CN201054035Y - Three-lens type optical image capturing lens - Google Patents
Three-lens type optical image capturing lens Download PDFInfo
- Publication number
- CN201054035Y CN201054035Y CNU200620175613XU CN200620175613U CN201054035Y CN 201054035 Y CN201054035 Y CN 201054035Y CN U200620175613X U CNU200620175613X U CN U200620175613XU CN 200620175613 U CN200620175613 U CN 200620175613U CN 201054035 Y CN201054035 Y CN 201054035Y
- Authority
- CN
- China
- Prior art keywords
- lens
- imaging lens
- lens element
- optical imaging
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 48
- 238000003384 imaging method Methods 0.000 claims abstract description 62
- 239000000463 material Substances 0.000 claims description 42
- 238000012634 optical imaging Methods 0.000 claims description 25
- 239000011521 glass Substances 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 52
- 238000012546 transfer Methods 0.000 description 16
- 238000005286 illumination Methods 0.000 description 15
- 230000004075 alteration Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000005337 ground glass Substances 0.000 description 3
- 102220616555 S-phase kinase-associated protein 2_E48R_mutation Human genes 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Lenses (AREA)
Abstract
Description
技术领域 technical field
本实用新型是有关一种三镜片式光学取像镜头(optical imaging lens),主要是针对手机镜头或使用CCD(电荷藕合装置)或CMOS(互补型金属氧化物半导体)等影像传感器的镜头,而提供的一种由三片透镜(lens elements)构成的光学取像镜头。The utility model relates to a three-mirror optical imaging lens (optical imaging lens), which is mainly aimed at mobile phone lenses or lenses using image sensors such as CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor), Provided is an optical imaging lens consisting of three lens elements.
背景技术 Background technique
随着科技的进步,电子产品不断地朝向轻薄短小以及多功能的方向发展,而电子产品中如:数字相机(Digital Still Camera)、计算机相机(PC camera)、网络相机(Network camera)、手机等已具备取像装置(镜头)的外,甚至个人数字辅助器(PDA)等装置也有加上取像装置(镜头)的需求;而为了携带方便与符合人性化的需求,取像装置不仅需要具有良好的成像质量,同时也需要有较小的体积与较低的成本,这样才能够有效提升所述的取像装置的应用性,尤其是应用在手机上,上述需要或条件则更为重要。With the advancement of technology, electronic products are constantly developing towards the direction of thin, light, small and multi-functional, and electronic products such as: digital camera (Digital Still Camera), computer camera (PC camera), network camera (Network camera), mobile phone, etc. In addition to already having an imaging device (lens), even personal digital assistants (PDAs) and other devices also have the need to add an imaging device (lens); and in order to be portable and meet the needs of humanization, the imaging device not only needs to have Good imaging quality also requires smaller volume and lower cost, so that the applicability of the imaging device can be effectively improved, especially for mobile phones, the above requirements or conditions are even more important.
