CN201136823Y - An aerobic anaerobic cycle treatment device for waste water - Google Patents
An aerobic anaerobic cycle treatment device for waste water Download PDFInfo
- Publication number
- CN201136823Y CN201136823Y CNU2007200617420U CN200720061742U CN201136823Y CN 201136823 Y CN201136823 Y CN 201136823Y CN U2007200617420 U CNU2007200617420 U CN U2007200617420U CN 200720061742 U CN200720061742 U CN 200720061742U CN 201136823 Y CN201136823 Y CN 201136823Y
- Authority
- CN
- China
- Prior art keywords
- reactor
- anaerobic
- aerobic
- bed reactor
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002351 wastewater Substances 0.000 title claims description 28
- 239000010813 municipal solid waste Substances 0.000 claims abstract description 11
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000005273 aeration Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims 4
- 238000000034 method Methods 0.000 abstract description 28
- 230000008569 process Effects 0.000 abstract description 19
- 230000000694 effects Effects 0.000 abstract description 14
- 230000000802 nitrating effect Effects 0.000 abstract 1
- 239000013589 supplement Substances 0.000 abstract 1
- 239000000149 chemical water pollutant Substances 0.000 description 22
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 11
- 208000028659 discharge Diseases 0.000 description 8
- 239000010865 sewage Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000010791 domestic waste Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
技术领域technical field
本实用新型属于涉及一种废水处理,特别是涉及垃圾渗滤液的处理。The utility model relates to waste water treatment, in particular to the treatment of landfill leachate.
背景技术Background technique
目前,我国有93%左右的城市固体废物处理采用填埋方法。随着时间的流逝,这些垃圾填埋体在压实作用和微生物的生化作用下,填埋体中所含的污染物将随水分溶出,并与降雨一起形成垃圾渗滤液。由于我国填埋垃圾在成份上比先进国家要复杂得多,造成我国垃圾渗滤液成份更复杂,污染负荷更高,处理难度更大。少量的垃圾渗滤液会对地下水、地表水及垃圾填埋场周围环境造成严重的污染,直接威胁饮用水和工农业用水水源的安全。At present, about 93% of municipal solid waste in my country is disposed of by landfill. As time goes by, under the action of compaction and the biochemical action of microorganisms in these landfills, the pollutants contained in the landfill will dissolve with water and form landfill leachate together with rainfall. Since the composition of landfill waste in my country is much more complex than that in advanced countries, the composition of landfill leachate in my country is more complex, the pollution load is higher, and the treatment is more difficult. A small amount of landfill leachate will cause serious pollution to groundwater, surface water and the surrounding environment of landfills, directly threatening the safety of drinking water and industrial and agricultural water sources.
由于垃圾渗滤液成分极其复杂,既有有机污染成分,又有无机污染成分,还含有一些重金属污染成分,表现出很强的综合污染特征,并且垃圾渗滤液中污染物浓度特别高,这种渗滤液很难把它处理到达标。所以,国内外普遍采用不同类型工艺方法组合处理,以做到达标排放的要求。通常,不同类型方法的组合一般是用生物法或土地法作为预处理,然后用物化法作为后处理。为了达到日益严格的渗滤液处理排放标准,这种工艺的组合已成为一种趋势,目前研究的重点主要集中于各种工艺的搭配和协调问题。Due to the extremely complex composition of landfill leachate, including organic pollution components, inorganic pollution components, and some heavy metal pollution components, it shows strong comprehensive pollution characteristics, and the concentration of pollutants in landfill leachate is particularly high. The filtrate is difficult to treat it up to the standard. Therefore, a combination of different types of process methods is widely used at home and abroad to meet the requirements of emission standards. Usually, the combination of different types of methods is generally to use biological method or land method as pretreatment, and then use physicochemical method as posttreatment. In order to meet the increasingly stringent discharge standards for leachate treatment, the combination of this process has become a trend. The current research focus is mainly on the matching and coordination of various processes.
