CN201206974Y - High-pressure microgap lubricating test machine - Google Patents
High-pressure microgap lubricating test machine Download PDFInfo
- Publication number
- CN201206974Y CN201206974Y CNU2008200367932U CN200820036793U CN201206974Y CN 201206974 Y CN201206974 Y CN 201206974Y CN U2008200367932 U CNU2008200367932 U CN U2008200367932U CN 200820036793 U CN200820036793 U CN 200820036793U CN 201206974 Y CN201206974 Y CN 201206974Y
- Authority
- CN
- China
- Prior art keywords
- ceramic
- fuel tank
- gap
- main shaft
- pressure micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 36
- 230000001050 lubricating effect Effects 0.000 title abstract description 15
- 239000000919 ceramic Substances 0.000 claims abstract description 74
- 238000005461 lubrication Methods 0.000 claims abstract description 43
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 239000002828 fuel tank Substances 0.000 claims description 24
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000002457 bidirectional effect Effects 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 10
- 239000003921 oil Substances 0.000 description 27
- 238000012544 monitoring process Methods 0.000 description 9
- 239000000314 lubricant Substances 0.000 description 8
- 230000006399 behavior Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
一种高压微间隙润滑试验机,包括支撑台和升降工作台,升降工作台上设有油箱,油箱内插入有呈T形的主轴,主轴头部外径上装有陶瓷套,陶瓷套外径右侧设有紧靠其圆周面的陶瓷球,陶瓷球下方设有感应其与陶瓷套间隙的高精度电涡流传感器,陶瓷球的右侧设有加载装置,陶瓷球上固定有陶瓷轴,陶瓷轴通过精密双列调心球轴承固定,与扭矩传感器相连的软轴连接,扣矩传感器与伺服电机相连设在支撑平台上;主轴尾部通过联轴器与设在支撑平台上的伺服电机相联。通过控制陶瓷球与陶瓷套间最大接触压力、界面间隙、剪切率,评价材料在高压微间隙下的承载能力、流变特性等,为微间隙下润滑模型的建立提供实验数据和润滑抗磨材料选择提供解决方案。
A high-pressure micro-clearance lubrication testing machine, including a support table and a lifting table. There is an oil tank on the lifting table, and a T-shaped main shaft is inserted in the oil tank. A ceramic sleeve is installed on the outer diameter of the main shaft head. The outer diameter of the ceramic sleeve is right There is a ceramic ball close to its circumferential surface on the side, and a high-precision eddy current sensor is installed under the ceramic ball to sense the gap between it and the ceramic sleeve. A loading device is installed on the right side of the ceramic ball, and a ceramic shaft is fixed on the ceramic ball. It is fixed by precision double-row self-aligning ball bearings, connected with the flexible shaft connected to the torque sensor, and the buckle torque sensor is connected with the servo motor and set on the support platform; the tail of the main shaft is connected with the servo motor set on the support platform through a coupling. By controlling the maximum contact pressure, interface gap, and shear rate between the ceramic ball and the ceramic sleeve, evaluate the bearing capacity and rheological properties of the material under high-pressure micro-gap, and provide experimental data and lubricating anti-wear materials for the establishment of lubrication models under micro-gap Choose to provide a solution.
Description
技术领域 technical field
本实用新型涉及一种高压微间隙润滑试验机,即一种在0-3GPa高压力和108-109/s高剪切率工况条件下,实现实时测量1-100nm微间隙中润滑膜厚度、摩擦力、温度的试验机。The utility model relates to a high-pressure micro-gap lubrication testing machine, which is a kind of lubricating film in a micro-gap of 1-100nm in real time under the conditions of high pressure of 0-3GPa and high shear rate of 10 8 -10 9 /s. Testing machine for thickness, friction and temperature.
