CN201173865Y - Automobile fourth wheel positioning detector - Google Patents

Automobile fourth wheel positioning detector Download PDF

Info

Publication number
CN201173865Y
CN201173865Y CN 200820089451 CN200820089451U CN201173865Y CN 201173865 Y CN201173865 Y CN 201173865Y CN 200820089451 CN200820089451 CN 200820089451 CN 200820089451 U CN200820089451 U CN 200820089451U CN 201173865 Y CN201173865 Y CN 201173865Y
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
detection
wheel
instrument
solid
targets
Prior art date
Application number
CN 200820089451
Other languages
Chinese (zh)
Inventor
张云奎
Original Assignee
张云奎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The utility model provides an automobile four-wheeled position detection instrument, relating to a detection instrument. The utility model aims to solve the problems that the prior automobile four-wheeled detection and position are calibrated at a time by a factory when the detection instrument is mounted, the inclination angles are generated among four wheels in the using process and users can not calibrate the four wheels. In the utility model, each front wheel solid target (6) and each rear wheel solid target (7) are respectively fixed on a fixture (8); two camera mounts (1) are respectively arranged on front sides of two front wheel solid targets(6); each camera mount (1) is lengthways provided with two cameras (4);and the cameras (4) are connected with a computer (2) through a data wire. The detection instrument can directly observe patterns on the solid targets which are taken by the cameras through a display of the computer, and adjust positions of automobiles according to the positions of the targets in the pictures; and the computer calculates various inclination angles of corresponding wheels according to the special positions of the targets, so as to determine whether the adjustment is needed and how to perform the adjustment.