对于如何进行垃圾渗滤液的处理,主要存在如下几点主要问题:Regarding how to treat landfill leachate, there are mainly the following main problems:
(1)渗滤液水量变化较大。尤其是季节性变化量很大,在雨季水量比较大。针对这个问题,一般填埋场设置渗滤液收集调节池,进行水量调节水质均化处理。(1) The amount of leachate varies greatly. In particular, the seasonal variation is very large, and the amount of water is relatively large in the rainy season. To solve this problem, the leachate collection and adjustment tanks are generally set up in landfills to carry out water quantity regulation and water quality homogenization treatment.
(2)渗滤液水质特性变化大。不同填埋场,由于诸多因素不同,其水质存在很大差异,所以适用于某填埋场渗滤液的处理方法不一定也适用于另一填埋场渗滤液的处理。(2) The characteristics of leachate water quality vary greatly. Different landfills have great differences in water quality due to many factors, so the treatment method suitable for one landfill leachate may not necessarily be suitable for another landfill leachate treatment.
(3)渗滤液中氨氮浓度高。且随着填埋场龄的增加而不断升高,其他组分的含量也很高。特别是老龄垃圾废水,具有氨氮含量高、不可生物降解COD物质复杂、含量高的特点。(3) The concentration of ammonia nitrogen in the leachate is high. And with the increase of landfill age, the content of other components is also very high. Especially old garbage wastewater has the characteristics of high ammonia nitrogen content, complex and high content of non-biodegradable COD substances.
(4)垃圾填埋渗滤水中含有大量的毒性有机物,甚至包括一些环境激素类物质。(4) Landfill infiltration water contains a large amount of toxic organic matter, even including some environmental hormones.
(5)渗滤液中碳源不足。采用传统生物脱氮处理时,处理效果不理想。(5) Insufficient carbon source in leachate. When the traditional biological denitrification treatment is adopted, the treatment effect is not ideal.
(6)老龄垃圾填埋场渗滤液可生化性差。(6) The biodegradability of leachate from old landfills is poor.
(7)成本昂贵。(7) It is expensive.
鉴于垃圾渗滤液的危害性较大,生活垃圾卫生填埋场的渗滤液应达到较高排放标准。从目前的处理技术来看,能够使处理出水稳定达到国家标准《生活垃圾填埋场污染控制标准》(GB16889-1997)一级排放标准的相对成熟处理工艺主要有厌氧(UASB)+好氧(SBR或MBR)+膜(NF或RO)技术和蒸发或燃烧技术。然而这些工艺存在着成本高、投资大、膜污染严重、浓缩液产率高(接近30%左右)且难处理等问题,限制了它们的普遍推广和应用。因而,如何降低成本,提高处理效率正成为业内人士研究的主要方向。如能在同一反应器系统中实现垃圾渗滤液的同时好氧厌氧处理和生物脱氮,开发具有重要的意义。In view of the greater harm of landfill leachate, the leachate of domestic waste sanitary landfills should meet higher discharge standards. Judging from the current treatment technology, the relatively mature treatment process that can make the treated effluent stably meet the national standard "Standards for Pollution Control of Domestic Waste Landfill Sites" (GB16889-1997) first-level discharge standard mainly includes anaerobic (UASB) + aerobic (SBR or MBR) + membrane (NF or RO) technology and evaporation or combustion technology. However, these processes have problems such as high cost, large investment, serious membrane fouling, high concentrate yield (approximately 30%) and intractability, which limit their popularization and application. Therefore, how to reduce costs and improve processing efficiency is becoming the main research direction of the industry. If the simultaneous aerobic anaerobic treatment and biological denitrification of landfill leachate can be realized in the same reactor system, the development is of great significance.
实用新型内容Utility model content
本实用新型的目的在于针对国内外垃圾渗滤液厌氧、好氧处理分隔在不同反应器,并需组合沉淀池、其它深度处理技术(如膜处理:超滤、反渗透等)的缺点,提供一种垃圾渗滤液在同一个生物反应器中实现好氧(Oxic)、缺氧(Anoxic)、厌氧(Anaerobic)循环作用,并通过三相分离器的作用,实现活性污泥、气体、处理水的分离。The purpose of this utility model is to solve the shortcomings of domestic and foreign landfill leachate anaerobic and aerobic treatment separated in different reactors, and need to combine sedimentation tanks and other advanced treatment technologies (such as membrane treatment: ultrafiltration, reverse osmosis, etc.), to provide A kind of landfill leachate realizes aerobic (Oxic), anoxic (Anoxic) and anaerobic (Anaerobic) cycles in the same bioreactor, and through the action of a three-phase separator, it realizes activated sludge, gas, and treatment water separation.
