CN201235432Y - Numerical control current pulse power source for electrospark wire-electrode cutting machining - Google Patents

Numerical control current pulse power source for electrospark wire-electrode cutting machining Download PDF

Info

Publication number
CN201235432Y
CN201235432Y CNU2008201072280U CN200820107228U CN201235432Y CN 201235432 Y CN201235432 Y CN 201235432Y CN U2008201072280 U CNU2008201072280 U CN U2008201072280U CN 200820107228 U CN200820107228 U CN 200820107228U CN 201235432 Y CN201235432 Y CN 201235432Y
Authority
CN
China
Prior art keywords
diode
switch pipe
power switch
inductance
connect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2008201072280U
Other languages
Chinese (zh)
Inventor
白基成
郭永丰
李立青
李朝将
白俊磊
刘华
李诗
李冬庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU DONGQING CNC MACHINE TOOL CO Ltd
Harbin Institute of Technology
Original Assignee
JIANGSU DONGQING CNC MACHINE TOOL CO Ltd
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU DONGQING CNC MACHINE TOOL CO Ltd, Harbin Institute of Technology filed Critical JIANGSU DONGQING CNC MACHINE TOOL CO Ltd
Priority to CNU2008201072280U priority Critical patent/CN201235432Y/en
Application granted granted Critical
Publication of CN201235432Y publication Critical patent/CN201235432Y/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

The utility model discloses a current impulse power source of numerical control electric spark cutting and manufacturing and the like, which comprises a main vibrating circuit, a drive return circuit, a detecting return circuit, a direct current power source and a power amplifying return circuit, the detecting return circuit is used for carrying out the real-time and online detecting to the clearance discharging state, takes punctured empty signals as delay signals of the main vibrating return current, enables the impulse width of the manufacturing current of the current spark discharge to be equal through controlling the open time and the close time of a first power switching pipe (T1), realizes the equienergy manufacturing and realizes the coarse machining and the fine machining through controlling the switching of an alternating contactor (KM).