Description

汽车四轮定位检测仪技术领域本实用新型涉及一种检测仪。 Automobile wheel alignment detector Technical Field The present invention relates to a detector. 背景技术目前国外最先进的汽车四轮检测和定位系统均采用计算机三维成像技术, 但其使用的均是单目立体视觉原理和平面靶标,算法复杂运算时间长,系统在安装时由厂家一次定标,若在使用过程中两前轮之间产生倾角或两后轮之间产生倾角,则用户不能校验和重新定标,使车辆的可靠性降低。 BACKGROUND OF THE INVENTION Currently the most advanced four-wheel vehicle detection and localization system using computer imaging technology, but its use are monocular stereo vision principle, and planar target, the algorithm complexity long calculation time, the system at installation time determined by the manufacturer standard, is generated if the angle between the generating angle between both front wheels or the rear wheels during use, the user can not be verified and re-calibration, reliability of the vehicle is reduced. 实用新型内容本实用新型的目的是为解决现有汽车四轮检测和定位均由厂家在安装时一次定标,在使用过程中四轮之间产生倾角,用户不能校检的问题,提供一种汽车四轮定位检测仪。 SUMMARY The present invention aims to solve the problems of the prior four-wheel vehicle to detect and locate by a factory calibration during installation, during use is generated between the four angle, the user can not check the calibration, there is provided a automotive wheel alignment detector. 本实用新型包括两个相机支架l、计算机2、四个相机4、定标靶标5、两个前轮立体耙标6、两个后轮立体耙标7和四个夹具8,每个前轮立体靶标6和每个后轮立体靶标7分别固定在每一个夹具8上,两个前轮立体耙标6设置在两个后轮立体靶标7的前侧,两个相机支架1分别设置在两个前轮立体耙标6 的前侧,每个相机支架l上、下各设有一个相机4,四个相机4位于同一空间平面内,定标靶标5设置在两个前轮立体靶标6的中间,相机4与计算机2通过数据线连接。 The present invention includes two cameras L brackets, the computer 2, four cameras 4, 5 calibration target, two standard front perspective rakes 6, two rear wheels 7 and perspective rakes standard four clamps 8, each front wheel 6 and a perspective view of each rear wheel target perspective targets 7 are fixed on each of the holder 8, the two front scale perspective rakes 6 arranged at the front side perspective targets two rear wheels 7, two cameras 1 are provided two brackets a front perspective front rake superscript 6, each L bracket camera, a camera 4 is provided at each of four cameras located in the same space plane 4, 5 calibration target provided two front wheels 6 is a perspective targets intermediate, the camera 4 connected to the computer 2 via data line. 本实用新型的优点是:本实用新型可以通过计算机2的显示器直接观察到相机4拍摄到的前轮立体靶标6和后轮立体靶标7,并根据耙标在图像中的位置调节车辆的位置,以便得到靶标图案的最佳分辨率图像,计算机2根据耙标的空间方位计算出相应车轮的各种倾角(内倾角,外倾角,前束角),从而判断出是否需要调整及怎样调整的建议。 The utility model has the advantages: the present invention can be directly observed by a display of the computer 2 to the camera 4 captured front perspective targets 6 and rear perspective target 7, and adjust the position of the vehicle based on the position of the rake mark in the image, in order to obtain the best resolution of the image the target pattern, various computer 2 calculates the inclination (the inclination angle, camber angle, toe angle) of the respective wheels according to the spatial orientation of the rake subject, need to be adjusted so as to determine whether and how to adjust the proposal. 附图说明图l是本实用新型的整体结构示意图,图2是本实用新型的立体图,图3是前轮立体靶标6或后轮立体靶标7安装在车轮上的结构示意图,图4是后轮立体耙标7的结构示意图,图5是双目立体视觉定位原理图。 BRIEF DESCRIPTION OF DRAWINGS Figure l is a new overall schematic structural view of FIG. 2 is a perspective view of the present invention, FIG. 3 is a front perspective schematic view of a target rear perspective targets 6 or 7 is mounted on the wheel, a rear wheel 4 is structure schematic perspective rake subscript 7, FIG. 5 is a schematic diagram of positioning of binocular stereo vision. 具体实施方式具体实施方式一:结合图1和图2说明本实施方式,本实施方式由两个相机支架l、计算机2、四个相机4、定标靶标5、两个前轮立体靶标6、两个后轮立体耙标7和四个夹具8组成,每个前轮立体靶标6和每个后轮立体靶标7分别固定在每一个夹具8上,两个前轮立体靶标6设置在两个后轮立体靶标7的前侧,两个相机支架1分别设置在两个前轮立体靶标6的前侧,每个相机支架1 上、下各设有一个相机4,四个相机4位于同一空间平面内,定标靶标5设置在两个前轮立体靶标6的中间,且四个相机4都可以拍摄到的地方,相机4与计算机2通过数据线连接。 