而由于传统的球面研磨玻璃透镜的材质选择性较多,且对于修正色差较为有利,现已广为业界所使用,但球面研磨玻璃透镜应用在焦数(F number)较小以及视场角(field angle)较大的情况时,球差与像散等像差的修正仍然比较困难;而为了克服上述传统的球面研磨玻璃透镜的缺点,目前的取像装置已有使用非球面塑料透镜或使用非球面模造玻璃透镜,以获得较佳的成像质量,如美国发明专利:US6,795,253、US6,961,191、US6,441,971、Pub.No.US2004/0061953A1、Pub.No.US2004/0190158A1、Pub.No.US2004/0190162A1、Pub.No.US2004/023 1823A1、Pub.No.US2005/0231822A1,或如日本发明专利:特许第3567327号、特许第3717488号、特许第3768509号、特许第3816095号、特许公开2005-084404号、特许公开2006-047858号、特许公开2005-309210号、特许公开2005-227755号、特许公开2005-345919号、特许公开2005-292235号、特许公开2004-004566号、特许公开2005-338234号等多件包含三镜片组(lenscomponents)/三镜片(lens elements)的光学取像镜头结构设计;而上述多件发明专利的结构设计基本上都包含,由物侧依序(in order from the object side):第一、二、三等三镜片组(lens components)/镜片(lens elements),至于上述多件发明专利相互之间的差异处或技术特征则决定在以下各种因素的变化或组合而已:各件专利中所述的三镜片组/镜片之间对应配合的形状设计不同,如第一、二、三等三镜片组/镜片都为新月型(meniscus shape)透镜,或第一、二镜片组/镜片为新月型而第三镜片组/镜片为平凹型(plan o-concave shape)或平凸型(plan o-convexshape);与/或各件专利中所述的三镜片组/镜片之间对应配合的凸面/凹面方向不同,如第一/二/三等三镜片组/镜片的凸面/凹面可安排在物侧/像侧等多种变化组合;与/或各件专利中所述的三镜片组/镜片之间对应配合的屈光度(refractivepower)正/负不同,如第一、二、三等三镜片组/镜片的屈光度依序为正、负、正或正、正、负等不同变化组合;与/或各件专利中所述的三镜片组/镜片之间的相关光学数据,如f(取像镜头系统的有效焦距)、d(第一透镜件物侧面至第三透镜像侧面的距离)、R1(第一透镜件物侧面的曲率半径)、R2(第一透镜件像侧面的曲率半径),Fno(取像镜头系统的焦数)、br(取像镜头系统的后焦距)、f1(第一透镜件的有效焦距)、f3(第三透镜件的有效焦距)等,分别满足的条件不同,如0.8<f1/f<2.0,0.5<(|R2|-R1)/(R1+|R2|),与1.5<f3/f<3.0等参考日本特许第3717488号;由上可知,就一三镜片组/镜片的光学取像镜头的设计而论,其设计技术在光学取像镜头技术领域内并不特别困难,甚至可视为现有技术,而只要能在上述各种因素中研究出不同的变化或组合,即可视为具有新颖性(novelty)或进步性(inventive step),即可申请并被授权为一件专利。然而,上述的光学取像镜头的全长仍然过大,使取像镜头无法具有较小体积或较低成本,并且像差的校正消除或主光线角度的降低也不甚理想,不易满足电子产品力求轻薄短小且高性能的要求,相对的也限制了取像镜头的应用性,尤其无法简便地应用在手机上。Since the traditional spherical ground glass lens has more material options and is more beneficial for correcting chromatic aberration, it has been widely used in the industry. However, the spherical ground glass lens is used when the focal number (F number) is small and the field of view ( field angle) is relatively large, it is still difficult to correct aberrations such as spherical aberration and astigmatism; and in order to overcome the above-mentioned shortcomings of the traditional spherical ground glass lens, the current imaging device has used an aspheric plastic lens or used Aspherical molded glass lens to obtain better imaging quality, such as US invention patents: US6,795,253, US6,961,191, US6,441,971, Pub.No.US2004/0061953A1, Pub.No.US2004/0190158A1, Pub.No .US2004/0190162A1, Pub.No.US2004/023 1823A1, Pub.No.US2005/0231822A1, or Japanese invention patents: Patent No. 3567327, Patent No. 3717488, Patent No. 3768509, Patent No. 3816095, Patent Publication Patent Publication No. 2005-084404, Patent Publication No. 2006-047858, Patent Publication No. 2005-309210, Patent Publication No. 2005-227755, Patent Publication No. 2005-345919, Patent Publication No. 2005-292235, Patent Publication No. 2004-004566, Patent Publication No. 2005 - No. 338234 and many other optical imaging lens structure designs including three lens components (lens components)/three lenses (lens elements) from the object side): the first, second, third and third lens groups (lens components)/lens elements (lens elements), as for the differences or technical features of the above-mentioned multiple invention patents, it is determined by the following factors Changes or combinations only: The shapes of the three lens groups/lenses described in each patent are designed differently. For example, the first, second, and third lens groups/lenses are all meniscus shape lenses. Or the first and second lens groups/lenses are crescent-shaped and the third lens group/lenses are plano-concave shape or plano-convex shape; and/or described in each patent The corresponding convex/concave directions of the three lens groups/lenses are different. For example, the convex/concave surfaces of the first/second/third third lens groups/lenses can be arranged on the object side/image side and other variable combinations; and/ Or the positive/negative refractive powers of the three lens groups/lenses described in each patent are different, for example, the diopters of the first, second, third and third lens groups/lenses are