背景技术 Background technique
在航天航空、超精密机械等领域中,许多关键部件的运动精度和制造精度需要达到亚微米甚至纳米量级,并伴随高负荷点、线接触;对应的摩擦副间隙将达到1-100nm纳米量级,压力达到3GPa,剪切率达到108-1010/s。微间隙中的润滑材料行为及其失效规律已不符合宏观润滑理论;高剪切率会导致润滑材料分子链断裂;高压力会导致润滑膜破裂。这些行为都会引发摩擦副润滑失效,严重时将会导致整个系统瘫痪。因此,建立高压微间隙润滑试验系统,对高压、高剪切率、微间隙中润滑材料的行为规律、尺度效应、失效机制及控制方法进行探索,对保障系统的稳定性、可靠性和经济性是非常有意义的。In aerospace, ultra-precision machinery and other fields, the movement accuracy and manufacturing accuracy of many key components need to reach the submicron or even nanometer level, accompanied by high load point and line contact; the corresponding friction pair clearance will reach 1-100nm nanometer level level, the pressure reaches 3GPa, and the shear rate reaches 10 8 -10 10 /s. The behavior and failure rules of lubricating materials in the micro-gap no longer conform to the macroscopic lubrication theory; high shear rate will cause the molecular chain of lubricating materials to break; high pressure will cause the breakdown of lubricating film. These behaviors will cause the lubrication failure of the friction pair, and in severe cases, the entire system will be paralyzed. Therefore, a high-pressure micro-gap lubrication test system is established to explore the behavioral law, scale effect, failure mechanism and control method of lubricating materials in high-pressure, high-shear rate, and micro-gap, and to ensure the stability, reliability and economy of the system. is very meaningful.
现在对润滑材料等行为进行研究的试验系统主要有:润滑特性监测系统,润滑剂性能监测系统,表面润滑系统。润滑特性监测系统方面:专利号为200410018436公开了一种轴向柱塞泵配流副润滑特性的测试装置,通过液压动力实施加载,用润滑膜测试平台来试验研究不同工况下配流副的润滑特性,实时监测、采集并对测试数据分析、处理,实现润滑试验系统中微米级润滑膜厚度的反馈控制。专利号为89217503公开了一种智能润滑监控装置,用于干油、稀油润滑系统的故障监视和控制、机器的程序控制。专利号为97219302公开了一种润滑油流监控器,适合矿山、冶金、发电等大型机器设备的润滑监控;专利号为200610019934公开了一种监测压缩机连杆瓦运行状况的方法,通过微机监测压缩机连杆瓦运行状况,通过数据处理决定是否需要维修。润滑剂性能监测系统方面:专利号为200620088031.8公开了一种采用工控机全自动控制的摩擦磨损润滑剂试验机,能实时地观测到润滑剂摩擦磨损性能试验结果,并可对多次试验数据进行比较研究;专利号为94224975.5公开了一种四球式润滑剂试验机,可以测定润滑剂的抗磨、减摩、抗擦伤性能和抗机械剪切安定性的试验机,与智能化仪表联用,能满足润滑剂多种性能的评定,专利号为CN03227041.0公开了一种液压千斤顶式润滑磨损试验机,采用液压施力,测量润滑磨损精确度高,工作稳定;表面润滑系统方面:专利号为96191699公开一种具有低润滑敏感度的旋转式压缩机,对润滑失效受到磨损的零件上施加金刚石式碳涂层缓解润滑性能;专利号为200520012678公开一种万向节润滑机构,用于万向节中,该机构具有较大的储油量注油方便,且能使万向节具有较高的可靠性等特点。At present, the test systems for researching the behavior of lubricating materials mainly include: lubrication characteristic monitoring system, lubricant performance monitoring system, and surface lubrication system. In terms of lubrication characteristic monitoring system: Patent No. 200410018436 discloses a test device for the lubrication characteristics of the distribution pair of axial piston pumps, which is loaded by hydraulic power, and the lubricating film test platform is used to test and study the lubrication characteristics of the distribution pair under different working conditions , real-time monitoring, collection, analysis and processing of test data, to realize feedback control of micron-level lubricating film thickness in the lubrication test system. Patent No. 89217503 discloses an intelligent lubrication monitoring device, which is used for fault monitoring and control of dry oil and thin oil lubrication systems, and program control of machines. Patent No. 97219302 discloses a lubricating oil flow monitor, which is suitable for lubrication monitoring of large-scale machinery and equipment such as mines, metallurgy, and power generation; The operating status of the compressor connecting rod shoe, and whether it needs to be repaired is determined through data processing. Lubricant performance monitoring system: Patent No. 200620088031.8 discloses a friction and wear lubricant testing machine using industrial computer automatic control, which can observe the test results of lubricant friction and wear performance in real time, and can perform multiple test data Comparative research; Patent No. 94224975.5 discloses a four-ball lubricant testing machine, which can measure the anti-wear, anti-friction, anti-scratch performance and mechanical shear stability of lubricants, and is used in conjunction with intelligent instruments , which can meet the evaluation of various performances of lubricants. The patent No. CN03227041.0 discloses a hydraulic jack type lubrication and wear testing machine, which uses hydraulic pressure to measure lubrication and wear with high accuracy and stable operation; surface lubrication system: Patent No. 96191699 discloses a rotary compressor with low lubrication sensitivity, and applies a diamond-type carbon coating to the parts that are worn out due to lubrication failure to alleviate lubrication performance; Patent No. 200520012678 discloses a universal joint lubrication mechanism for In universal joints, this mechanism has the characteristics of large oil storage capacity, convenient oil filling, and high reliability of universal joints.
