CN201054035Y - Three-lens type optical image capturing lens - Google Patents

Three-lens type optical image capturing lens Download PDF

Info

Publication number
CN201054035Y
CN201054035Y CNU200620175613XU CN200620175613U CN201054035Y CN 201054035 Y CN201054035 Y CN 201054035Y CN U200620175613X U CNU200620175613X U CN U200620175613XU CN 200620175613 U CN200620175613 U CN 200620175613U CN 201054035 Y CN201054035 Y CN 201054035Y
Authority
CN
China
Prior art keywords
lens
imaging lens
lens element
optical imaging
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU200620175613XU
Other languages
Chinese (zh)
Inventor
徐三伟
王启雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Pin Optical Industry Co Ltd
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to CNU200620175613XU priority Critical patent/CN201054035Y/en
Application granted granted Critical
Publication of CN201054035Y publication Critical patent/CN201054035Y/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

The utility model relates to a three lens formula optics are got for instance camera lens contains according to the preface by the thing side: the first lens piece with positive diopter is a crescent aspheric lens; the second lens piece with negative diopter is a crescent aspheric lens; a third lens element with negative diopter, which is an M-shaped aspheric lens, and the object side surface and the image side surface of the third lens element are both M-shaped, and the central surface of the third lens element on the optical axis can be a convex surface or a concave surface; an infrared filter; and an image sensor. And the following conditions are satisfied: d is more than or equal to 0.4f and less than 0.9f, R1/R2 is more than or equal to 0.3 f and less than 0.6, Fno is more than or equal to 2.8 and less than 3.6, br/f is more than 0.2 and less than 0.4, f1/f is more than 0.5 and less than 1.1, and f3/f is more than-4.0 and less than-1.1, wherein f and Fno are the effective focal length and the focal number of the system, d is the distance from the object side surface of the first lens element to the image side surface of the third lens element, R1 is the curvature radius of the object side surface of the first lens element, R2 is the curvature radius of the image side surface of the first lens element, Fno is the focal number of the imaging lens system, br is the back focal length of the imaging lens system, and f1 and f3 are the effective focal lengths of the first and the third lens elements, thereby achieving the purpose of effectively improving.

Description

三镜片式光学取像镜头 Three-element optical imaging lens

技术领域 technical field

本实用新型是有关一种三镜片式光学取像镜头(optical imaging lens),主要是针对手机镜头或使用CCD(电荷藕合装置)或CMOS(互补型金属氧化物半导体)等影像传感器的镜头,而提供的一种由三片透镜(lens elements)构成的光学取像镜头。The utility model relates to a three-mirror optical imaging lens (optical imaging lens), which is mainly aimed at mobile phone lenses or lenses using image sensors such as CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor), Provided is an optical imaging lens consisting of three lens elements.

背景技术 Background technique

随着科技的进步,电子产品不断地朝向轻薄短小以及多功能的方向发展,而电子产品中如:数字相机(Digital Still Camera)、计算机相机(PC camera)、网络相机(Network camera)、手机等已具备取像装置(镜头)的外,甚至个人数字辅助器(PDA)等装置也有加上取像装置(镜头)的需求;而为了携带方便与符合人性化的需求,取像装置不仅需要具有良好的成像质量,同时也需要有较小的体积与较低的成本,这样才能够有效提升所述的取像装置的应用性,尤其是应用在手机上,上述需要或条件则更为重要。With the advancement of technology, electronic products are constantly developing towards the direction of thin, light, small and multi-functional, and electronic products such as: digital camera (Digital Still Camera), computer camera (PC camera), network camera (Network camera), mobile phone, etc. In addition to already having an imaging device (lens), even personal digital assistants (PDAs) and other devices also have the need to add an imaging device (lens); and in order to be portable and meet the needs of humanization, the imaging device not only needs to have Good imaging quality also requires smaller volume and lower cost, so that the applicability of the imaging device can be effectively improved, especially for mobile phones, the above requirements or conditions are even more important.

而由于传统的球面研磨玻璃透镜的材质选择性较多,且对于修正色差较为有利,现已广为业界所使用,但球面研磨玻璃透镜应用在焦数(F number)较小以及视场角(field angle)较大的情况时,球差与像散等像差的修正仍然比较困难;而为了克服上述传统的球面研磨玻璃透镜的缺点,目前的取像装置已有使用非球面塑料透镜或使用非球面模造玻璃透镜,以获得较佳的成像质量,如美国发明专利:US6,795,253、US6,961,191、US6,441,971、Pub.No.US2004/0061953A1、Pub.No.US2004/0190158A1、Pub.No.US2004/0190162A1、Pub.No.US2004/023 1823A1、Pub.No.US2005/0231822A1,或如日本发明专利:特许第3567327号、特许第3717488号、特许第3768509号、特许第3816095号、特许公开2005-084404号、特许公开2006-047858号、特许公开2005-309210号、特许公开2005-227755号、特许公开2005-345919号、特许公开2005-292235号、特许公开2004-004566号、特许公开2005-338234号等多件包含三镜片组(lenscomponents)/三镜片(lens elements)的光学取像镜头结构设计;而上述多件发明专利的结构设计基本上都包含,由物侧依序(in order from the object side):第一、二、三等三镜片组(lens components)/镜片(lens elements),至于上述多件发明专利相互之间的差异处或技术特征则决定在以下各种因素的变化或组合而已:各件专利中所述的三镜片组/镜片之间对应配合的形状设计不同,如第一、二、三等三镜片组/镜片都为新月型(meniscus shape)透镜,或第一、二镜片组/镜片为新月型而第三镜片组/镜片为平凹型(plan o-concave shape)或平凸型(plan o-convexshape);与/或各件专利中所述的三镜片组/镜片之间对应配合的凸面/凹面方向不同,如第一/二/三等三镜片组/镜片的凸面/凹面可安排在物侧/像侧等多种变化组合;与/或各件专利中所述的三镜片组/镜片之间对应配合的屈光度(refractivepower)正/负不同,如第一、二、三等三镜片组/镜片的屈光度依序为正、负、正或正、正、负等不同变化组合;与/或各件专利中所述的三镜片组/镜片之间的相关光学数据,如f(取像镜头系统的有效焦距)、d(第一透镜件物侧面至第三透镜像侧面的距离)、R1(第一透镜件物侧面的曲率半径)、R2(第一透镜件像侧面的曲率半径),Fno(取像镜头系统的焦数)、br(取像镜头系统的后焦距)、f1(第一透镜件的有效焦距)、f3(第三透镜件的有效焦距)等,分别满足的条件不同,如0.8<f1/f<2.0,0.5<(|R2|-R1)/(R1+|R2|),与1.5<f3/f<3.0等参考日本特许第3717488号;由上可知,就一三镜片组/镜片的光学取像镜头的设计而论,其设计技术在光学取像镜头技术领域内并不特别困难,甚至可视为现有技术,而只要能在上述各种因素中研究出不同的变化或组合,即可视为具有新颖性(novelty)或进步性(inventive step),即可申请并被授权为一件专利。然而,上述的光学取像镜头的全长仍然过大,使取像镜头无法具有较小体积或较低成本,并且像差的校正消除或主光线角度的降低也不甚理想,不易满足电子产品力求轻薄短小且高性能的要求,相对的也限制了取像镜头的应用性,尤其无法简便地应用在手机上。Since the traditional spherical ground glass lens has more material options and is more beneficial for correcting chromatic aberration, it has been widely used in the industry. However, the spherical ground glass lens is used when the focal number (F number) is small and the field of view ( field angle) is relatively large, it is still difficult to correct aberrations such as spherical aberration and astigmatism; and in order to overcome the above-mentioned shortcomings of the traditional spherical ground glass lens, the current imaging device has used an aspheric plastic lens or used Aspherical molded glass lens to obtain better imaging quality, such as US invention patents: US6,795,253, US6,961,191, US6,441,971, Pub.No.US2004/0061953A1, Pub.No.US2004/0190158A1, Pub.No .US2004/0190162A1, Pub.No.US2004/023 1823A1, Pub.No.US2005/0231822A1, or Japanese invention patents: Patent No. 3567327, Patent No. 3717488, Patent No. 3768509, Patent No. 3816095, Patent Publication Patent Publication No. 2005-084404, Patent Publication No. 2006-047858, Patent Publication No. 2005-309210, Patent Publication No. 2005-227755, Patent Publication No. 2005-345919, Patent Publication No. 2005-292235, Patent Publication No. 2004-004566, Patent Publication No. 2005 - No. 338234 and many other optical imaging lens structure designs including three lens components (lens components)/three lenses (lens elements) from the object side): the first, second, third and third lens groups (lens components)/lens elements (lens elements), as for the differences or technical features of the above-mentioned multiple invention patents, it is determined by the following factors Changes or combinations only: The shapes of the three lens groups/lenses described in each patent are designed differently. For example, the first, second, and third lens groups/lenses are all meniscus shape lenses. Or the first and second lens groups/lenses are crescent-shaped and the third lens group/lenses are plano-concave shape or plano-convex shape; and/or described in each patent The corresponding convex/concave directions of the three lens groups/lenses are different. For example, the convex/concave surfaces of the first/second/third third lens groups/lenses can be arranged on the object side/image side and other variable combinations; and/ Or the positive/negative refractive powers of the three lens groups/lenses described in each patent are different, for example, the diopters of the first, second, third and third lens groups/lenses are positive, negative, and positive in sequence Or different combinations of positive, positive, negative, etc.; and/or related optical data between the three lens groups/lenses described in each patent, such as f (effective focal length of the imaging lens system), d (first lens The distance from the side of the object to the image side of the third lens), R1 (the radius of curvature of the object side of the first lens), R2 (the radius of curvature of the image side of the first lens), Fno (the focal number of the imaging lens system), br (the back focal length of the imaging lens system), f1 (the effective focal length of the first lens element), f3 (the effective focal length of the third lens element), etc., respectively satisfy different conditions, such as 0.8<f1/f<2.0, 0.5 <(|R2|-R1)/(R1+|R2|), and 1.5<f3/f<3.0 refer to Japanese Patent No. 3717488; it can be seen from the above that the design of an optical imaging lens with three lens groups/lenses In other words, its design technology is not particularly difficult in the field of optical imaging lens technology, and can even be regarded as prior art. As long as different changes or combinations can be studied in the above-mentioned various factors, it can be regarded as novel. Novelty or innovative step can be applied for and authorized as a patent. However, the overall length of the above-mentioned optical imaging lens is still too large, so that the imaging lens cannot have a smaller volume or lower cost, and the correction and elimination of aberrations or the reduction of the chief ray angle are not ideal, and it is difficult to meet the needs of electronic products. Striving for light, thin and high-performance requirements also limits the applicability of imaging lenses, especially in mobile phones.