DETAILED DESCRIPTION OF EMBODIMENTS first embodiment: FIG. 1 and FIG. 2 of the present embodiment described embodiment, the present embodiment by the two cameras L brackets, the computer 2, four cameras 4, 5 calibration target, two targets perspective front wheels 6, two rear wheels 7 and perspective rakes standard four clamps 8, each front perspective view of each rear wheel target 6 and 7 are respectively a perspective targets fixed on each of the holder 8, the two front wheels disposed in perspective two targets 6 perspective front wheel target 7, two cameras are provided on the front bracket 1 side perspective targets two front wheels 6, each camera holder 1, a camera 4 is provided at each of four cameras located in the same space 4 in the plane, where the calibration target 5 is disposed between the two front perspective targets 6, and four camera 4 can be captured, the camera 4 connected to the computer 2 via data line. 四个相机4和计算机2分别组成两个双目计算机立体视觉系统,每个视觉系统由两个相机4组成,两个相机支架1上端的两个相机4 之间的距离与两个相机支架1下端的两个相机4之间的距离相等,左侧相机支架1上的上下相机4之间的距离与右侧相机支架1上的上下相机4之间的距离相等。 4 four cameras and the computer 2 are composed of two binocular stereo vision system computer, each of the two cameras by the vision system 4 composed of the distance between the two camera mount the upper end 4 of two cameras 1 and a camera mount two the lower end of the two cameras 4 is equal to the distance between the upper and lower left side of the camera on the camera mount the camera on a vertically between 1 and 4 from the right camera mount is equal to a distance between 4. 这样设计使每个立体视觉系统的两个相机的视野均可把本侧的两个车轮上的固定立体靶标收入视野中。 Designed field of view of each of the two cameras of a stereo vision system field of view can be secured to a target revenue perspective on this side of the two wheels. 在测量前,双目计算机立体视觉定位系统根据定标靶标5计算出两个立体视觉系统的相机像平面空间坐标系的关系以及和车辆空间坐标系之间的转换关系。 Before measurement, binocular stereo vision positioning system computer calculates the transformation between the two stereo vision system camera image plane relationship space coordinate system and the vehicle and the space coordinate system 5 according to the calibration target. 具体实施方式二:结合图2和图3说明本实施方式,本实施方式的前轮立体靶标6和后轮立体靶标7的形状相同,后轮立体靶标7的尺寸比前轮立体耙标6大。 DETAILED DESCRIPTION II: in conjunction with FIGS. 2 and 3 illustrate embodiments of the present embodiment, front perspective view of the embodiment of the present embodiment 6 target rear perspective the same shape as the target mark 7, a perspective rear perspective subscript 7 Target size scale than the front rake and six . 这样设计可以使前轮立体靶标6和后轮立体靶标7同时进入同侧的两个相机4的视野中,并且图像的大小基本一致。 Such design allows the front wheel 6 and rear perspective perspective targets the target 7 while coming into view on the same side of the two cameras 4, and a substantially uniform size of the image. 具体实施方式三:结合图3和图4说明本实施方式,本实施方式与具体实施方式一的不同点是:本实施方式还增加有一组圆柱9,前轮立体耙标6和后轮立体靶标7上均设有一组柱孔11,每个圆柱9设置在每个柱孔11中,露在前轮立体靶标6和后轮立体靶标7外面的圆柱9高低不一, 一组柱孔11在前轮立体靶标6和后轮立体靶标7上按照特定的图案排列。 DETAILED Embodiment 3: in conjunction with FIGS. 3 and 4 illustrate the present embodiment, the present embodiment and the exemplary embodiment, a difference is: the present embodiment also adds a set of cylinder 9, front perspective rake superscript 6 and a rear perspective targets 7 has a set of post hole 11, each cylinder 9 is provided in each of the post hole 11, exposed outside the front wheel 6 and rear wheel target perspective perspective target cylinder 7 9 varies, a set of post holes 11 in the a front wheel 6 and rear wheel target perspective perspective targets 7 are arranged in a particular pattern. 如此设计便于计算机通过系统中的两个相机得到同侧前轮立体靶标6和后轮立体耙标7上的特殊图案,进行匹配后计算出靶标的空间方位,使系统中的计算机给出是否需要调整及怎样调整的建议。 Computer design facilitates thus obtained ipsilateral front perspective view of a target system through two cameras 6 and 7 a special pattern on the standard rear perspective rake, calculating the spatial orientation of the target matching the given computer system need adjustment and recommend how to adjust. 具体实施方式四:结合图3和图4说明本实施方式,本实施方式的圆柱9 的顶端平面涂成白色,白色能起到反光作用,前轮立体靶标6和后轮立体靶标7 涂成黑色,便于计算机2对其图形的识别和计算前轮立体靶标6或后轮立体靶标7的中心方位。 DETAILED DESCRIPTION IV: in conjunction with FIGS. 3 and 4 illustrate the embodiment of the present embodiment, the top plane of the cylinder 9 of the present embodiment is painted white, the white reflector can play a role in front perspective and rear perspective targets 6 painted black target 7 , facilitating their identification and calculation computer 2 front perspective view of the target pattern center position 6 or 7 of the target rear perspective. 