上述专利文献中公开的润滑试验机构,虽然都对润滑剂的摩擦磨损性能以及润滑特性进行实时监测并且及时反馈控制,或通过表面处理增强润滑性能,但是所研究的润滑材料都是一般条件下的润滑特性及摩擦磨损性能的监测和研究,而在高压、高剪切率和微间隙工况条件下的润滑材料承载能力、流变特性等尚未进行研究。Although the lubrication test institutions disclosed in the above-mentioned patent documents all carry out real-time monitoring and timely feedback control on the friction and wear performance and lubrication characteristics of the lubricant, or enhance the lubrication performance through surface treatment, the lubricating materials studied are all under normal conditions. The monitoring and research of lubrication characteristics and friction and wear performance, but the bearing capacity and rheological characteristics of lubricating materials under the conditions of high pressure, high shear rate and micro gap have not yet been studied.
实用新型内容Utility model content
技术问题:本实用新型的目的是根据已有技术中存在的问题,提供一种高压微间隙润滑试验机,以探索在高压微间隙条件下润滑材料承载能力和流变特性。Technical problem: The purpose of this utility model is to provide a high-pressure micro-gap lubrication testing machine to explore the bearing capacity and rheological properties of lubricating materials under high-pressure micro-gap conditions.
技术方案:本实用新型的高压微间隙润滑试验机,它由支撑台和设在支撑台上的试验装置构成,支撑台由底座、支撑杆和支撑平台连接而成;试验装置包括设在底座上的升降工作台,升降工作台上设有油箱,油箱内插入有呈T形的主轴,主轴头部外径上装有陶瓷套,陶瓷套右侧设有紧靠其圆周面的陶瓷球,陶瓷球下方设有感应其与陶瓷套间隙的高精度电涡流传感器,陶瓷球的右侧设有加载装置,加载装置的前部设在油箱内,后部延伸至油箱外,支撑在支架上;粘结有陶瓷轴的陶瓷球上设有与扭矩传感器相连的软轴,陶瓷轴由精密双列调心轴承支承和调心,扭矩传感器与伺服电机相连设在支撑平台上;伸出油箱盖的主轴尾部通过联轴器与设在支撑平台上的伺服电机相联;支撑平台上设有智能化温控仪和双向可控硅。Technical solution: The high-pressure micro-gap lubrication testing machine of the utility model is composed of a support platform and a test device arranged on the support platform. The support platform is connected by a base, a support rod and a support platform; the test device includes a There is an oil tank on the lifting table, a T-shaped main shaft is inserted into the oil tank, a ceramic sleeve is installed on the outer diameter of the main shaft head, and a ceramic ball close to its peripheral surface is installed on the right side of the ceramic sleeve. There is a high-precision eddy current sensor at the bottom to sense the gap between it and the ceramic sleeve, and a loading device is installed on the right side of the ceramic ball. The ceramic ball with the ceramic shaft is provided with a flexible shaft connected to the torque sensor. The ceramic shaft is supported and aligned by a precision double-row self-aligning bearing. The torque sensor is connected to the servo motor and set on the support platform; the tail of the main shaft protruding from the fuel tank cover It is connected with the servo motor on the support platform through a coupling; the support platform is equipped with an intelligent temperature controller and a bidirectional thyristor.