发明内容 Contents of the invention

本实用新型公开了一种三镜片式光学取像镜头(imaging lens),其由物侧依序包含:一正屈光度的第一透镜件(a first lens element of positive refractivepower),为一新月型非球面透镜,且其凸面是在物侧;一负屈光度(negativerefractive power)的第二透镜件,为一新月型非球面透镜,且其凸面是在像侧;一负屈光度的第三透镜件,为一M字型非球面透镜,且其物侧面与像侧面都为M字型,而其在光轴之中央面可为凸面或凹面;一红外线滤光片;与一影像传感器;并以同一光轴排列构成;并且,所述的取像镜头满足以下条件:0.4f≤d<0.9f,0.3<|R1/R2|<0.6,2.8≤Fno<3.6,0.2<br/f<0.4,0.5<f1/f<1,与-4.0<f3/f<-1.1,其中,f为本取像镜头系统的有效焦距,d为第一透镜件物侧面至第三透镜像侧面的距离,R1为第一透镜件物侧面的曲率半径,R2为第一透镜件像侧面的曲率半径,Fno为本取像镜头系统的焦数,br为本取像镜头系统的后焦距,f1为第一透镜件的有效焦距,f3为第三透镜件的有效焦距;以可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使取像镜头具有较小体积与较低成本,而提升取像镜头的应用性。The utility model discloses a three-mirror optical imaging lens (imaging lens), which sequentially includes from the object side: a first lens element of positive refractive power (a first lens element of positive refractive power), which is a crescent-shaped an aspheric lens with its convex surface on the object side; a negative refractive power second lens element which is a crescent-shaped aspheric lens with its convex surface on the image side; a negative refractive power third lens element , is an M-shaped aspheric lens, and its object side and image side are both M-shaped, and its central surface on the optical axis can be convex or concave; an infrared filter; and an image sensor; and The same optical axis arrangement; and, the imaging lens satisfies the following conditions: 0.4f≤d<0.9f, 0.3<|R1/R2|<0.6, 2.8≤Fno<3.6, 0.2<br/f<0.4, 0.5<f1/f<1, and -4.0<f3/f<-1.1, where f is the effective focal length of the imaging lens system, d is the distance from the object side of the first lens element to the image side of the third lens, R1 is the radius of curvature of the object side of the first lens element, R2 is the radius of curvature of the image side of the first lens element, Fno is the focal number of the imaging lens system, br is the back focal length of the imaging lens system, and f1 is the first lens The effective focal length of the element, f3 is the effective focal length of the third lens element; to effectively eliminate the aberration and reduce the chief ray angle, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the imaging lens has a relatively high Small size and low cost improve the applicability of the imaging lens.

作为本实用新型的一种改进,所述的三镜片式光学取像镜头的第一透镜件的凸面与凹面可以有一面为非球面,当然也可以双面均为非球面;所述的第二透镜件的凸面与凹面可以有一面为非球面,当然也可以双面均为非球面;所述的M字型第三透镜件的物侧面与像侧面可以有一面为非球面,当然也可以双面均为非球面。As an improvement of the present utility model, one side of the convex surface and the concave surface of the first lens part of the three-element optical imaging lens can be aspherical, and of course both sides can be aspherical; the second One side of the convex surface and the concave surface of the lens piece can be an aspheric surface, and of course both sides can be aspheric surfaces; The surfaces are all aspherical.

作为本实用新型的另一种改进,其中所述的取像镜头设有一前置光圈,其孔径光阑(aperture stop)是设置在第一透镜件的物侧凸面(convex object-side surface)上,以构成一具有高分辨率而又能有效缩小镜头全长的三透镜式光学取像镜头。可有效提升取像镜头的应用性。As another improvement of the present utility model, wherein said imaging lens is provided with a pre-diaphragm, and its aperture stop (aperture stop) is arranged on the object side convex surface (convex object-side surface) of the first lens element , to form a three-lens optical imaging lens with high resolution and capable of effectively reducing the overall length of the lens. It can effectively improve the applicability of the imaging lens.