Description

Current impulse power supplys such as numerical control electric spark line cutting processing
Technical field
The utility model relates to a kind of energy-saving no current-limiting resistance circuit design that waits the current impulse power supply that is applicable to that NC wirecut EDM machine is used.
Background technology
Disclosed in Granted publication CN1325215C " circulation stack chopped mode energy saving spark machining pulse power supply ", this pulse power is made up of main vibration circuit, drive circuit, current detection circuit, dc source and power amplification circuit.
The most of energy that has current-limiting resistance, this current-limiting resistance to make power supply provide is provided in the existing Wire EDM pulse power mostly consumes, cause capacity usage ratio lower with the heat energy form.In addition, the pulse power can only carry out single cooked mode, satisfies thick, accurately machined requirement simultaneously than difficulty.
Because the working solution conductance height that electric spark linear cutting machine uses make the pulse power be difficult to realize homenergic processing, and the wide discharge pit of simple venation is inhomogeneous, has influenced workpiece working (machining) efficiency and fineness.The tradition pulse power has the existence of current-limiting resistance, and gap current is a square wave, and rising edge is steeper, and the wire electrode loss is big.
Summary of the invention
The purpose of this utility model provides current impulse power supplys such as a kind of numerical control electric spark line cutting processing, and this pulse power does not have current-limiting resistance, has reduced the power supply caloric value, has improved the utilization rate of electric energy.As the pulse waiting signal, passage is punctured fully the improper spark discharge state in the puncture cycle, realize homenergic processing, improve working (machining) efficiency.Can realize that low pressure punctures, the big electric current spark discharge of middle pressure cooked mode, make discharge channel little, workpiece ablation amount is little, the working (machining) efficiency height.Have thick, fine finishining pattern handoff functionality, satisfy different processing requests.And by the periodicity alternative expression conducting of power switch pipe, realize the delta current ripple, rising edge is slow, and trailing edge is steep, and the wire electrode loss is little.
Current impulse power supplys such as numerical control electric spark line cutting processing of the present utility model, form by main vibration circuit, driving loop, detection loop, dc source and power amplification loop, described detection loop is used for real-time online detector gap discharge condition, and the airborne signals will puncture the time is as the time delayed signal in the main loop that shakes, by controlling the first power switch pipe pipe T 1Open, the break time, the processing electric current pulsewidth of big electric current spark discharge is equated.
The advantage of current impulse power supplys such as the utility model is: adopt the non-resistance design in (1) power amplification loop, saved a large amount of electric fluxs; (2) single dc source can realize in a pulsewidth that the little electric current of low pressure punctures, and high-voltage great-current processing improves working (machining) efficiency; (3) realized that under the control that detects loop and the main loop that shakes the homenergic and the cycle of grade switch processing; Homenergic adds man-hour, because single discharge pulse energy is identical, the pit size of discharge ablation is consistent, processing highly polished; (4) realize roughing, fine finishining switching; During roughing, need the highly-efficient processing of big electric current, at this moment, can realize that the electric current rising edge is slow, the big high average current of peak point current, stable efficiently processing; During fine finishining, make the peak point current average current less, realize stable processing; When big electric current roughing, the molybdenum filament loss is little, because first inductance L 1Existence make big peak point current rising edge slow, trailing edge is steep.Molybdenum filament is slowly heated, and cooling reduces the molybdenum filament loss fast.
Description of drawings
Fig. 1 is the structured flowchart of current impulse power supplys such as the utility model processing.
Fig. 2 is the circuit theory diagrams of current impulse power supplys such as the utility model processing.
Fig. 3 is the circuit theory diagrams of current impulse power supplys such as the utility model another kind.
Fig. 4 is a discharging gap homenergic oscillogram.
Fig. 5 is the delta current oscillogram.
The specific embodiment
Below in conjunction with accompanying drawing the utility model is described in further detail.