为达到上述实用新型目的,本实用新型采取了如下技术方案:In order to achieve the above-mentioned utility model purpose, the utility model has taken the following technical solutions:
一种垃圾废水好氧厌氧循环处理装置,包括调节池、污水泵、空气压缩设备、微孔曝气头和流化床反应器,所述流化床反应器上端口径大、下端口径小,中间设有连接上端与下端的锥形体,流化床反应器内设有反应器内筒、反应器外筒和三相分离器;反应器内筒位于流化床反应器下端,底部设有微孔曝气头,微孔曝气头与空气压缩设备连接;反应器内筒底部还通过污水泵与调节池连通;流化床反应器内筒上端与锥体连接,反应器外筒由下端反应器内筒的外围空间和上端的锥体组成;反应器外筒的上下端都与反应器内筒相通;三相分离器固定在流化床反应器的顶端,下端与外筒上端连结,流化床反应器的顶部位于三相分离器的外侧设有溢流堰排水口。An aerobic-anaerobic cycle treatment device for garbage wastewater, comprising a regulating tank, a sewage pump, air compression equipment, a microporous aeration head and a fluidized bed reactor, the upper port of the fluidized bed reactor has a large diameter and the lower port has a small diameter, There is a cone connecting the upper end and the lower end in the middle, and the inner cylinder of the reactor, the outer cylinder of the reactor and the three-phase separator are arranged in the fluidized bed reactor; the inner cylinder of the reactor is located at the lower end of the fluidized bed reactor, and a micro Pore aeration head and microporous aeration head are connected with air compression equipment; the bottom of the inner cylinder of the reactor is also connected with the regulating tank through the sewage pump; the upper end of the inner cylinder of the fluidized bed reactor is connected with the cone, and the outer cylinder of the reactor is reacted by the lower end The peripheral space of the inner cylinder of the reactor and the cone at the upper end; the upper and lower ends of the outer cylinder of the reactor are connected with the inner cylinder of the reactor; the three-phase separator is fixed on the top of the fluidized bed reactor, and the lower end is connected with the upper end of the outer cylinder. The top of the bed reactor is located on the outside of the three-phase separator, and an overflow weir outlet is provided.
相对于现有技术,本实用新型具有的优点:Compared with the prior art, the utility model has the advantages:
(1)同时好氧厌氧循环流化床(三相)生物反应器在设计上通过吸收好氧流化床、UASB三相分离器、气升式生物反应器的结构优点,实现三相流化床功能的一体化。(1) At the same time, the aerobic-anaerobic circulating fluidized bed (three-phase) bioreactor is designed to realize the three-phase flow by absorbing the structural advantages of the aerobic fluidized bed, UASB three-phase separator, and air-lift bioreactor. Integration of chemical bed functions.
(2)好氧厌氧循环流化床反应器对废水的处理,依次经过好氧区、缺氧区、厌氧区、沉淀区,在工艺上类似于倒置的(A2/O)工艺,但在结构上克服了传统的(A2/O)工艺、或倒置的(A2/O)工艺需要至少三个反应器分隔进行的缺点,大大简化工艺流程、节省占地面积和投资成本。(2) The treatment of wastewater by the aerobic-anaerobic circulating fluidized bed reactor passes through the aerobic zone, anoxic zone, anaerobic zone, and sedimentation zone in sequence, which is similar to the inverted (A 2 /O) process in terms of technology. However, structurally, it overcomes the disadvantage that the traditional (A 2 /O) process or the inverted (A 2 /O) process requires at least three separate reactors, and greatly simplifies the process flow, saves floor space and investment costs.