附图说明 Description of drawings

图1是本实用新型第一实施例的光学结构示意图;Fig. 1 is a schematic diagram of the optical structure of the first embodiment of the utility model;

图2是本实用新型第一实施例的光路示意图;Fig. 2 is a schematic diagram of the optical path of the first embodiment of the utility model;

图3是本实用新型第一实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇(transverse ray fan plot)图;Fig. 3 is the transverse light fan (transverse ray fan plot) diagram of five different fields of view (actual image heights 0, 0.575, 1.15, 1.725, 2.3mm) of the first embodiment of the present utility model;

图4是本实用新型第一实施例的成像的场曲(field curvature)图;Fig. 4 is the field curvature (field curvature) diagram of the imaging of the utility model first embodiment;

图5是本实用新型第一实施例的成像的畸变(distortion)图;Fig. 5 is the distortion (distortion) figure of the imaging of the first embodiment of the present utility model;

图6是本实用新型第一实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 6 is the modulation transfer function ( modulation transfer function) diagram;

图7是本实用新型第一实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 7 is the relative illumination (relative illumination) diagram that the full field of view of the first embodiment of the present invention corresponds to the zero field of view;

图8是本实用新型第二实施例的光学结构示意图;Fig. 8 is a schematic diagram of the optical structure of the second embodiment of the utility model;

图9是本实用新型二实施例的光路示意图;Fig. 9 is a schematic diagram of the optical path of the second embodiment of the utility model;

图10是本实用新型第二实施例的五个不同视场(实际像高0、0.675、1.35、2.025、2.7mm)的横向光扇图(transverse ray fan plot);Fig. 10 is the transverse ray fan plot (transverse ray fan plot) of five different fields of view (actual image heights 0, 0.675, 1.35, 2.025, 2.7mm) of the second embodiment of the present invention;

图11是本实用新型第二实施例的成像的场曲(field curvature)图;Fig. 11 is the field curvature (field curvature) diagram of the imaging of the second embodiment of the present invention;

图12是本实用新型第二实施例的成像的畸变(distortion)图;Fig. 12 is a distortion (distortion) diagram of the imaging of the second embodiment of the present invention;

图13是本实用新型第二实施例的五个视场(实际像高0、0.675、1.35、2.025、2.7mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 13 is the modulation transfer function ( modulation transfer function) diagram;

图14是本实用新型第二实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 14 is a relative illumination (relative illumination) diagram generated by the full field of view corresponding to the zero field of view of the second embodiment of the present invention;

图15是本实用新型第三实施例的光学结构示意图;Fig. 15 is a schematic diagram of the optical structure of the third embodiment of the present invention;

图16是本实用新型三实施例的光路示意图;Fig. 16 is a schematic diagram of the optical path of the third embodiment of the utility model;

图17是本实用新型第三实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverse ray fan plot);Fig. 17 is a transverse ray fan plot (transverse ray fan plot) of five different fields of view (actual image heights 0, 0.575, 1.15, 1.725, 2.3 mm) of the third embodiment of the present invention;

图18是本实用新型第三实施例的成像的场曲(field curvature)图;Fig. 18 is the field curvature (field curvature) diagram of the imaging of the third embodiment of the present invention;

图19是本实用新型第三实施例的成像的畸变(distortion)图;Fig. 19 is a distortion diagram of the imaging of the third embodiment of the present invention;

图20是本实用新型第三实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 20 is the modulation transfer function ( modulation transfer function) diagram;

图21是本实用新型第三实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 21 is a relative illumination (relative illumination) diagram generated by the full field of view corresponding to the zero field of view of the third embodiment of the present invention;

图22是本实用新型第四实施例的光学结构示意图;Fig. 22 is a schematic diagram of the optical structure of the fourth embodiment of the utility model;

图23是本实用新型四实施例的光路示意图;Fig. 23 is a schematic diagram of the optical path of the fourth embodiment of the utility model;

图24是本实用新型第四实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverse ray fan plot);Fig. 24 is the transverse ray fan plot (transverse ray fan plot) of five different fields of view (actual image heights 0, 0.575, 1.15, 1.725, 2.3 mm) of the fourth embodiment of the present invention;

图25是本实用新型第四实施例的成像的场曲(field curvature)图;Fig. 25 is a field curvature diagram of the imaging of the fourth embodiment of the present invention;

图26是本实用新型第四实施例的成像的畸变(distortion)图;Fig. 26 is a distortion diagram of the imaging of the fourth embodiment of the present invention;

图27是本实用新型第四实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 27 is the modulation transfer function ( modulation transfer function) diagram;

图28是本实用新型第四实施例的全视场对应零视场所产生的相对照度(relative illumination)图。Fig. 28 is a diagram of relative illumination generated by the full field of view corresponding to the zero field of view in the fourth embodiment of the present invention.

附图标记说明:L1-第一透镜件;11-物侧面(凸面);12-像侧面(凹面);13-孔径光阑;L2-第二透镜件;21-像侧面(凸面);22-物侧面(凹面);L3-第三透镜件;4-红外线滤光片;5-影像传感器;51-感测面。Explanation of reference numerals: L1-first lens part; 11-object side (convex); 12-image side (concave); 13-aperture stop; L2-second lens part; 21-image side (convex); 22 - object side (concave surface); L3 - third lens element; 4 - infrared filter; 5 - image sensor; 51 - sensing surface.

具体实施方式 Detailed ways

下面结合附图对本实用新型作进一步说明:Below in conjunction with accompanying drawing, the utility model is further described:

参照图1、2所示,其分别是本实用新型第一实施例的结构示意图与光路示意图,本实用新型三镜片式光学取像镜头(optical imaging lens),由物侧依序(in orderfrom the object side)包含:一正屈光度的第一透镜件(a first lens element of positiverefractive power)L1设在物侧(on the object side),其为一新月型非球面透镜,且其凸面11是在物侧,而其凹面12是在像侧(on the image side),且其凸面11与凹面12至少有一面为非球面;一负屈光度(a second lens element of negativerefractive power)的第二透镜件L2设在第一透镜件L1与第三透镜件L3之间,为一新月型非球面透镜,且其凸面21是在像侧,且其凸面21与凹面22至少有一面为非球面;一负屈光度的第三透镜件(a third lens element of negative refractivepower),为一M字型非球面透镜,且其物侧面与像侧面都为M字型,而其在光轴上之中央面可为凸面或凹面;一红外线滤光片(IR cut-off filter)4;与一影像传感器(image sensing chip)5;并以同一光轴(optical axis)X依序排列构成如图1所示;取像时,光线是先经过第一透镜件L1、第二透镜件L2与第三透镜件L3后,再经过红外线滤光片4而成像在影像传感器(image sensing chip)5的感测面51上如图2所示。又本实用新型取像镜头设一前置光圈,其孔径光阑(aperturestop)13是设在第一透镜件L1的物侧凸面(convex object-side surface)11上如图1、2所示。Referring to Figs. 1 and 2, which are respectively a schematic structural view and a schematic view of the optical path of the first embodiment of the present invention, the three-mirror optical imaging lens (optical imaging lens) of the present invention, in order from the object side (in order from the object side) includes: a positive diopter first lens element (a first lens element of positiverefractive power) L1 is located on the object side (on the object side), which is a crescent-shaped aspheric lens, and its convex surface 11 is on the Object side, and its concave surface 12 is on the image side (on the image side), and its convex surface 11 and concave surface 12 have at least one aspheric surface; a second lens element of negative diopter (a second lens element of negativerefractive power) L2 Located between the first lens element L1 and the third lens element L3, it is a crescent-shaped aspheric lens, and its convex surface 21 is on the image side, and at least one side of its convex surface 21 and concave surface 22 is an aspherical surface; a negative The third lens element of diopter (a third lens element of negative refractive power) is an M-shaped aspheric lens, and its object side and image side are both M-shaped, and its central surface on the optical axis can be a convex surface or a concave surface; an infrared filter (IR cut-off filter) 4; and an image sensor (image sensing chip) 5; and are arranged sequentially on the same optical axis (optical axis) X as shown in Figure 1; At this time, the light first passes through the first lens element L1, the second lens element L2 and the third lens element L3, and then passes through the infrared filter 4 to be imaged on the sensing surface 51 of the image sensor (image sensing chip) 5 as shown in FIG. Figure 2 shows. The utility model image pickup lens is provided with a front aperture, and its aperture stop (aperture stop) 13 is located on the object side convex surface (convex object-side surface) 11 of the first lens element L1 as shown in Figures 1 and 2.