The utility model is a kind of power supply such as current impulse such as grade that is applicable to NC wirecut EDM machine, this pulse power is formed (referring to shown in Figure 1) by main vibration circuit, driving loop, detection loop, dc source and power amplification loop, described detection loop is used for real-time online detector gap discharge condition, and the airborne signals will puncture the time is as the time delayed signal in the main loop that shakes, by controlling the first power switch pipe T 1Open, the break time, the processing electric current pulsewidth of big electric current spark discharge is equated, realize homenergic processing; Switching by control A.C. contactor KM realizes thick, fine finishining.
In the utility model, the power switch pipe in the power amplification loop is chosen the 1MBH60D power tube, dc source E output direct current 80V.Referring to power amplification loop shown in Figure 2, the positive pole of this dc source E is connected with second inductance L 21 end, the second power switch pipe T 2Colelctor electrode, the 4th diode D 4Negative electrode, the negative pole of dc source E is connected with the second diode D 2Anode, the 3rd power switch pipe T 3Emitter stage; The 3rd power switch pipe T 3Colelctor electrode and the 4th diode D 4Anode connect; Workpiece is connected the 3rd power switch pipe T 3Colelctor electrode on; Second inductance L 21 end and the 5th diode D 5Negative electrode connect 2 ends and the 5th diode D 5Anode connect second inductance L 22 ends and the first power switch pipe T 1Colelctor electrode connect the first power switch pipe T 1The emitter stage and the first diode D 1Anode connect the first diode D 1The negative electrode and first inductance L 11 end connect first inductance L 12 ends be connected with 1 end of A.C. contactor KM, 2 ends, 4 ends of A.C. contactor KM are connected on the wire electrode, and first inductance L 11 end be connected with 3 ends of A.C. contactor KM; The second power switch pipe T 2Emitter stage and the 3rd diode D 3Anode connect the 3rd diode D 3The negative electrode and the second diode D 2Negative electrode connect and the 3rd diode D 3The negative electrode and first inductance L 11 end connect.
In the utility model,,, in puncturing control circuit, also can adopt resistance R to substitute second inductance L because inductance and resistance all can be realized the effect of dividing potential drop referring to another kind of power amplification loop shown in Figure 3 2The positive pole of this dc source E is connected with 1 end, the second power switch pipe T of resistance R 2Colelctor electrode, the 4th diode D 4Negative electrode, the negative pole of dc source E is connected with the second diode D 2Anode, the 3rd power switch pipe T 3Emitter stage; The 3rd power switch pipe T 3Colelctor electrode and the 4th diode D 4Anode connect; Workpiece is connected the 3rd power switch pipe T 3Colelctor electrode on; 1 end of resistance R and the 5th diode D 5Negative electrode connect 2 ends of resistance R and the first power switch pipe T 1Colelctor electrode connect the first power switch pipe T 1The emitter stage and the first diode D 1Anode connect the first diode D 1The negative electrode and first inductance L 11 end connect first inductance L 12 ends be connected with 1 end of A.C. contactor KM, 2 ends, 4 ends of A.C. contactor KM are connected on the wire electrode, and first inductance L 11 end be connected with 3 ends of A.C. contactor KM; The second power switch pipe T 2Emitter stage and the 3rd diode D 3Anode connect the 3rd diode D 3The negative electrode and the second diode D 2Negative electrode connect and the 3rd diode D 3The negative electrode and first inductance L 11 end connect.
In the utility model, the second power switch pipe T 2, the 3rd power switch pipe T 3, the second diode D 2, the 3rd diode D 3, the 4th diode D 4, first inductance L 1Constitute bridge-type power amplification loop with A.C. contactor KM.
In the utility model, the first power switch pipe T 1, second inductance L 2, the 5th diode D 5, the first diode D 1Constitute and puncture control circuit (referring to shown in Figure 2).The first power switch pipe T 1, resistance R, the 5th diode D 5, the first diode D 1Constitute and puncture control circuit (referring to shown in Figure 3).This punctures control circuit can realize that low pressure punctures, the high tension spark discharging function in the discharge processing of online cutting, for follow-up spark discharge provides less discharge channel, has improved working (machining) efficiency effectively.
In the utility model, wire electrode and workpiece are formed discharging gap.When high frequency voltage is applied on the discharging gap, realize spark discharge processing.Wire-cut Electrical Discharge Machining has three kinds of basic discharge conditions, promptly in zero load, spark and the short circuit.In the utility model, first inductance L 1Form slightly with A.C. contactor KM, the fine finishining switching circuit.1 end of A.C. contactor KM and 2 end closures, 3 ends and 4 ends disconnect realizes that fine finishining, 3 ends of A.C. contactor KM and 4 end closures, 1 end and 2 ends disconnect realization roughing.