(3)本实用新型可在单个反应器里实现高效去除有机物和脱氮除磷功能。特别是可实现同时硝化反硝化生物脱氮,使两个过程在COD及氧气的提供与消耗、碱度的产生与消耗等方面的互补,节省运行成本。(3) The utility model can realize the functions of efficiently removing organic matters and removing nitrogen and phosphorus in a single reactor. In particular, it can realize simultaneous nitrification and denitrification biological denitrification, so that the two processes can complement each other in terms of COD and oxygen supply and consumption, alkalinity production and consumption, and save operating costs.
(4)本实用新型解决了国际上废水处理领域在A2/O工艺一体化和同时硝化反硝化方面的难题,本实用新型在处理规模较小的中、小型垃圾填埋场或城市垃圾压缩中转站,对垃圾渗滤液和其它高氨氮有机废水具有重要的工程应用价值。(4) The utility model solves the problems in the integration of A2/O process and simultaneous nitrification and denitrification in the field of waste water treatment in the world. It has important engineering application value for landfill leachate and other high ammonia nitrogen organic wastewater.
附图说明Description of drawings
图1为本实用新型所用的好氧厌氧循环流化床生物反应器结构示意图与流程;Fig. 1 is the structural representation and flow process of the aerobic-anaerobic circulating fluidized bed bioreactor used by the utility model;
图2为本实用新型所用方法对垃圾废水COD的去除效果;Fig. 2 is the removal effect of waste water COD by the method used in the present invention;
图3为本实用新型所用方法对氨氮的快速去除效果;Fig. 3 is the rapid removal effect of the method used in the present invention to ammonia nitrogen;
图4为本实用新型所用方法对NO3 --N的去除效果。Figure 4 shows the NO 3 - -N removal effect of the method used in the utility model.
具体实施方式Detailed ways
以下结合说明书附图来对本实用新型作进一步说明,但本实用新型所要求保护的范围并不局限于具体实施方式中所描述的范围。The utility model will be further described below in conjunction with the accompanying drawings, but the scope of protection claimed by the utility model is not limited to the scope described in the specific embodiment.
如图1所示,垃圾废水好氧厌氧循环处理装置包括调节池1、污水泵2、空气压缩设备5、微孔曝气头7和流化床反应器;所述流化床反应器上端口径大、下端口径小,中间设有连接上端与下端的锥形体,流化床反应器内包括反应器内筒8、反应器外筒9和三相分离器10;反应器内筒8位于流化床反应器下端,底部设有微孔曝气头7,微孔曝气头7与空气压缩设备5连接;反应器内筒8底部还通过污水泵2与调节池1连通;流化床反应器内筒8上端与锥体11连接,反应器外筒9由下端反应器内筒8的外围空间和上端的锥体11内腔组成;反应器外筒9的上下端都与反应器内筒8相通;三相分离器10固定在流化床反应器的顶端,下端与外筒9上端连结,流化床反应器的顶部位于三相分离器10的外侧设有溢流堰排水口12,溢流堰排水口12与排水池13连接,排水池接排水阀14。连接微孔曝气头7与空气压缩设备5的管道上设有气体流量计6;连接反应器内筒8与调节池1的管道上还分别设有进水阀4和液体流量计3。反应器内筒8的下部装有活性污泥和垃圾渗滤液。As shown in Figure 1, the garbage wastewater aerobic anaerobic circulation treatment device includes a regulating tank 1, a
处理垃圾渗滤液时,先将待处理垃圾废水置于调节池1中,然后通过污水泵的作用,将垃圾废水引入反应器内筒8,通过液体流量计3控制其流量;同时,通过空气压缩设备5,将空气引入反应器内筒8的下部,通过气体流量计控制压缩空气的流量,并通过微孔曝气头7将压缩空气均匀的鼓入反应器内筒8内;废水的温度控制为26~36℃。压缩空气在反应器内筒8内向上运动,带动反应器内筒8、外筒9之间的液体造成循环流动;垃圾废水进入反应器内筒后,先进入反应器内筒8的好氧区(0xiczone),之后,在反应器顶部由于三相分离器10的作用,气体通过三相分离器10排除,在反应器外筒9上部的锥形体形成缺氧区(Anoxic zone),废水流经缺氧区之后,由于微生物对氧的消耗,在反应器内筒8与外筒9下端之间形成厌氧区(Anaerobiczone),经过厌氧区之后,由于流体的循环作用,污水进入内筒8的下端,又重新进入好氧区,如此循环往复,污水在同一生物反应器中经过了一个类似倒置的(A2/O)工艺过程,因此,具有很好的同时硝化反硝化脱氮效果和除磷效果。由于主体反应器顶部设有三相分离器10,外筒9上部为锥体结构,废水-活性污泥-气体三相悬浮液通过三相分离器10后,在锥体部分形成缺氧区和沉淀区,废水经过沉淀后在反应器顶部通过溢流堰,经排水口12排出进入排水池。沉淀物悬浮在锥体部分。如进水为新鲜的垃圾渗滤液,出水可达到次类废水的国家一级或二级排放标准。如进水为老龄垃圾填埋废水,难以达到国家二级排放标准,可采取深度处理方法,使其达到国家一级排放标准。When treating the landfill leachate, the waste water to be treated is first placed in the regulating tank 1, and then the waste water is introduced into the inner cylinder 8 of the reactor through the action of the sewage pump, and its flow is controlled by the