并且本实用新型三透镜式光学取像镜头满足以下条件(the following conditionsare satisfied):And the utility model three-lens type optical imaging lens satisfies the following conditions (the following conditions are satisfied):

0.4f≤d<0.9f;0.4f≤d<0.9f;

0.3<|R1/R2|<0.6;0.3<|R1/R2|<0.6;

2.8≤Fno<3.6;2.8≤Fno<3.6;

0.2<br/f<0.4;0.2<br/f<0.4;

0.5<f1/f<1;与0.5<f1/f<1; and

-4.0<f3/f<-1.1;-4.0<f3/f<-1.1;

其中,f为本取像镜头(系统)的有效焦距,d为第一透镜件物侧面至第三透镜像侧面的距离,R1为第一透镜件物侧面的曲率半径,R2为第一透镜件像侧面的曲率半径,Fno为本取像镜头(系统)的焦数,br为本取像镜头(系统)的后焦距,f1为第一透镜件的有效焦距,f3为第三透镜件的有效焦距;凭借上述结构,可有效校消像差与降低主光线角度,使本实用新型取像镜头具有高分辨率而又能有效缩小镜头长度,使取像镜头具有较小体积与较低成本,而提升取像镜头的应用性。Wherein, f is the effective focal length of the imaging lens (system), d is the distance from the object side of the first lens element to the image side of the third lens, R1 is the radius of curvature of the object side of the first lens element, and R2 is the first lens element The radius of curvature of the side of the image, Fno is the focal number of the imaging lens (system), br is the back focal length of the imaging lens (system), f1 is the effective focal length of the first lens element, and f3 is the effective focal length of the third lens element Focal length: By virtue of the above structure, the aberration can be effectively corrected and the chief ray angle can be reduced, so that the imaging lens of the utility model has high resolution and can effectively reduce the length of the lens, so that the imaging lens has a smaller volume and lower cost, And improve the applicability of the imaging lens.

现列举几个较佳实施例,并分别说明如下:Now enumerate several preferred embodiments, and explain as follows respectively:

<第一实施例><First embodiment>

请参考图1至图7所示,其分别是第一实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to Fig. 1 to Fig. 7, which are respectively the schematic structural diagram of the first embodiment, the schematic diagram of the optical path, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (actual image height 0, 0.575, 1.15, 1.725, 2.3mm) corresponding to 0 to 160LP/mm spatial frequency (spatial frequency) generated modulation transfer function (modulation transfer function) diagram, and the relative illumination (relative illumination) diagram generated by the zero field of view corresponding to the full field of view.

下列表(一)中分别列有第一实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the objectside of the first embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.

表(一)Table I)

  Surf#光学面号码Surf# optical surface number   Type型态type type   R曲率半径R radius of curvature   D间距D spacing 镜片材质Lens material   物体(OBJ)Object (OBJ)   STANDARDSTANDARD   ∞   ∞   1(STO)孔径光阑(L1的凸面11)1 (STO) aperture stop (convex 11 of L1)   EVENA SPH非球面EVENA SPH aspherical surface 1.0458661.045866 0.62541720.6254172 APL5014DPAPL5014DP   2(L1的凹面12)2 (Concave 12 of L1)   EVENA SPH非球面EVENA SPH aspherical surface 2.8564722.856472 0.3330.333   3(L2的凹面22)3 (Concave 22 of L2)   EVENA SPH非球面EVENA SPH aspherical surface -1.211588-1.211588 0.30.3 PC-AD5503PC-AD5503   4(L2的凸面21)4 (convex 21 of L2)   EVENAS PH非球面EVENAS PH aspherical surface -1.567001-1.567001 0.710.71   5(L3的物侧面)5 (object side of L3)   EVENASPH非球面EVENASPH aspherical surface 7.4281937.428193 0.6350.635 APL5014DPAPL5014DP   6(L3的像侧面)6 (image side of L3)   EVENASPH非球面EVENASPH aspherical surface 3.6526513.652651 0.30.3   7红外线滤光片的物侧面7 The object side of the infrared filter   STANDARDSTANDARD   ∞ 0.30.3 BK7BK7   8红外线滤光片的像侧面8 The image side of the infrared filter   STANDARDSTANDARD   ∞ 0.68950.6895   影像传感器的感测面(IMG)Sensing surface of the image sensor (IMG) STANDARDSTANDARD

下列表(二)列有各光学面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each optical surface:

表(二)Table II)

  ConicKConicK   CoeffonACoeffonA   CoeffonBCoeffon B   CoeffonCCoeffonC   CoeffonDCoeffonD   CoeffonECoeffonE   CoeffonFCoeffonF   0.29205920.2920592   0.0870640490.087064049   -0.53200801-0.53200801   -2.0272798-2.0272798   3.11465923.1146592   -0.20910606-0.20910606   -2.7558402-2.7558402   -10.3516-10.3516   -0.16571862-0.16571862   0.746531540.74653154   -5.7031601-5.7031601   13.15212413.152124   -3.1970224-3.1970224   -37.065607-37.065607   00   -0.19424105-0.19424105   2.45418842.4541884   -11.689832-11.689832   31.52333131.523331   -37.98107-37.98107   00   00   0.250644160.25064416   0.30385170.3038517   -0.51127647-0.51127647   -1.7983047-1.7983047   1.10419251.1041925   00   00   -0.1543527-0.1543527   0.0722062380.072206238   -0.017051835-0.017051835   0.002146640.00214664   -5.6296258e-005-5.6296258e-005   00   00   -0.14069475-0.14069475   0.0502151160.050215116   -0.017573297-0.017573297   0.003332730.00333273   -0.00032903218-0.00032903218   00

又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+EH12+Fh14为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient),F为十四阶非球面系数(14th Order A spherical Coefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+EH12+Fh14 is its aspherical surface formula (A spherical Surface Formula), wherein, c is the curvature, h is the height of the lens, K is the cone coefficient (Conic Constant), A is the fourth-order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth-order aspherical coefficient (6 th Order A spherical Coefficient), C is the 8th Order A spherical Coefficient, D is the 10th Order A spherical Coefficient, E is the 12th Order A spherical Coefficient, F is the 14th Order A spherical coefficient (14 th Order A spherical Coefficient).