Adopt the homenergic pulse power of the present utility model, the workflow under its discharge machining state is:
(1) T 1, T 3Conducting, T 2End
At the first power switch pipe T 1With the 3rd power switch pipe T 3Conducting simultaneously, the second power switch pipe T 2When ending, dc source E is by second inductance L 2((35V~55V), this breakdown voltage provides breakdown channel for follow-up big electric current spark discharge to the breakdown voltage of 2A~8A) for the gap provides little electric current.
(2) T 2, T 3Conducting, T 1End
As the second power switch pipe T 2With the 3rd power switch pipe T 3Conducting simultaneously, the first power switch pipe T 1By the time, dc source E provides the big electric current (machining voltage of 5A~150A) (60V~70V), make gap flashing discharge processing to the gap.
Referring to shown in Figure 4, under the homenergic machining state, will detect the time delayed signal of the airborne signals in loop, then as the first power switch pipe T as the main loop that shakes 1, the 3rd power switch pipe T 3Carry out little electric current low pressure during conducting and puncture, in breakdown time, detect the loop and detect airborne signals; This airborne signals is used for controlling the opening of power switch pipe, disconnected in power amplification loop after the main loop delay process of shaking.At the first power switch pipe T 1, the 3rd power switch pipe T 3Continue conducting, when the detection loop detects sparking voltage (B point among the figure, the B point is the time-delay end signal), time-delay ends, i.e. the first power switch pipe T 1Turn-off the second power switch pipe T 2, the 3rd power switch pipe T 3Conducting; At the second power switch pipe T 2, the 3rd power switch pipe T 3Big electric current spark discharge is carried out in conducting, and little electric current punctures makes not have unloaded the appearance in the follow-up pulsewidth (B pulsewidth), continues spark discharge, because follow-up pulsewidth is not carried out delay process, the second power switch pipe T of setting 2, the 3rd power switch pipe T 3ON time is constant simultaneously, and the big electric current spark discharge time equates.Be t I1=t I2, realize that each discharge energy equates, the discharge pit is even, processes highly polished.t I1The electric current pulsewidth of representing last waveform, t I2The electric current pulsewidth of back one waveform.
Switch in thick, fine finishining pattern:
Long the closing of exchange contactor KM realized roughing; KM is long to be opened, and realizes fine finishining.When 1 end, the 2 end closures of exchange contactor KM, 3 ends, 4 ends turn-off, and carry out the roughing pattern, because the electric current of inductance can not suddenly change, the electric current of discharging gap slowly rises, and suppresses the gap current peak value, helps carrying out the roughing of the roomy electric current of long pulse; When A.C. contactor 1 end, the shutoff of 2 ends, 3 ends, 4 end closures switch to the fine finishining pattern, because this pulse power does not have current-limiting resistance, the electric current rate of rise is big, can carry out the fine finishining of big current, narrow pulsewidth, realize that the discharge pit is little, the processed surface smoothness height.
Homenergic, etc. the cycle cooked mode switch:
As the first power switch pipe T 1Disconnect in the processing, the processing of cycles such as realization is as the first power switch pipe T always 1Conducting in the puncture cycle in the processing realizes homenergic processing.Control the second power switch pipe T 2Cut-off, realize homenergic and wait the switching of cycle cooked mode, adapts to different processing requests, when the big electric current roughing of big pulsewidth, switch to the homenergic cooked mode, the raising working (machining) efficiency; When carrying out the little electric current fine finishining of narrow pulsewidth, when feeding is unstable, the cycle pattern such as switch to.
The wire electrode loss is little
The second power switch pipe T 2, the 3rd power switch pipe T 3Alternate conduction and shutoff realize the triangular current waveform.Referring to Fig. 5, this current waveform rising edge is slow, and trailing edge is steep, can reduce the wire electrode loss; By making the first power switch pipe T 1, the 3rd power switch pipe T 3Elder generation's conducting, the second power switch pipe T 2, the 3rd power switch pipe T 3Back conducting, end cycle are turn-offed simultaneously and are realized L shaped current waveform, the little current preheating of elder generation, and the big electric current processing in back reduces the wire electrode loss.
The capacity usage ratio height: because the pulse power does not have current-limiting resistance, the energy that electric current provides has all been supplied with discharging gap basically, has improved capacity usage ratio greatly.