positive, negative, and positive in sequence Or different combinations of positive, positive, negative, etc.; and/or related optical data between the three lens groups/lenses described in each patent, such as f (effective focal length of the imaging lens system), d (first lens The distance from the side of the object to the image side of the third lens), R1 (the radius of curvature of the object side of the first lens), R2 (the radius of curvature of the image side of the first lens), Fno (the focal number of the imaging lens system), br (the back focal length of the imaging lens system), f1 (the effective focal length of the first lens element), f3 (the effective focal length of the third lens element), etc., respectively satisfy different conditions, such as 0.8<f1/f<2.0, 0.5 <(|R2|-R1)/(R1+|R2|), and 1.5<f3/f<3.0 refer to Japanese Patent No. 3717488; it can be seen from the above that the design of an optical imaging lens with three lens groups/lenses In other words, its design technology is not particularly difficult in the field of optical imaging lens technology, and can even be regarded as prior art. As long as different changes or combinations can be studied in the above-mentioned various factors, it can be regarded as novel. Novelty or innovative step can be applied for and authorized as a patent. However, the overall length of the above-mentioned optical imaging lens is still too large, so that the imaging lens cannot have a smaller volume or lower cost, and the correction and elimination of aberrations or the reduction of the chief ray angle are not ideal, and it is difficult to meet the needs of electronic products. Striving for light, thin and high-performance requirements also limits the applicability of imaging lenses, especially in mobile phones.
发明内容 Contents of the invention
本实用新型公开了一种三镜片式光学取像镜头(imaging lens),其由物侧依序包含:一正屈光度的第一透镜件(a first lens element of positive refractivepower),为一新月型非球面透镜,且其凸面是在物侧;一负屈光度(negativerefractive power)的第二透镜件,为一新月型非球面透镜,且其凸面是在像侧;一负屈光度的第三透镜件,为一M字型非球面透镜,且其物侧面与像侧面都为M字型,而其在光轴之中央面可为凸面或凹面;一红外线滤光片;与一影像传感器;并以同一光轴排列构成;并且,所述的取像镜头满足以下条件:0.4f≤d<0.9f,0.3<|R1/R2|<0.6,2.8≤Fno<3.6,0.2<br/f<0.4,0.5<f1/f<1,与-4.0<f3/f<-1.1,其中,f为本取像镜头系统的有效焦距,d为第一透镜件物侧面至第三透镜像侧面的距离,R1为第一透镜件物侧面的曲率半径,R2为第一透镜件像侧面的曲率半径,Fno为本取像镜头系统的焦数,br为本取像镜头系统的后焦距,f1为第一透镜件的有效焦距,f3为第三透镜件的有效焦距;以可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使取像镜头具有较小体积与较低成本,而提升取像镜头的应用性。The utility model discloses a three-mirror optical imaging lens (imaging lens), which sequentially includes from the object side: a first lens element of positive refractive power (a first lens element of positive refractive power), which is a crescent-shaped an aspheric lens with its convex surface on the object side; a negative refractive power second lens element which is a crescent-shaped aspheric lens with its convex surface on the image side; a negative refractive power third lens element , is an M-shaped aspheric lens, and its object side and image side are both M-shaped, and its central surface on the optical axis can be convex or concave; an infrared filter; and an image sensor; and The same optical axis arrangement; and, the imaging lens satisfies the following conditions: 0.4f≤d<0.9f, 0.3<|R1/R2|<0.6, 2.8≤Fno<3.6, 0.2<br/f<0.4, 0.5<f1/f<1, and -4.0<f3/f<-1.1, where f is the effective focal length of the imaging lens system, d is the distance from the object side of the first lens element to the image side of the third lens, R1 is the radius of curvature of the object side of the first lens element, R2 is the radius of curvature of the image side of the first lens element, Fno is the focal number of the imaging lens system, br is the back focal length of the imaging lens system, and f1 is the first lens The effective focal length of the element, f3 is the effective focal length of the third lens element; to effectively eliminate the aberration and reduce the chief ray angle, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the imaging lens has a relatively high Small size and low cost improve the applicability of the imaging lens.