而第一实施例的第一、二、三透镜件L1、L2、L3的材质都为塑料材质,如分别利用型号APL5014DP、PC-AD5503与APL5014DP的塑料材质,而红外线滤光片4的材质为玻璃材质如型号BK7玻璃材质,其厚度为0.3mm。The materials of the first, second and third lens parts L1, L2 and L3 of the first embodiment are all plastic materials, such as using the plastic materials of models APL5014DP, PC-AD5503 and APL5014DP respectively, and the material of the infrared filter 4 is The glass material is such as model BK7 glass material, and its thickness is 0.3mm.

又镜头系统有效焦距f为3.568mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.603mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.366,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.88,可以满足条件:2.8≤Fno<3.6;而br/f为0.36,可以满足条件:0.2<br/f<0.4;而f1/f为0.756,可以满足条件:0.5<f1/f<1;而f3/f为-3.929,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.568mm, and the distance d between the object-side convex surface 11 of the first lens element L1 and the image side of the third lens element L3 is 2.603mm, which can satisfy the condition: 0.4f≤d<0.9f; According to table (1), it can be known that |R1/R2| is 0.366, which can satisfy the condition: 0.3<|R1/R2|<0.6; and Fno is 2.88, which can satisfy the condition: 2.8≤Fno<3.6; and br/f is 0.36 , can satisfy the condition: 0.2<br/f<0.4; and f1/f is 0.756, can satisfy the condition: 0.5<f1/f<1; and f3/f is -3.929, can satisfy the condition: -4.0<f3/f <-1.1.

而由上述表(一)、表(二)与图1至图7所示,可知第一实施例取像镜头的镜头全长(totallength)为3.89292mm,由此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率且又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,从而提升本实用新型的应用性。And by above-mentioned table (one), table (two) and shown in Fig. 1 to Fig. 7, it can be seen that the total length of the lens (totallength) of the first embodiment imaging lens is 3.89292mm, thus can prove the imaging of the present utility model The lens can effectively correct aberrations and reduce the angle of the chief ray, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model .

<第二实施例><Second Embodiment>

请参考图8至图14所示,其分别是第二实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.675、1.35、2.025、2.7mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.675、1.35、2.025、2.7mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to Fig. 8 to Fig. 14, which are respectively the schematic structural diagram of the second embodiment, the schematic diagram of the optical path, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (actual image height 0, 0.675, 1.35, 2.025, 2.7mm) corresponding to 0 to 160LP/mm spatial frequency (spatial frequency) generated modulation transfer function (modulation transfer function) diagram, and the relative illumination (relative illumination) diagram generated by the zero field of view corresponding to the full field of view.

下列表(一)中分别列有第二实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the object side of the second embodiment, each optical surface type (Type), and each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.

表(一)Table I)

  Surf#光学面号码Surf# optical surface number   Type型态type type   R曲率半径R radius of curvature   D间距D spacing 镜片材质Lens material   物体(OBJ)Object (OBJ)   STANDARDSTANDARD   ∞   ∞   1(STO)孔径光阑(L1的凸面11)1 (STO) aperture stop (convex 11 of L1)   EVENASPH非球面EVENASPH aspherical surface 0.95216540.9521654 0.70.7 APL5014DPAPL5014DP   2(L1的凹面12)2 (Concave 12 of L1)   EVENASPH非球面EVENASPH aspherical surface 1.8683591.868359 0.460.46   3(L2的凹面22)3 (Concave 22 of L2)   EVENASPH非球面EVENASPH aspherical surface -0.8740775-0.8740775 0.330.33 OKP4OKP4   4(L2的凸面21)4 (convex 21 of L2)   EVENASPH非球面EVENASPH aspherical surface -1.178223-1.178223 0.480.48   5(L3的物侧面)5 (object side of L3)   EVENASPH非球面EVENASPH aspherical surface -11.23862-11.23862 0.960.96 APL5014DPAPL5014DP   6(L3的像侧面)6 (image side of L3)   EVENASPH非球面EVENASPH aspherical surface 18.9247818.92478 0.470.47   7红外线滤光片的物侧面7 The object side of the infrared filter   S TANDARDS TANDARD   ∞ 0.1450.145 BK7BK7   8红外线滤光片的像侧面8 The image side of the infrared filter   STANDARDSTANDARD   ∞ 0.68525770.6852577   影像传感器的感测面(IMG)Sensing surface of the image sensor (IMG)   STANDARDSTANDARD   ∞

下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:

表(二)Table II)

  ConicKConicK   CoeffonACoeffonA   CoeffonBCoeffon B   CoeffonCCoeffonC   CoeffonDCoeffonD   CoeffonECoeffonE   1.23884731.2388473   0.107569790.10756979   -0.25703696-0.25703696   2.54852532.5485253   -2.9346596-2.9346596   2.73263322.7326332   8.7645038.764503   0.0688922890.068892289   0.969711120.96971112   -6.1227955-6.1227955   17.5691617.56916   -20.81957-20.81957   -0.3800384-0.3800384   0.174435270.17443527   1.14308281.1430828   -1.3541767-1.3541767   4.15988774.1598877   -12.997629-12.997629   -0.512312-0.512312   0.25739690.2573969   0.405755520.40575552   -0.65066411-0.65066411   0.218570350.21857035   0.0443417570.044341757   00   -0.047939702-0.047939702   -0.011027204-0.011027204   0.0014044730.001404473   -9.55247e-005-9.55247e-005   00   -8.75739e+016-8.75739e+016   -0.035433299-0.035433299   0.00426595810.0042659581   0.000379983730.00037998373   -0.000121579-0.000121579   00

又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 is its aspherical surface formula (A spherical Surface Formula), where c is the curvature , h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth order aspherical coefficient (6 th Order A spherical Coefficient), C is The eighth-order aspherical coefficient (8 th Order A spherical Coefficient), D is the tenth-order aspheric coefficient (10 th Order A spherical Coefficient), and E is the twelfth-order aspherical coefficient (12 th Order A spherical Coefficient).

而第二实施例的第一、二、三透镜件L1、L2、L3的材质可分别利用型号APL5014DP、OKP4与APL5014DP的塑料材质,而红外线滤光片4的材质可利用型号BK7的玻璃材质,其厚度为0.145mm。The materials of the first, second, and third lens elements L1, L2, and L3 of the second embodiment can respectively use the plastic materials of models APL5014DP, OKP4, and APL5014DP, and the material of the infrared filter 4 can use the glass material of model BK7. Its thickness is 0.145mm.

又镜头系统有效焦距f为4.45408mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.93mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.51,可以满足条件:0.3<|R1/R2|<0.6;而Fno为3.5,可以满足条件:2.8≤Fno<3.6;而br/f为0.295,可以满足条件:0.2<br/f<0.4;而f1/f为0.634,可以满足条件:0.5<f1/f<1;而f3/f为-2.888,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 4.45408mm, and the distance d between the object-side convex surface 11 of the first lens element L1 and the image side of the third lens element L3 is 2.93mm, which can satisfy the condition: 0.4f≤d<0.9f; According to table (1), it can be seen that: |R1/R2| is 0.51, which can satisfy the condition: 0.3<|R1/R2|<0.6; and Fno is 3.5, which can satisfy the condition: 2.8≤Fno<3.6; and br/f is 0.295 , can satisfy the condition: 0.2<br/f<0.4; while f1/f is 0.634, can satisfy the condition: 0.5<f1/f<1; and f3/f is -2.888, can satisfy the condition: -4.0<f3/f <-1.1.