Claims (6)

1, current impulse power supply such as a kind of numerical control electric spark line cutting processing, this pulse power is made up of main vibration circuit, driving loop, detection loop, dc source and power amplification loop, it is characterized in that: described detection loop is used for real-time online detector gap discharge condition, and the airborne signals will puncture the time is as the time delayed signal in the main loop that shakes, by controlling the first power switch pipe (T 1) open, the break time, the processing electric current pulsewidth of big electric current spark discharge is equated.
2, current impulse power supply such as according to claim 1, it is characterized in that: the positive pole of this dc source (E) is connected with the second inductance (L 2) 1 end, the second power switch pipe (T 2) colelctor electrode, the 4th diode (D 4) negative electrode, the negative pole of dc source (E) is connected with the second diode (D 2) anode, the 3rd power switch pipe (T 3) emitter stage; The 3rd power switch pipe (T 3) colelctor electrode and the 4th diode (D 4) anode connect; Workpiece is connected the 3rd power switch pipe (T 3) colelctor electrode on; Second inductance (the L 2) 1 end and the 5th diode (D 5) negative electrode connect 2 ends and the 5th diode (D 5) anode connect the second inductance (L 2) 2 ends and the first power switch pipe (T 1) colelctor electrode connect the first power switch pipe (T 1) the emitter stage and the first diode (D 1) anode connect the first diode (D 1) the negative electrode and the first inductance (L 1) 1 end connect the first inductance (L 1) 2 ends be connected with 1 end of A.C. contactor (KM), 2 ends, 4 ends of A.C. contactor (KM) are connected on the wire electrode, and the first inductance (L 1) 1 end be connected with 3 ends of A.C. contactor (KM); Second power switch pipe (the T 2) emitter stage and the 3rd diode (D 3) anode connect the 3rd diode (D 3) the negative electrode and the second diode (D 2) negative electrode connect and the 3rd diode (D 3) the negative electrode and the first inductance (L 1) 1 end connect.
3, current impulse power supply such as according to claim 1, it is characterized in that: the positive pole of this dc source (E) is connected with 1 end, the second power switch pipe (T of resistance (R) 2) colelctor electrode, the 4th diode (D 4) negative electrode, the negative pole of dc source (E) is connected with the second diode (D 2) anode, the 3rd power switch pipe (T 3) emitter stage; The 3rd power switch pipe (T 3) colelctor electrode and the 4th diode (D 4) anode connect; Workpiece is connected the 3rd power switch pipe (T 3) colelctor electrode on; 1 end of resistance (R) and the 5th diode (D 5) negative electrode connect 2 ends of resistance (R) and the first power switch pipe (T 1) colelctor electrode connect the first power switch pipe (T 1) the emitter stage and the first diode (D 1) anode connect the first diode (D 1) the negative electrode and the first inductance (L 1) 1 end connect the first inductance (L 1) 2 ends be connected with 1 end of A.C. contactor (KM), 2 ends, 4 ends of A.C. contactor (KM) are connected on the wire electrode, and the first inductance (L 1) 1 end be connected with 3 ends of A.C. contactor (KM); Second power switch pipe (the T 2) emitter stage and the 3rd diode (D 3) anode connect the 3rd diode (D 3) the negative electrode and the second diode (D 2) negative electrode connect and the 3rd diode (D 3) the negative electrode and the first inductance (L 1) 1 end connect.
4, according to claim 2 or 3 current impulse power supplys such as described, it is characterized in that: the second power switch pipe (T 2), the 3rd power switch pipe (T 3), the second diode (D 2), the 3rd diode (D 3), the 4th diode (D 4), the first inductance (L 1) and A.C. contactor (KM) formation bridge-type power amplification loop.
5, current impulse power supply such as according to claim 2 is characterized in that: the first power switch pipe (T 1), the second inductance (L 2), the 5th diode (D 5), the first diode (D 1) formation puncture control circuit.
6, current impulse power supply such as according to claim 3 is characterized in that: the first power switch pipe (T 1), resistance (R), the 5th diode (D 5), the first diode (D 1) formation puncture control circuit.
CNU2008201072280U 2008-04-08 2008-04-08 Numerical control current pulse power source for electrospark wire-electrode cutting machining Expired - Fee Related CN201235432Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2008201072280U CN201235432Y (en) 2008-04-08 2008-04-08 Numerical control current pulse power source for electrospark wire-electrode cutting machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2008201072280U CN201235432Y (en) 2008-04-08 2008-04-08 Numerical control current pulse power source for electrospark wire-electrode cutting machining

Publications (1)

Publication Number Publication Date
CN201235432Y true CN201235432Y (en) 2009-05-13