所述的主轴上设有固定陶瓷套的挡盘;所述的高精度电涡流传感器设在固定于支承锥形支座上的绝缘外壳内;所述的加载装置由电动位移台,设在电动位移台前部的加载板、支承锥形支座和支承锥形支座的固定座构成,支承锥形支座的锥面上设有顶住陶瓷球的陶瓷轴承;所述的加载装置上设有压电式传感器;所述的油箱内设有热电偶温度计和加热片;所述的主轴尾部与联轴器连接段外部设有杯形壳体;所述的主轴尾部与杯形壳体之间设有滚动轴承;所述的油箱上设油箱盖,盖上设有插入油箱内的注油或抽油的油管。The main shaft is provided with a baffle plate with a fixed ceramic sleeve; the high-precision eddy current sensor is arranged in an insulating shell fixed on the supporting tapered support; The loading plate at the front of the displacement platform, the supporting tapered support and the fixed seat supporting the tapered support are composed of a ceramic bearing that withstands the ceramic ball on the conical surface of the supporting tapered support; the loading device is provided with There is a piezoelectric sensor; a thermocouple thermometer and a heating plate are installed in the oil tank; a cup-shaped shell is provided outside the connecting section between the tail of the main shaft and the coupling; the tail of the main shaft and the cup-shaped shell are Rolling bearings are arranged between them; the fuel tank is provided with a fuel tank cover, and an oil pipe inserted into the fuel tank for oil injection or oil extraction is arranged on the cover.
有益效果:本实用新型的高压微间隙润滑试验机,通过控制陶瓷球与套在主轴上的陶瓷套间最大接触压力、界面间隙、剪切率,能够评价润滑材料在高压微间隙下的承载能力、流变特性等,可以为微间隙下润滑模型的建立提供实验数据,为高压微间隙润滑条件下的润滑抗磨及材料选择提供解决方案。Beneficial effects: the high-pressure micro-gap lubrication testing machine of the utility model can evaluate the bearing capacity, Rheological properties, etc., can provide experimental data for the establishment of lubrication models under micro-gap, and provide solutions for lubrication, anti-wear and material selection under high-pressure micro-gap lubrication conditions.
附图说明 Description of drawings
附图是本实用新型的高压微间隙润滑试验机结构图;Accompanying drawing is the structural diagram of the high-pressure micro-gap lubrication testing machine of the present invention;
图中:伺服电机—1,扭矩传感器—2,支撑平台—3,软轴—4,油管—5,,陶瓷球—6,锥形支座—7,固定座—8,压电式传感器—9,加载板—10,电动位移台—11,支架—12,绝缘外壳—13,高精度电涡流位移传感器—14,底座—15,升降工作台—16,加热片—17,挡盘—18,油箱—19,螺钉—20,陶瓷套—21,密封盖—22,主轴—23,热电偶温度计—24,壳体—25,联轴器—26,智能化温控仪—27,伺服电机—28,双向可控硅—29。In the figure: servo motor—1, torque sensor—2, support platform—3, flexible shaft—4, oil pipe—5, ceramic ball—6, conical support—7, fixed seat—8, piezoelectric sensor— 9. Loading plate—10, electric translation stage—11, bracket—12, insulating shell—13, high-precision eddy current displacement sensor—14, base—15, lifting table—16, heating plate—17, baffle plate—18 , oil tank—19, screw—20, ceramic sleeve—21, sealing cover—22, main shaft—23, thermocouple thermometer—24, housing—25, coupling—26, intelligent temperature controller—27, servo motor —28, Triac —29.