应用上述垃圾废水好氧厌氧循环处理装置处理自广州某垃圾填埋场投配池垃圾渗滤液,垃圾废水好氧厌氧循环处理装置采用不锈钢材料制成,有效反应容积为0.52m3。反应器内筒8内的污泥取自该垃圾填埋场处理渗滤液的经厌氧-好氧组合工艺处理该类废水的活性污泥。对该渗滤水的水质进行了5年时间的监测、跟踪和研究,其主要特征如表1所示。The waste water aerobic anaerobic cycle treatment device mentioned above was used to treat the leachate from the dosing pool of a waste landfill in Guangzhou. The waste water aerobic anaerobic cycle treatment device was made of stainless steel with an effective reaction volume of 0.52m 3 . The sludge in the inner cylinder 8 of the reactor is taken from the activated sludge of the leachate treated in the landfill through the combined anaerobic-aerobic process. The water quality of the percolation water has been monitored, tracked and studied for 5 years, and its main characteristics are shown in Table 1.
表1 广州某垃圾填埋场渗滤水的主要性质Table 1 Main properties of percolation water from a landfill in Guangzhou
处理时,将待处理垃圾废水置于调节池1中,考虑到同时硝化反硝化各种微生物的驯化,采用较低浓度的废水较为有利,故在试验开始的140多天中,对垃圾渗滤液进行了稀释。通过泵2的作用,将稀释的垃圾废水引入装有活性污泥和垃圾渗滤液的好氧厌氧循环流化床底部(反应器内筒8的下部),通过液体流量计3控制其流量;同时,通过空气压缩机5,将空气引入好氧厌氧循环流化床底部(反应器内筒8的下部),通过气体流量计6控制压缩空气的流量,并通过微孔曝气头7,将压缩空气均匀的鼓入好氧厌氧循环流化床底部(反应器内筒8的下部);废水的温度控制在26~36℃之间。在试验140多天的驯化与运行期间,观察处理效果一直稳定高效,故改用垃圾渗滤液原液(COD浓度近24000mg/l、氨氮浓度范围在1500-2041mg/l),不做稀释,直接泵入本实用新型的好氧厌氧循环流化床,运行了30多天,COD去除与同时硝化反硝化脱氮效果一直保持稳定高效,具体情况如下:During the treatment, the garbage wastewater to be treated was placed in the adjustment pool 1. Considering the domestication of various microorganisms of nitrification and denitrification at the same time, it is more advantageous to use wastewater with a lower concentration. diluted. Through the effect of the
1、垃圾渗滤水中CODcr的处理效果1. Treatment effect of COD cr in landfill infiltration water
如图2所示:反应器的进水CODcr浓度大部分时间在568.6~3228mg/l之间波动(前期采用垃圾渗滤液原液进行了适当稀释),后期浓度采用原液(变化快)达到近24000mg/l;反应器出水CODcr的浓度一直比较稳定,一般都在250mg/l以下,平均为136.3mg/l,达到了同类废水的国家二级排放标准(CODcr<300mg/l),并达到了广东省“一控双达标”的要求。反应器趋于稳定运行期间CODcr的平均去除率约为95.2%,且CODcr的去除率受系统冲击及其它因素的影响较小。这表明,好氧厌氧循环流化床反应器对垃圾填埋渗滤水中的CODcr有着较高和稳定的去除率。As shown in Figure 2: the concentration of COD cr in the influent water of the reactor fluctuates between 568.6 and 3228mg/l most of the time (the stock solution of landfill leachate was used for appropriate dilution in the early stage), and the concentration in the later stage is nearly 24000mg with the stock solution (fast change) /l; the concentration of COD cr in the reactor effluent has been relatively stable, generally below 250mg/l, with an average of 136.3mg/l, which has reached the national secondary discharge standard for similar wastewater (COD cr <300mg/l), and reached It complied with the requirements of "one control and two standards" in Guangdong Province. The average removal rate of COD cr is about 95.2% when the reactor tends to run stably, and the removal rate of COD cr is less affected by system impact and other factors. This shows that the aerobic-anaerobic circulating fluidized bed reactor has a high and stable removal rate of COD cr in landfill infiltration water.