上述汽车四轮定位检测仪,其工作原理是:在进行四轮定位时,将汽车驶到定位平台3上,车停稳后,将夹具8和前轮立体靶标6、后轮立体靶标7的合成体分别安装在四个车轮上,并旋转手柄以便锁紧夹具8,车辆两侧前方的四个相机4分别获得汽车同侧两个车轮上安装的前轮立体靶标6和后轮立体靶标7的图像,计算机2的自动控制程序获取相机4拍摄的图像,并把图像数据存储在计算机2图像数据库中进行匹配后计算出靶标在相机坐标系中的空间方位,再根据空间系统的坐标转换关系计算出靶标在车辆空间中的坐标方位,计算机2根据靶标的空间方位计算出相应车轮的各种倾角(内倾角,外倾角,前束角),进一步做出车轮状态的判断和给出是否需要调整及怎样调整的建议。 The above-described automobile wheel alignment detector, its working principle is: during wheel alignment, positioning the platform car drove 3, after a parked car, the holder 8 and the target front wheel 6 a perspective, rear perspective view of the target 7 the composite are mounted on four wheels, and to rotate the handle in order to lock the holder 8, four sides of the vehicle in front of the camera 4 is mounted respectively on the same side of car two front wheels 6 and rear perspective target perspective targets 7 image, computer control program 2 acquires image camera 4 shot, and the image data is stored for the calculated target space in the camera coordinate system orientation after the match in the computer 2 the image database, and then based on the conversion relationship between the coordinate space of the system calculate the target coordinates of the vehicle position in space, the computer 2 calculates the spatial orientation of the target in accordance with a variety of inclination (the inclination angle, camber angle, toe angle) of the respective wheels, and determines whether the state given a further need to make the wheel adjustment and recommend how to adjust. 双目计算机立体视觉定位的基本原理:如图5所示,双目计算机立体视觉定位的基本原理是利用空间同一点在纵向上下两相机4画面上的视差来计算空间点P的三维坐标。 The basic principle of binocular stereo vision computer located: 5, the basic principle of binocular stereo vision computer is located is calculated using the same point in space the two vertical sides of the camera 4 parallax screen point P 3D coordinate space. 前轮立体靶标6和后轮立体靶标7为正直摆放姿态,即两光轴相互平行。 A front wheel 6 and rear perspective targets 7 is a perspective targets placed upright posture, i.e., two optical axes are parallel to each other. 也可以采用交向摆放姿态的,即两光轴不平行,且允许两像面之间存在旋转,如果旋转角度为零即为正直摆放姿态。 It may also be used to cross to pose, i.e., two non-parallel to the optical axis, and the rotation allowed between the two image plane, that is, if the rotation angle is zero placed upright posture. 这里按一般摆放姿态的前轮立体靶标6和后轮立体靶标7的模型进行说明:假设上下两相机4对称放置。 Here will be described the front wheels according to the general model to pose a perspective rear perspective targets 6 and target 7: Suppose two vertical camera 4 placed symmetrically. 设两相机4坐标系分别为0 1 XI Y 1 Z 1 、 0 2 X 2Y2 Z2 ,轴Z1与轴Z2相交于P,两坐标系原点间距离为L。 Coordinates provided two cameras 4 are 0 1 XI Y 1 Z 1, 0 2 X 2Y2 Z2, Z2 axis and Z1 axis intersect at P, the distance between the two coordinate origin is L. 相应像面坐标系为Qll Xll YLZll, Q12 X12 Y12 Z12。 Respective image plane coordinate system Qll Xll YLZll, Q12 X12 Y12 Z12. 世界坐标系(即车辆所在空间坐标系)Ow Xw Yw Zw与Ol XI Yl Zl重合。 World coordinate system (ie, the vehicle where space coordinates) Ow Xw Yw Zw coincide with Ol XI Yl Zl. 轴Zl轴Z2与对称轴偏角为e。 Axis Zl Z2 axis angle with the axis of symmetry as e. 假设上下两相机4的焦距相等,为f二01011二02 012。 Suppose the focal length of the camera is equal to the upper and lower 4, of two f 02012 01011 two. 空间上任意点Q(x , y, z)在02 X2 Y2 Z2中的坐标为Q(x2 , y2, z2 ),对应像点坐标分别为(XI, Yl)、 (X2, Y2 )。 Space arbitrary point Q (x, y, z) in 02 X2 Y2 Z2 coordinates of Q (x2, y2, z2), respectively corresponding to the image point coordinates (XI, Yl), (X2, Y2). 参见图5,根据小孔成像原理及坐标变换理论可推得:/(l一l)<formula>formula see original document page 6</formula>(1_2)正直摆放方式的前轮立体耙标6和后轮立体耙标7只是上述情况的特例,只要令e 为o即可得到该情况下的定位公式。 Referring to Figure 5, in accordance with the principles and pinhole imaging coordinate transformation theory can be derived: / (l a l) <formula> formula see original document page 6 </ formula> wheel (1_2) placed upright manner rake perspective superscript 6 7 is the exception and rear perspective view of the above standard rake, so long as the e o can be obtained in this case positioned formula.