而由上述表(一)、表(二)与图8至图14所示,可知第二实施例取像镜头的镜头全长(totallength)为4.23026mm,如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。And shown in above-mentioned table (1), table (2) and Fig. 8 to Fig. 14, it can be seen that the total length of the lens (total length) of the imaging lens of the second embodiment is 4.23026 mm, so it can be proved that the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.

<第三实施例><Third embodiment>

请参考图15至图21所示,其分别是第三实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to FIG. 15 to FIG. 21, which are respectively the structural schematic diagram, the optical path schematic diagram, and the lateral light fan diagrams of five different fields of view (actual image heights of 0, 0.575, 1.15, 1.725, and 2.3 mm) of the third embodiment ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (actual image height 0, 0.575, 1.15, 1.725, 2.3mm) corresponding to 0 to 200LP/mm spatial frequency (spatial frequency) generated modulation transfer function (modulation transfer function) diagram, and the relative illumination (relative illumination) diagram generated by the zero field of view corresponding to the full field of view.

下列表(一)中分别列有第三实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the object side of the third embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.

表(一)Table I)

  Surf#光学面号码Surf# optical surface number   Type型态type type   R曲率半径R radius of curvature   D间距D spacing 镜片材质Lens material   物体(OBJ)Object (OBJ)   STANDARDSTANDARD   ∞   ∞   1(STO)孔径光阑(L1的凸面11)1 (STO) aperture stop (convex 11 of L1)   EVENASPH非球面EVENASPH aspherical surface 1.1145411.114541 0.660.66 L-BAL42L-BAL42 (L1的凹面12)(concave surface 12 of L1)   EVENASPH非球面EVENASPH aspherical surface 2.9356032.935603 0.3330.333 (L2的凹面22)(concave surface 22 of L2)   EVENASPH非球面EVENASPH aspherical surface -1.211588-1.211588 0.30.3 PC-AD5503PC-AD5503   4(L2的凸面21)4 (convex 21 of L2)   EVENAS PH非球面EVENAS PH aspherical surface -1.567001-1.567001 0.710.71   5(L3的物侧面)5 (object side of L3)   EVENAS PH非球面EVENAS PH aspherical surface 7.4281937.428193 0.6350.635 APL5014DPAPL5014DP   6(L3的像侧面)6 (image side of L3)   EVENAS PH非球面EVENAS PH aspherical surface 3.6526513.652651 0.30.3   7红外线滤光片的物侧面7 The object side of the infrared filter   STANDARDSTANDARD   ∞ 0.30.3 BK7BK7   8红外线滤光片的像侧面8 The image side of the infrared filter   STANDARDSTANDARD   ∞ 0.6630.663   影像传感器的感测面(IMG)Sensing surface of the image sensor (IMG)   STANDARDSTANDARD   ∞

下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:

表(二)Table II)

又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 is its aspherical surface formula (A spherical Surface Formula), where c is the curvature , h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth order aspherical coefficient (6 th Order A spherical Coefficient), C is The eighth-order aspherical coefficient (8 th Order A spherical Coefficient), D is the tenth-order aspheric coefficient (10 th Order A spherical Coefficient), and E is the twelfth-order aspherical coefficient (12 th Order A spherical Coefficient).

而第三实施例的第一透镜件L1的材质可利用型号L-BAL42的模造玻璃材质,而第二、三透镜件L2、L3的材质可分别利用型号PC-AD5503与APL5014DP的塑料材质,而红外线滤光片4的材质为型号BK7的玻璃材质,其厚度为0.3mm。The material of the first lens element L1 of the third embodiment can use the molded glass material of the model L-BAL42, and the materials of the second and third lens elements L2 and L3 can respectively use the plastic material of the model PC-AD5503 and APL5014DP, and The material of the infrared filter 4 is glass material of model BK7, and its thickness is 0.3 mm.

  ConickConick   CoeffonACoeffonA   CoeffonBCoeffon B   CoeffonCCoeffonC   CoeffonDCoeffonD   CoeffonECoeffonE   00   -1.02671936-1.02671936   -0.068884-0.068884   0.249553380.24955338   -0.23824146-0.23824146   0.0115410930.011541093   00   0.0397065760.039706576   1.624372991.62437299   2.85820532.8582053   -5.1534801-5.1534801   00   00   -0.19424105-0.19424105   2.45418842.4541884   11.68983211.689832   31.52333131.523331   -37.98107-37.98107   00   0.120644160.12064416   0.30385170.3038517   0.911276470.91127647   -1.7983047-1.7983047   1.10419251.1041925   00   0.45433270.4543327   0.0722062380.072206238   -0.017051835-0.017051835   0.002146640.00214664   -5.6296258e-005-5.6296258e-005   00   -0.14069475-0.14069475   0.1502151160.150215116   -0.017573297-0.017573297   0.003332730.00333273   -0.00032903218-0.00032903218

又镜头系统有效焦距f为3.60562mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.638mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.38,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.88,可以满足条件:2.8≤Fno<3.6;而br/f为0.349,可以满足条件:0.2<br/f<0.4;而f1/f为0.755,可以满足条件:0.5<f1/f<1,而f3/f为-3.872,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.60562mm, and the distance d between the object-side convex surface 11 of the first lens element L1 and the image side of the third lens element L3 is 2.638mm, which can satisfy the condition: 0.4f≤d<0.9f; According to table (1), it can be known that |R1/R2| is 0.38, which can satisfy the condition: 0.3<|R1/R2|<0.6; and Fno is 2.88, which can satisfy the condition: 2.8≤Fno<3.6; and br/f is 0.349 , can satisfy the condition: 0.2<br/f<0.4; and f1/f is 0.755, can satisfy the condition: 0.5<f1/f<1, and f3/f is -3.872, can satisfy the condition: -4.0<f3/f <-1.1.

而由上述表(一)、表(二)与图15至图21所示,可知本实用新型取像镜头的镜头全长(totallength)为3.901mm,且如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。And shown in above-mentioned table (1), table (2) and Fig. 15 to Fig. 21, can know that the total length of lens (totallength) of the imaging lens of the present utility model is 3.901mm, and so can prove the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.

<第四实施例><Fourth Embodiment>

请参考图22至图28所示,其分别是第四实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to FIG. 22 to FIG. 28, which are respectively the structural schematic diagram of the fourth embodiment, the optical path schematic diagram, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (actual image height 0, 0.575, 1.15, 1.725, 2.3mm) corresponding to 0 to 200LP/mm spatial frequency (spatial frequency) generated modulation transfer function (modulation transfer function) diagram, and the relative illumination (relative illumination) diagram generated by the zero field of view corresponding to the full field of view.

下列表(一)中分别列有第四实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the objectside of the fourth embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.