2、垃圾渗滤液的氨氮处理效果2. Ammonia nitrogen treatment effect of landfill leachate
如图3所示:反应器进出水氨氮浓度开始时在108~200mg/l之间,反应器运行趋于稳定期间,后期进水浓度在1500-2041mg/l,但出水氨氮浓度一直在25mg/l以下,平均为8.46mg/l,达到了同类废水的国家二级排放标准(NH3-N<25mg/l)。反应器趋于稳定运行的过程中,氨氮去除率一直在90%以上,最高接近100%,稳定运行期间的平均去除率为95.8%。As shown in Figure 3: the concentration of ammonia nitrogen in the influent and effluent water of the reactor was between 108 and 200 mg/l at the beginning, and when the reactor operation tended to be stable, the concentration of influent water in the later period was 1500-2041 mg/l, but the concentration of ammonia nitrogen in the effluent was always at 25 mg/l Below l, the average is 8.46mg/l, reaching the national secondary discharge standard for similar wastewater (NH 3 -N<25mg/l). During the process of reactor tending to stable operation, the removal rate of ammonia nitrogen has been above 90%, the highest is close to 100%, and the average removal rate during stable operation is 95.8%.
3、垃圾渗滤液的反硝化处理效果3. Effect of denitrification treatment on landfill leachate
如图4所示:在低的溶解氧浓度下(保持在1.0mg/l以下),保持同样高浓度的氨氮进水,出水氨氮浓度及硝酸盐氮浓度均可以控制到很低,并出现出水硝酸盐氮浓度比进水还要低的情况。这说明反应器内存在明显的同时硝化反硝化脱氮过程,且反硝化率超过了100%。As shown in Figure 4: at a low dissolved oxygen concentration (kept below 1.0mg/l), maintaining the same high concentration of ammonia nitrogen in the water, the concentration of ammonia nitrogen and nitrate nitrogen in the effluent can be controlled to a very low level, and the effluent Situations where the nitrate nitrogen concentration is lower than that of the influent. This shows that there is an obvious simultaneous nitrification and denitrification denitrification process in the reactor, and the denitrification rate exceeds 100%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200617420U CN201136823Y (en) | 2007-12-18 | 2007-12-18 | An aerobic anaerobic cycle treatment device for waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200617420U CN201136823Y (en) | 2007-12-18 | 2007-12-18 | An aerobic anaerobic cycle treatment device for waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201136823Y true CN201136823Y (en) | 2008-10-22 |
Family
ID=40037514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007200617420U Expired - Lifetime CN201136823Y (en) | 2007-12-18 | 2007-12-18 | An aerobic anaerobic cycle treatment device for waste water |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201136823Y (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101618924B (en) * | 2009-07-21 | 2012-06-27 | 天津市塘沽鑫宇环保科技有限公司 | Wastewater treatment device |
CN101723564B (en) * | 2010-01-22 | 2012-07-25 | 周建伟 | Garbage percolate treating process by biochemical and membrane separation |
CN104773927A (en) * | 2015-04-28 | 2015-07-15 | 罗文兵 | Village and town sewage treatment system |
CN111320338A (en) * | 2020-04-17 | 2020-06-23 | 山西润潞碧水环保科技股份有限公司 | High-denitrification device and method without limitation of reflux ratio |
CN115286181A (en) * | 2022-08-12 | 2022-11-04 | 中国石油化工股份有限公司 | Short-cut nitrification and denitrification biological fluidized bed sewage treatment device and process |
-
2007
- 2007-12-18 CN CNU2007200617420U patent/CN201136823Y/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101618924B (en) * | 2009-07-21 | 2012-06-27 | 天津市塘沽鑫宇环保科技有限公司 | Wastewater treatment device |
CN101723564B (en) * | 2010-01-22 | 2012-07-25 | 周建伟 | Garbage percolate treating process by biochemical and membrane separation |