Claims (4)

  1. 1、一种汽车四轮定位检测仪,它包括两个相机支架(1)、计算机(2)、四个相机(4)、定标靶标(5)、两个前轮立体靶标(6)、两个后轮立体靶标(7)和四个夹具(8),其特征在于每个前轮立体靶标(6)和每个后轮立体靶标(7)分别固定在每一个夹具(8)上,两个前轮立体靶标(6)设置在两个后轮立体靶标(7)的前侧,两个相机支架(1)分别设置在两个前轮立体靶标(6)的前侧,每个相机支架(1)上、下各设有一个相机(4),四个相机(4)位于同一空间平面内,定标靶标(5)设置在两个前轮立体靶标(6)的中间,相机(4)与计算机(2)通过数据线连接。 1, a vehicle wheel alignment detector comprises two cameras which support (1), the computer (2), four camera (4), the calibration target (5), two front perspective targets (6), two rear perspective targets (7) and four clamps (8), characterized in that each front perspective target (6) and a perspective view of each rear wheel target (7) are fixed on each gripper (8), two front perspective targets (6) is provided at a front side perspective targets two rear wheels (7), the two camera support (1) are provided on the front side of the three-dimensional target (6) of the two front wheels, each camera on the holder (1), provided at each one camera (4), four camera (4) located in the same space plane, calibration target (5) provided at two front perspective targets (6) in the middle, the camera ( 4) with the computer (2) connected via a data line.
  2. 2、 根据权利要求1所述汽车四轮定位检测仪,其特征在于前轮立体靶标(6) 和后轮立体靶标(7)的形状相同。 2, a four-wheel vehicle according to the positioning detector as claimed in claim, characterized in that perspective the same shape as the target front wheel (6) and a rear perspective view target (7).
  3. 3、 根据权利要求2所述汽车四轮定位检测仪,其特征在于它还含有一组圆柱(9),前轮立体靶标(6)和后轮立体靶标(7)上均设有一组柱孔(11),每个圆柱(9)设置在每个柱孔(11)中。 3, the detector 2 automotive wheel alignment according to claim, characterized in that it further comprises a set of cylinders (9), front perspective target (6) and a rear perspective view target (7) has a set of post holes (11), each cylinder (9) is provided in each of the post hole (11).
  4. 4、 根据权利要求3所述汽车四轮定位检测仪,其特征在于圆柱(9)的顶端平面涂有白色涂层,前轮立体靶标(6)和后轮立体靶标(7)涂有黑色涂层。 4, according to claim 3 automobile wheel alignment detector claims, characterized in that the top plane of the cylinder (9) is coated with a white coating, front perspective target (6) and a rear perspective view target (7) is coated with a black coating Floor.
CN 200820089451 2008-03-12 2008-03-12 Automobile fourth wheel positioning detector CN201173865Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200820089451 CN201173865Y (en) 2008-03-12 2008-03-12 Automobile fourth wheel positioning detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200820089451 CN201173865Y (en) 2008-03-12 2008-03-12 Automobile fourth wheel positioning detector

