y (zh) 电热水器恒温控制装置
CN103809244B (zh) 一种光纤热剥装置的加热控制系统及方法
CN101256418A (zh) 加热炉出口温度的一种综合控制方法
CN101769800A (zh) 基于arm的高精度温度校验方法及仪器
JP2014222494A (ja) シミュレーション方法、シミュレーションプログラム、シミュレーション装置、および、システム
CN201673132U (zh) 大功率电缆循环加热试验控制装置
CN103279155A (zh) 一种温度控制系统
CN108427453A (zh) 一种超高真空下样品热处理工艺的自动化温度控制系统及方法
CN205017611U (zh) 一种电子烟发热体的温度控制系统
CN103576552B (zh) 单入单出纯滞后自衡对象的自抗扰控制方法及装置
CN108873966A (zh) 一种温度控制装置及控制方法
CN201259638Y (zh) 自适应温度控制器
Simonová et al. Uses of on–off controller for regulation of higher-order system in comparator mode
CN101592960A (zh) 自适应温度控制器
CN202734509U (zh) 一种隧道炉温度控制系统
EP4253861A1 (en) Control of an electric water heater based on a two-mass model
Roshan et al. Development of a PID based closed loop controller for shape memory alloy actuators
CN103294084B (zh) 一种应用于恒温装置的节能温度控制器
CN101751050A (zh) 保温增温箱适用的温度自动控制器
KR20170014358A (ko) 예측 알고리즘을 이용한 전력기기의 온도상승시험 자동화 시스템 및 방법
IL301030A (en) Method and system for controlling an electric furnace using energy control
CN112556741B (zh) 一种适合于变电站温湿度传感器准确校准系统及方法
Thomas et al. Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus
CN209131358U (zh) 一种铜箔表面处理机烘干装置的恒温控制系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090617

Termination date: 20160530