CN104773927A (en) * | 2015-04-28 | 2015-07-15 | 罗文兵 | Village and town sewage treatment system |
CN111320338A (en) * | 2020-04-17 | 2020-06-23 | 山西润潞碧水环保科技股份有限公司 | High-denitrification device and method without limitation of reflux ratio |
CN115286181A (en) * | 2022-08-12 | 2022-11-04 | 中国石油化工股份有限公司 | Short-cut nitrification and denitrification biological fluidized bed sewage treatment device and process |
CN115286181B (en) * | 2022-08-12 | 2024-01-26 | 中国石油化工股份有限公司 | Short-cut nitrification and denitrification biological fluidized bed sewage treatment device and process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101870543B (en) | Landfill percolate treatment novel process | |
CN100534928C (en) | Short-path deep biological denitrogenation method for city garbage percolate | |
CN102107997B (en) | Method for treating leachate of domestic waste incineration plants | |
CN101250006A (en) | A fluidized bed reactor for aerobic and anaerobic circulation treatment of landfill leachate | |
CN104445747B (en) | Comprehensive sewage reuse treatment method for waste incineration power plant | |
WO2010133177A1 (en) | Landfill leachate wastewater treatment system and process thereof | |
CN101254993A (en) | A treatment method for mixed wastewater in a pharmaceutical and chemical industry park | |
CN102515437A (en) | Chemical industry park's wastewater bio-treatment apparatus and method thereof | |
CN102826710B (en) | Treatment process and treatment device of high-salinity high-ammonia nitrogen pharmaceutical sewage | |
CN104860482A (en) | Advanced nitrogen removal method for treating late landfill leachate with upflow anaerobic sludge blanket, anoxic/oxic and anaerobic ammonia oxidation reactor combined process | |
CN106430845A (en) | Kitchen garbage wastewater treatment apparatus | |
CN102765857A (en) | Sewage treatment system and application thereof | |
CN105731724A (en) | Treating and recycling method for offshore-platform high-salt domestic wastewater | |
CN105254134B (en) | Biological denitrificaion is combined the unit | |
CN108483651A (en) | The modified form multi-mode operation A adjusted based on water quality and quantity2O reaction tanks and sewage disposal system | |
CN111470729A (en) | Garbage leachate treatment system and method for garbage incineration power plant | |
CN201136823Y (en) | An aerobic anaerobic cycle treatment device for waste water | |
CN205676312U (en) | A kind of offshore platform high salt life sewage treatment and reuse equipment | |
CN101863592B (en) | Leachate treatment method for small town household refuse landfill sites | |
CN102229447A (en) | Anaerobic reactor for treating waste water containing emulsified liquid | |
CN110127947A (en) | A system and method for landfill leachate treatment | |
CN211712893U (en) | Difficult degradation industrial waste water treatment system | |
CN107973488A (en) | A kind of method of ammonia nitrogen waste water denitrogenation processing | |
CN201406361Y (en) | A landfill leachate wastewater treatment device | |
CN109775936B (en) | Low-energy-consumption domestic sewage treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20081022 Effective date of abandoning: 20071218 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20081022 Effective date of abandoning: 20071218 |