Publications (1)

Publication Number Publication Date
CN201173865Y true CN201173865Y (en) 2008-12-31

Family

ID=40200992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200820089451 CN201173865Y (en) 2008-03-12 2008-03-12 Automobile fourth wheel positioning detector

Country Status (1)

Country Link
CN (1) CN201173865Y (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915673A (en) * 2010-09-06 2010-12-15 华南理工大学 Wheel load-based type intelligent sensing four-wheel positioning measurement method
CN101726420B (en) 2009-11-15 2011-09-07 吉林大学 Three-freedom degree wheel positioning instrument target
CN102322797A (en) * 2011-08-15 2012-01-18 吉林大学 Three-freedom-degree automobile wheel positioning parameter three-dimensionalal visual flexible detection system
CN102589903A (en) * 2011-12-22 2012-07-18 上海一成汽车检测设备科技有限公司 Morning detection device and method for automobile three-dimensional (3D) four-wheel positioner
CN102721549A (en) * 2012-07-05 2012-10-10 北京民族汽车仪器制造有限公司 Four-wheeled positioning type measuring system and measuring method adopting same
CN102749209A (en) * 2012-07-02 2012-10-24 麦苗 Channel type automobile wheel positioner and detection method thereof
CN102749210A (en) * 2012-07-03 2012-10-24 深圳市元征科技股份有限公司 Three-dimensional four-wheel locater measuring method
CN102883988A (en) * 2010-02-12 2013-01-16 实耐宝公司 Rack drive-on assistance systems
CN102901641A (en) * 2012-09-20 2013-01-30 麦苗 Asymmetric four-wheel positioning instrument for automobile
CN103217303A (en) * 2013-03-29 2013-07-24 营口瀚为科技有限公司 Method for realizing movable survey with 3D (three-dimensional) positioning instrument
WO2014121546A1 (en) * 2013-02-07 2014-08-14 上海一成汽车检测设备科技有限公司 Single-point clamp of four-wheel aligner for automobile and using method thereof
WO2016165179A1 (en) * 2015-04-15 2016-10-20 李开文 Double-upright-column lifter 3d positioning device
CN106920262A (en) * 2017-03-07 2017-07-04 湖南科技大学 Target binding method of machine vision 3D four-wheel position indicator
WO2018010346A1 (en) * 2016-07-15 2018-01-18 李开文 Four wheel locator having wide measuring range
CN105910834B (en) * 2016-06-14 2018-05-25 华晨汽车集团控股有限公司 Species automobile wheel alignment detection apparatus and detection method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726420B (en) 2009-11-15 2011-09-07 吉林大学 Three-freedom degree wheel positioning instrument target
US9452917B2 (en) 2010-02-12 2016-09-27 Snap-On Incorporated Apparatus for guiding a vehicle onto a service lift using a machine vision wheel alignment system
CN102883988A (en) * 2010-02-12 2013-01-16 实耐宝公司 Rack drive-on assistance systems
CN101915673A (en) * 2010-09-06 2010-12-15 华南理工大学 Wheel load-based type intelligent sensing four-wheel positioning measurement method
CN101915673B (en) 2010-09-06 2012-12-19 华南理工大学 Wheel load-based type intelligent sensing four-wheel positioning measurement method
CN102322797B (en) 2011-08-15 2013-03-20 吉林大学 Three-freedom-degree automobile wheel positioning parameter three-dimensionalal visual flexible detection system
CN102322797A (en) * 2011-08-15 2012-01-18 吉林大学 Three-freedom-degree automobile wheel positioning parameter three-dimensionalal visual flexible detection system
CN102589903A (en) * 2011-12-22 2012-07-18 上海一成汽车检测设备科技有限公司 Morning detection device and method for automobile three-dimensional (3D) four-wheel positioner
CN102749209A (en) * 2012-07-02 2012-10-24 麦苗 Channel type automobile wheel positioner and detection method thereof
CN102749210A (en) * 2012-07-03 2012-10-24 深圳市元征科技股份有限公司 Three-dimensional four-wheel locater measuring method
CN102749210B (en) * 2012-07-03 2015-09-23 深圳市元征科技股份有限公司 Three wheel alignment measuring method
CN102721549A (en) * 2012-07-05 2012-10-10 北京民族汽车仪器制造有限公司 Four-wheeled positioning type measuring system and measuring method adopting same
CN102901641A (en) * 2012-09-20 2013-01-30 麦苗 Asymmetric four-wheel positioning instrument for automobile
US9581524B2 (en) 2013-02-07 2017-02-28 Shanghai Yicheng Auto Inspection Device Science & Technology Co., Ltd. Single-point clamp of four-wheel aligner for vehicles and a using method thereof
WO2014121546A1 (en) * 2013-02-07 2014-08-14 上海一成汽车检测设备科技有限公司 Single-point clamp of four-wheel aligner for automobile and using method thereof
CN103217303B (en) * 2013-03-29 2017-10-10 营口瀚为科技有限公司 Method 3d implemented movable locator measured
CN103217303A (en) * 2013-03-29 2013-07-24 营口瀚为科技有限公司 Method for realizing movable survey with 3D (three-dimensional) positioning instrument
WO2016165179A1 (en) * 2015-04-15 2016-10-20 李开文 Double-upright-column lifter 3d positioning device
CN105910834B (en) * 2016-06-14 2018-05-25 华晨汽车集团控股有限公司 Species automobile wheel alignment detection apparatus and detection method
WO2018010346A1 (en) * 2016-07-15 2018-01-18 李开文 Four wheel locator having wide measuring range
CN106920262A (en) * 2017-03-07 2017-07-04 湖南科技大学 Target binding method of machine vision 3D four-wheel position indicator
CN106920262B (en) * 2017-03-07 2018-02-02 湖南科技大学 A machine vision 3d wheel alignment target binding method