表(一)Table I)

  Surf#光学面号码Surf# optical surface number   Type型态type type   R曲率半径R radius of curvature   D间距D spacing 镜片材质Lens material   物体(OBJ)Object (OBJ)   STANDARDSTANDARD   ∞   ∞   1(STO)孔径光阑(L1的凸面11)1 (STO) aperture stop (convex 11 of L1)   EVENASPH非球面EVENASPH aspherical surface 1.1317391.131739 0.6598220.659822 L-BAL42L-BAL42 (L1的凹面12)(concave surface 12 of L1)   EVENASPH非球面EVENASPH aspherical surface 2.9807812.980781 0.3628010.362801   3(L2的凹面22)3 (Concave 22 of L2)   EVENASPH非球面EVENASPH aspherical surface -1.147414-1.147414 0.3127040.312704 PC-AD5503PC-AD5503   4(L2的凸面21)4 (convex 21 of L2)   EVENASPH非球面EVENASPH aspherical surface -1.402019-1.402019 0.7802970.780297   5(L3的物侧面)5 (object side of L3)   EVENASPH非球面EVENASPH aspherical surface 9.3447219.344721 0.6702060.670206 E48RE48R   6(L3的像侧面)6 (image side of L3)   EVENASPH非球面EVENASPH aspherical surface 3.2425213.242521 0.2954250.295425   7红外线滤光片的物侧面7 The object side of the infrared filter   STANDARDSTANDARD   ∞   0.30.3   BK7BK7   8红外线滤光片的像侧面8 The image side of the infrared filter   STANDARDSTANDARD   ∞   0.4920000.492000   影像传感器的感测面(IMG)Sensing surface of the image sensor (IMG)   STANDARDSTANDARD   ∞

下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:

表(二)Table II)

  ConicKConicK   CoeffonACoeffonA   CoeffonBCoeffon B   CoeffonCoeffon   CoeffonDCoeffonD   CoeffonCoeffon   CoeffonFCoeffonF   CoeffonGFCoeff on GF   00   00143490014349   0.0723060.072306   1.6041281.604128   2.1501792.150179   -3165406-3165406   1.3266871.326687   00   00   00250490025049   -0.177248-0.177248   0.6590860.659086   -1.470068-1.470068   -2261540-2261540   -0.430519-0.430519   00   00   -0.325856-0.325856   31411263141126   -17244902-17244902   5693516256935162   101.980482101.980482   81.54345081.543450   -46.417413-46.417413   00   0.0674500.067450   -0.270228-0.270228   0.8745340.874534   1.2921961.292196   0.9952640.995264   -0.873310-0.873310   0.5575830.557583   -1088.132364-1088.132364   -0.155882-0.155882   00889060088906   -0029565-0029565   00012900001290   0.0014390.001439   0.0007330.000733   -0000313-0000313   -20.667084-20.667084   -0.116499-0.116499   0.0439990.043999   -0.016342-0.016342   00028510002851   -0000250-0000250   -0.000051-0.000051   0.0000140.000014

又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16为其非球面方程式Again, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 is its aspheric equation

(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A spherical Coefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10th Order A sphericalCoefficient),E为十二阶的非球面系数(12th Order A spherical Coefficient),F为十四阶的非球面系数(14th OrderAspherical Coefficient),G为十六阶的非球面系数(14th Order A spherical Coefficient)。(A spherical Surface Formula), where, c is the curvature, h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth-order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth-order aspherical coefficient Spherical Coefficient (6 th Order A spherical Coefficient), C is the 8th Order A spherical Coefficient , D is the 10th Order A spherical Coefficient, E is the 12th Order A spherical Coefficient Spherical Coefficient (12 th Order A spherical Coefficient), F is the 14th Order Aspherical Coefficient (14 th Order Aspherical Coefficient), G is the 16th Order A spherical Coefficient (14 th Order A spherical Coefficient).

而第四实施例的第一透镜件L1的材质可利用型号L-BAL42的模造玻璃材质,而第二、三透镜件L2、L3的材质可分别利用型号PC-AD5503与E48R的塑料材质,而红外线滤光片4的材质可利用型号BK7的玻璃材质,其厚度为0.3mm。The material of the first lens element L1 of the fourth embodiment can use the molded glass material of the model L-BAL42, and the materials of the second and third lens elements L2 and L3 can respectively use the plastic material of the model PC-AD5503 and E48R, and The material of the infrared filter 4 can utilize the glass material of model BK7, and its thickness is 0.3mm.

又镜头系统有效焦距f为3.56392mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.78583mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.379679,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.8,可以满足条件:2.8≤Fno<3.6;而br为1.087425mm,br/f为0.305120,可以满足条件:0.2<br/f<0.4;而f1为2.745667mm,f1/f为0.770405,可以满足条件:0.5<f1/f<1,而f3为-9.739370mm,f3/f为-2.732769,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.56392mm, and the distance d between the object-side convex surface 11 of the first lens element L1 and the image side of the third lens element L3 is 2.78583mm, which can satisfy the condition: 0.4f≤d<0.9f; According to table (1), it can be known that |R1/R2| is 0.379679, which can satisfy the condition: 0.3<|R1/R2|<0.6; and Fno is 2.8, which can satisfy the condition: 2.8≤Fno<3.6; and br is 1.087425mm, br/f is 0.305120, which can satisfy the condition: 0.2<br/f<0.4; while f1 is 2.745667mm, f1/f is 0.770405, and can satisfy the condition: 0.5<f1/f<1, while f3 is -9.739370mm, f3 /f is -2.732769, which can satisfy the condition: -4.0<f3/f<-1.1.

而由上述表(一)、表(二)与图22至图28所示,可知本实用新型取像镜头的镜头全长(totallength)为3.873mm,且如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。From the above table (1), table (2) and shown in Figure 22 to Figure 28, it can be seen that the total length of the imaging lens of the present utility model is 3.873mm, and this can prove that the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.

以上所示仅为本新型的较佳实施例,对本新型而言仅是说明性的,而非限制性的。本专业技术人员理解,在本新型权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效变更,但都将落入本新型的保护范围内。What is shown above is only a preferred embodiment of the present invention, and is only illustrative, not restrictive, of the present invention. Those skilled in the art understand that many changes, modifications, and even equivalent changes can be made within the spirit and scope defined by the claims of the present invention, but all will fall within the protection scope of the present invention.

Claims (11)