Family

ID=40648169

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2008201072280U Expired - Fee Related CN201235432Y (en) 2008-04-08 2008-04-08 Numerical control current pulse power source for electrospark wire-electrode cutting machining

Country Status (1)

Country Link
CN (1) CN201235432Y (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318240B (en) * 2008-04-08 2010-07-07 哈尔滨工业大学 Numerical control pulse power source for wire-electrode cutting processing
CN104107967A (en) * 2013-04-19 2014-10-22 上海大量电子设备有限公司 Intelligent-control high frequency pulse power supply
CN106238840A (en) * 2016-08-31 2016-12-21 泰州龙芯微电子技术有限公司 Line cutting power supply control method and system thereof
CN107775128A (en) * 2016-08-31 2018-03-09 山东豪迈机械科技股份有限公司 Electrical discharge machining pulse power and its control method
CN112338304A (en) * 2020-10-14 2021-02-09 广东坚美铝型材厂(集团)有限公司 Die and process for machining die cavity through linear cutting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318240B (en) * 2008-04-08 2010-07-07 哈尔滨工业大学 Numerical control pulse power source for wire-electrode cutting processing
CN104107967A (en) * 2013-04-19 2014-10-22 上海大量电子设备有限公司 Intelligent-control high frequency pulse power supply
CN104107967B (en) * 2013-04-19 2017-01-25 上海大量电子设备有限公司 Intelligent-control high frequency pulse power supply
CN106238840A (en) * 2016-08-31 2016-12-21 泰州龙芯微电子技术有限公司 Line cutting power supply control method and system thereof
CN107775128A (en) * 2016-08-31 2018-03-09 山东豪迈机械科技股份有限公司 Electrical discharge machining pulse power and its control method
CN112338304A (en) * 2020-10-14 2021-02-09 广东坚美铝型材厂(集团)有限公司 Die and process for machining die cavity through linear cutting

Similar Documents

Publication Publication Date Title
CN100577335C (en) Numerical control double-power mode multifunctional impulsing power source for electrospark wire-electrode cutting processing
CN201201083Y (en) Duplicate supply mode pulse power source for numerical control electrospark wire-electrode cutting
CN101318240B (en) Numerical control pulse power source for wire-electrode cutting processing
CN101318241B (en) Impulsing power source for spark pinhole processing
CN102554374B (en) Self-adjusting discharge machining energy-saving power supply device and method thereof
CN201235432Y (en) Numerical control current pulse power source for electrospark wire-electrode cutting machining
CN201175797Y (en) High-low pressure composite pulse power source for processing small holes by electrical spark method
CN102101207A (en) Current type energy-saving electric spark machining pulse power supply with adjustable no-load voltage
CN111277138B (en) Medium-speed wire cutting pulse power supply for processing waist drum problem and processing method thereof
CN102315763A (en) Intelligent power module having soft turn off function
CN202283621U (en) Intelligent energy-saving high-frequency pulse power supply for wire cutting
CN1092345A (en) Pulse width modulating electric spark working pulse power source
CN101579761B (en) Two-stage limited pulse width precision electrical discharge pulse power source
CN201167241Y (en) Positive and negative pulse charging/discharging circuit controlled by an intelligent charger
CN202271058U (en) High-frequency encoding oscillating plate
CN202752713U (en) Electric spark machining device of small back-tapered hole
CN207026652U (en) Electrical discharge machining pulse power and processing unit (plant)
CN104107967A (en) Intelligent-control high frequency pulse power supply
CN202824897U (en) Improved electrical process machine pulsed power supply
CN110977063B (en) Modularized resistance-free energy-saving electric spark machining power supply
CN108340032B (en) A kind of electric energy recycling Energy-saving Pulse Generator for EDM
CN206614115U (en) A kind of spark pulse power
CN201020597Y (en) Inverter welding power source
CN203371140U (en) Intelligent control high frequency pulse power supply
CN201918896U (en) Controlling circuit for improving working current of switched reluctance motor and direct-current motor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090513

Termination date: 20100408