Similar Documents

Publication Publication Date Title
Nene et al. Stereo with mirrors
Schiller et al. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup
US6542840B2 (en) Calibration system, target apparatus and calibration method
CN1605829A (en) Device and method for field calibration of vision measurement system
JPH11136706A (en) Position attitude sensor, position attitude detection method, composite reality providing device, game machine, composite reality providing method and storage medium
CN101425181A (en) Panoramic view vision auxiliary parking system demarcating method
CN1888814A (en) Multi-viewpoint attitude estimating and self-calibrating method for three-dimensional active vision sensor
CN101706957A (en) Self-calibration method for binocular stereo vision device
CN103292710A (en) Distance measuring method applying binocular visual parallax error distance-measuring principle
US20090299684A1 (en) Method for calibrating cameras installed on vehicle
CN101339654A (en) Reinforced real environment three-dimensional registering method and system based on mark point
JP2004037270A (en) Data measuring device, method and program for calibration, computer readable recording medium and image data processing device
US20140104424A1 (en) Imaging surface modeling for camera modeling and virtual view synthesis
CN1566906A (en) Construction optical visual sense transducer calibration method based on plane targets
CN103245322A (en) Distance measurement method and system based on binocular stereo vision
CN101419708A (en) Structure optical parameter demarcating method based on one-dimensional target drone
CN102012217A (en) Method for measuring three-dimensional geometrical outline of large-size appearance object based on binocular vision
CN102914294A (en) System and method for measuring unmanned aerial vehicle electrical line patrol on basis of images
JP2001211403A (en) Head mount display device and head mount display system
JP2001285681A (en) Calibration system, target device and calibration method
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JP2008205811A (en) Camera attitude calculation target device and camera attitude calculation method using it, and image display method
JP2005016979A (en) Vehicle-mounted camera calibration tool and vehicle-mounted camera calibrating method
CN102012236A (en) Method for calibrating moon rover binocular vision obstacle avoidance system
US20100328437A1 (en) Distance measuring apparatus having dual stereo camera

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
C17 Cessation of patent right