1.一种三镜片式光学取像镜头,其特征在于:其沿着同一光轴且由物侧依序包含:1. A three-mirror optical imaging lens, characterized in that: it includes along the same optical axis and from the object side in sequence: 一正屈光度的第一透镜件,为一新月型非球面透镜,且其凸面是在物侧;A first positive diopter lens element, which is a crescent-type aspheric lens, and its convex surface is on the object side; 一负屈光度的第二透镜件,为一新月型非球面透镜,且其凸面是在像侧;a negative diopter second lens element, which is a crescent-type aspheric lens, and its convex surface is on the image side; 一负屈光度的第三透镜件,为一M字型非球面透镜,且其物侧面与像侧面都为M字型,而其在光轴的中央面可为凸面或凹面;A third lens element with a negative diopter is an M-shaped aspheric lens, and its object side and image side are both M-shaped, and its central surface on the optical axis can be convex or concave; 一红外线滤光片;与an infrared filter; and 一影像传感器;an image sensor; 其中,满足以下条件:Among them, the following conditions are met: 0.4f≤d<0.9f;0.4f≤d<0.9f; 0.3<|R1/R2|<0.6;0.3<|R1/R2|<0.6; 2.8≤Fno<3.6;2.8≤Fno<3.6; 0.2<br/f<0.4;0.2<br/f<0.4; 0.5<f1/f<1;0.5<f1/f<1; -4.0<f3/f<-1.1;-4.0<f3/f<-1.1; 其中,f为本取像镜头系统的有效焦距,d为第一透镜件物侧面至第三透镜件像侧面的距离,R1为第一透镜件物侧面的曲率半径,R2为第一透镜件像侧面的曲率半径,Fno为本取像镜头系统的焦数,br为本取像镜头系统的后焦距,f1为第一透镜件的有效焦距,与f3为第三透镜件的有效焦距。Wherein, f is the effective focal length of the imaging lens system, d is the distance from the object side of the first lens element to the image side of the third lens element, R1 is the radius of curvature of the object side of the first lens element, and R2 is the image of the first lens element The radius of curvature of the side surface, Fno is the focal number of the imaging lens system, br is the back focal length of the imaging lens system, f1 is the effective focal length of the first lens element, and f3 is the effective focal length of the third lens element. 2.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的新月型第一透镜件的凸面与凹面至少有一面为非球面。2 . The three-element optical imaging lens according to claim 1 , wherein at least one of the convex and concave surfaces of the crescent-shaped first lens element is aspherical. 3 . 3.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的新月型第二透镜件的凸面与凹面至少有一面为非球面。3 . The three-element optical imaging lens according to claim 1 , wherein at least one of the convex and concave surfaces of the crescent-shaped second lens element is aspherical. 4 . 4.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的M字型第三透镜件的物侧面与像侧面至少有一面为非球面。4. The three-element optical imaging lens according to claim 1, wherein at least one of the object side and the image side of the M-shaped third lens element is an aspheric surface. 5.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的取像镜头是设置一前置光圈。5. The three-element optical imaging lens according to claim 1, characterized in that: said imaging lens is provided with a front aperture. 6.根据权利要求5所述三透镜式光学取像镜头,其特征在于:所述的光学取像镜头的孔径光阑是位于第一透镜件的物侧凸面上。6. The three-lens optical imaging lens according to claim 5, wherein the aperture stop of the optical imaging lens is located on the object-side convex surface of the first lens element. 7.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的第一、二、三透镜件是分别利用塑料材质制成,而所述的红外线滤光片是利用玻璃材质制成且其厚度为0.3mm。7. The three-mirror optical imaging lens according to claim 1, characterized in that: the first, second and third lens parts are made of plastic material respectively, and the infrared filter is made of glass material and its thickness is 0.3mm. 8.根据权利要求7所述三镜片式光学取像镜头,其特征在于:所述的第一、二、三透镜件是分别利用型号APL5014DP、PC-AD5503与APL5014DP的塑料材质制成,而红外线滤光片是利用型号BK7的玻璃材质制成。8. According to claim 7, the three-mirror optical imaging lens is characterized in that: the first, second and third lens parts are respectively made of plastic materials of models APL5014DP, PC-AD5503 and APL5014DP, and the infrared rays The filter is made of glass material of model BK7. 9.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的第一、二、三透镜件是分别利用塑料材质制成,而红外线滤光片是利用玻璃材质制成且其厚度为0.145mm。9. The three-mirror optical imaging lens according to claim 1, characterized in that: the first, second and third lens parts are made of plastic material respectively, and the infrared filter is made of glass material And its thickness is 0.145mm. 10.根据权利要求9所述三镜片式光学取像镜头,其特征在于:所述的第一、二、三透镜件是分别利用型号APL5014DP、OKP4与APL5014DP的塑料材质制成,而红外线滤光片是利用型号BK7的玻璃材质制成。10. The three-mirror optical imaging lens according to claim 9, characterized in that: the first, second and third lens parts are made of plastic materials of models APL5014DP, OKP4 and APL5014DP respectively, and the infrared filter The sheet is made of glass material of type BK7. 11.根据权利要求1所述三镜片式光学取像镜头,其特征在于:所述的第一透镜件是利用模造玻璃材质制成,而第二、三透镜件是分别利用塑料材质制成,而红外线滤光片是利用玻璃材质制成且其厚度为0.3mm。11. The three-element optical imaging lens according to claim 1, wherein the first lens element is made of molded glass material, and the second and third lens elements are respectively made of plastic material, The infrared filter is made of glass material and its thickness is 0.3mm.
CNU200620175613XU 2006-12-26 2006-12-26 Three-lens type optical image capturing lens Expired - Fee Related CN201054035Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU200620175613XU CN201054035Y (en) 2006-12-26 2006-12-26 Three-lens type optical image capturing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU200620175613XU CN201054035Y (en) 2006-12-26 2006-12-26 Three-lens type optical image capturing lens

Publications (1)

Publication Number Publication Date
CN201054035Y true CN201054035Y (en) 2008-04-30

Family

ID=39393697

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU200620175613XU Expired - Fee Related CN201054035Y (en) 2006-12-26 2006-12-26 Three-lens type optical image capturing lens

Country Status (1)

Country Link
CN (1) CN201054035Y (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520542B (en) * 2008-02-27 2011-02-16 一品光学工业股份有限公司 Optical imaging lens
CN102193168A (en) * 2010-03-04 2011-09-21 大立光电股份有限公司 Photographic lens system
CN105093492A (en) * 2014-05-22 2015-11-25 宁波舜宇光电信息有限公司 Shooting optical lens assembly and iris shooting module group
CN106483624A (en) * 2015-08-28 2017-03-08 今国光学工业股份有限公司 Three-piece lens module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520542B (en) * 2008-02-27 2011-02-16 一品光学工业股份有限公司 Optical imaging lens
CN102193168A (en) * 2010-03-04 2011-09-21 大立光电股份有限公司 Photographic lens system
CN102193168B (en) * 2010-03-04 2012-08-29 大立光电股份有限公司 Photographic lens system
CN105093492A (en) * 2014-05-22 2015-11-25 宁波舜宇光电信息有限公司 Shooting optical lens assembly and iris shooting module group
CN105093492B (en) * 2014-05-22 2018-06-26 宁波舜宇光电信息有限公司 A kind of camera optical microscope group and iris camera module
US11361591B2 (en) 2014-05-22 2022-06-14 Ningbo Sunny Opotech Co., Ltd. Iris recognition device, manufacturing method therefor and application thereof
US11668912B2 (en) 2014-05-22 2023-06-06 Ningbo Sunny Opotech Co., Ltd. Iris recognition device, manufacturing method therefor and application thereof
CN106483624A (en) * 2015-08-28 2017-03-08 今国光学工业股份有限公司 Three-piece lens module

Similar Documents

Publication Publication Date Title
CN102981247B (en) Image lens group
CN102749788B (en) Image acquisition system
CN102621671B (en) Lens system
CN104656229B (en) Six-piece optical image capturing lens and six-piece optical image capturing module
CN108363169B (en) Image pickup optical lens
CN105319677B (en) Six chip imaging lens groups
CN103592746A (en) Image lens system set
CN201903684U (en) Optical imaging lens group
JP2012014139A (en) Three-piece optical pickup lens
CN201035206Y (en) Two-lens type optical image capturing lens
CN106125255A (en) Pick-up lens
CN104516089A (en) Optical image capturing lens and optical image capturing module
CN107797242B (en) Image pickup optical lens
CN104793319A (en) Five-piece imaging lens group
CN103246045B (en) Photographic Lens System
US7460314B2 (en) Three-piece type optical lens
CN102466866B (en) Optical camera lens group
CN104199172B (en) Image taking shot
CN201054035Y (en) Three-lens type optical image capturing lens
CN101520542B (en) Optical imaging lens
CN101833161B (en) Imaging lens
CN101750716B (en) Imaging camera lens
CN108627954B (en) A camera lens group
CN201054036Y (en) Two-element optical imaging lens
CN110045490A (en) A kind of imaging lens

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080430

Termination date: 20121226