具体实施方式 Detailed ways
下面结合附图中的实施例对本实用新型作进一步的描述:The utility model will be further described below in conjunction with the embodiment in the accompanying drawings:
附图所示,高压微间隙润滑试验机主要由支撑台和设在支撑台上的试验装置构成,支撑台由底座15、支撑平台3、支撑平台12和其间的支撑杆连接而成,试验装置包括固定在底座15上的升降工作台16,升降工作台16上安放有油箱19,油箱19内插入有呈T形的主轴23,主轴23头部外径上装有陶瓷套21,陶瓷套21采用SiC陶瓷。主轴23的端面装有由螺钉20固定的挡盘18,SiC陶瓷套21右侧设有紧靠其圆周面的陶瓷球6,陶瓷球6下方设有感应其与陶瓷套21间隙的高精度电涡流传感器14,高精度电涡流传感器14设在外壳13内,固定于锥形支座7上。陶瓷球6采用Si3N4陶瓷,Si3N4陶瓷球6的右侧设有加载装置,加载装置的前部设在油箱19内,后部延伸至油箱19外,支撑在支架12上,油箱19上设油箱盖22,油箱盖22与油箱19之间通过平面密封胶密封,油箱盖22上设有插入油箱19内的注油或抽油的油管5。油箱19的底部设有加热片17,油箱的密封盖22上设有热电偶温度计24,支撑平台3上设有智能化温控仪27和双向可控硅29。加载装置由电动位移台11,设在电动位移台11前部的加载板10、支承锥形支座7和支承锥形支座7的固定座8构成,加载板10通过螺钉固定在电动位移台11上,支承锥形支座7的锥面上设有顶住Si3N4陶瓷球6的陶瓷轴承,加载装置上设有压力传感器9。粘结有陶瓷轴的Si3N4陶瓷球6的顶部位置设有与扭矩传感器2相连的软轴4,陶瓷轴由优质精密双列调心球轴承支承和调心,扭矩传感器2与伺服电机1相连设在支撑平台3上;伺服电机28竖立在支撑平台3上,联轴器26将伺服电机28输出轴与伸出油箱盖22的主轴23尾部联接起来,SiC陶瓷套21为安装在主轴23输出轴上的SiC陶瓷套,其外部表面下半部分镀有感应介质铜,杯形壳体25通过螺钉固定在支撑平台3和油箱盖22之间;主轴23尾部与杯形壳体25之间设有滚动轴承。As shown in the accompanying drawings, the high-pressure micro-gap lubrication testing machine is mainly composed of a support platform and a test device located on the support platform. The support platform is connected by a
在实验中,油箱中的油液通过注(抽)油管5经由可正反转泵注入、抽出,升降工作台16通过调节高度实现油箱19的上升下降,达到注入部分油液和清洗油箱的目的;主轴系统的伺服电机28通过联轴器26将动力直接传递给主轴23,SiC陶瓷套21随主轴23作高速旋转,当加载系统的电动位移台11作进给运动时,依次通过加载板10、压电式传感器9、支承锥形支座7输出轴,进而对支承锥形支座7上的Si3N4陶瓷球6施预加力,预加力的施加大小通过压电式传感器9测出;此时,Si3N4陶瓷球6和SiC陶瓷套21浸没在油箱油液中,Si3N4陶瓷球6在预加力作用下与SiC陶瓷套21接触,SiC陶瓷套21的高速旋转所甩开的油液在Si3N4陶瓷球6-SiC陶瓷套21间形成可承受高压和高剪切率的微间隙润滑膜,使Si3N4陶瓷球6产生相对位移,其相对位移大小通过可在油液中工作的高精度电涡流位移传感器14测定,它对SiC陶瓷套21下部的铜介质产生电涡流效应而完成膜厚的测量,陶瓷轴随陶瓷球6做微间隙的偏移,并由优质精密双列调心球轴承调心;此外,润滑膜的出现,Si3N4陶瓷球6-SiC陶瓷套21间产生滚动摩擦力,滚动摩擦力是间接通过测量Si3N4陶瓷球6扭矩实现的,Si3N4陶瓷球6与SiC陶瓷套21作相向旋转运动,Si3N4陶瓷球6旋转产生的扭矩通过软轴4传递到扭矩传感器2上,得到Si3N4陶瓷球6的扭矩值,进而理论求出Si3N4陶瓷球6-SiC陶瓷套21间的滚动摩擦力;温控系统则是能够对温度进行实时控制,通过热电偶温度计24感应温度变化输出信号电压传输到智能化温控仪27,对偏离的电压信号通过PID调节,温度低于或高于设定值,双向可控硅29零触发导通,驱动控制元件加热片17进行反馈补偿,使实验在设定的温度下进行。In the experiment, the oil in the oil tank is injected and extracted through the oil injection (pumping) pipe 5 through the reversible pump, and the lifting table 16 realizes the rise and fall of the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200367932U CN201206974Y (en) | 2008-05-23 | 2008-05-23 | High-pressure microgap lubricating test machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200367932U CN201206974Y (en) | 2008-05-23 | 2008-05-23 | High-pressure microgap lubricating test machine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201206974Y true CN201206974Y (en) | 2009-03-11 |
Family
ID=40466035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008200367932U Expired - Fee Related CN201206974Y (en) | 2008-05-23 | 2008-05-23 | High-pressure microgap lubricating test machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201206974Y (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728075A (en) * | 2014-01-07 | 2014-04-16 | 四川大学 | Tester for elastohydrodynamic lubricating oil film traction with spinning |
CN114166676A (en) * | 2021-12-03 | 2022-03-11 | 中南大学 | Hydraulic pump flow distribution pair friction and wear testing device with online monitoring function |
-
2008
- 2008-05-23 CN CNU2008200367932U patent/CN201206974Y/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728075A (en) * | 2014-01-07 | 2014-04-16 | 四川大学 | Tester for elastohydrodynamic lubricating oil film traction with spinning |
CN114166676A (en) * | 2021-12-03 | 2022-03-11 | 中南大学 | Hydraulic pump flow distribution pair friction and wear testing device with online monitoring function |
CN114166676B (en) * | 2021-12-03 | 2024-01-30 | 中南大学 | Hydraulic pump flow distribution pair friction and wear testing device with online monitoring function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101290209A (en) | High pressure micro gap lubrication testing machine | |
CN103868812B (en) | A kind of variable load rolling friction abrasion machine | |
CN100535627C (en) | Multi-parameter controllable high-rotating speed mechanical sealing performance tester | |
CN103674747B (en) | A kind of abrasion test table of engine | |
CN2896257Y (en) | Multi-parameter measurable and controllable high-speed mechanical seal performance test device | |
CN100562741C (en) | On-line measuring and testing machine for radial sliding bearing friction and wearing | |
CN106198019B (en) | A kind of roll sliding friction life-cycle test device based on interface friction performance monitoring | |
CN2938093Y (en) | Friction-wear lubricant tester of automatic controlled by controller | |
Kasolang et al. | Preliminary study of pressure profile in hydrodynamic lubrication journal bearing | |
CN102854014A (en) | Dynamic performance test device for angular contact ball bearing retainer | |
CN103344553A (en) | High-speed rolling contact fatigue testing machine | |
CN106840673A (en) | Marine diesel slides base bearing pyroelectric signal caliberating device and scaling method | |
CN102866013A (en) | Dynamic performance testing device for cylindrical roller bearing retainer | |
CN206787959U (en) | One kind simulation hydrodynamic sliding bearing start and stop friction wear testing machine | |
CN101226104A (en) | Apparatus for testing the take-off speed of elastic foil thrust bearings | |
CN103900817A (en) | Experiment bench for thrust ball bearing pack of turbodrill | |
CN110954427B (en) | A multifunctional miniature precision bearing experimental platform | |
CN201206974Y (en) | High-pressure microgap lubricating test machine | |
CN105486505A (en) | Single-pivot double row rolling bearing supporting type rotor comprehensive performance experiment device | |
CN102323060A (en) | Splash lubrication simulation test device for piston pin and bushing of engine | |
CN203643167U (en) | Angular contact ball bearing temperature, axial thermal displacement test device | |
CN202793970U (en) | Double-disc type lubricating oil tractive power testing machine | |
CN104568431A (en) | Hydro-viscous transmission testing device for measuring dynamic parameter of oil film | |
CN201083603Y (en) | Sprag clutch high speed dynamic friction moment test stand | |
CN205861473U (en) | A kind of multifunction friction wear testing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090311 Termination date: 20100523 |