作为本实用新型的一种改进,所述的三镜片式光学取像镜头的第一透镜件的凸面与凹面可以有一面为非球面,当然也可以双面均为非球面;所述的第二透镜件的凸面与凹面可以有一面为非球面,当然也可以双面均为非球面;所述的M字型第三透镜件的物侧面与像侧面可以有一面为非球面,当然也可以双面均为非球面。As an improvement of the present utility model, one side of the convex surface and the concave surface of the first lens part of the three-element optical imaging lens can be aspherical, and of course both sides can be aspherical; the second One side of the convex surface and the concave surface of the lens piece can be an aspheric surface, and of course both sides can be aspheric surfaces; The surfaces are all aspherical.
作为本实用新型的另一种改进,其中所述的取像镜头设有一前置光圈,其孔径光阑(aperture stop)是设置在第一透镜件的物侧凸面(convex object-side surface)上,以构成一具有高分辨率而又能有效缩小镜头全长的三透镜式光学取像镜头。可有效提升取像镜头的应用性。As another improvement of the present utility model, wherein said imaging lens is provided with a pre-diaphragm, and its aperture stop (aperture stop) is arranged on the object side convex surface (convex object-side surface) of the first lens element , to form a three-lens optical imaging lens with high resolution and capable of effectively reducing the overall length of the lens. It can effectively improve the applicability of the imaging lens.
附图说明 Description of drawings
图1是本实用新型第一实施例的光学结构示意图;Fig. 1 is a schematic diagram of the optical structure of the first embodiment of the utility model;
图2是本实用新型第一实施例的光路示意图;Fig. 2 is a schematic diagram of the optical path of the first embodiment of the utility model;
图3是本实用新型第一实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇(transverse ray fan plot)图;Fig. 3 is the transverse light fan (transverse ray fan plot) diagram of five different fields of view (
图4是本实用新型第一实施例的成像的场曲(field curvature)图;Fig. 4 is the field curvature (field curvature) diagram of the imaging of the utility model first embodiment;
图5是本实用新型第一实施例的成像的畸变(distortion)图;Fig. 5 is the distortion (distortion) figure of the imaging of the first embodiment of the present utility model;
图6是本实用新型第一实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 6 is the modulation transfer function ( modulation transfer function) diagram;
图7是本实用新型第一实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 7 is the relative illumination (relative illumination) diagram that the full field of view of the first embodiment of the present invention corresponds to the zero field of view;
图8是本实用新型第二实施例的光学结构示意图;Fig. 8 is a schematic diagram of the optical structure of the second embodiment of the utility model;
图9是本实用新型二实施例的光路示意图;Fig. 9 is a schematic diagram of the optical path of the second embodiment of the utility model;
图10是本实用新型第二实施例的五个不同视场(实际像高0、0.675、1.35、2.025、2.7mm)的横向光扇图(transverse ray fan plot);Fig. 10 is the transverse ray fan plot (transverse ray fan plot) of five different fields of view (
图11是本实用新型第二实施例的成像的场曲(field curvature)图;Fig. 11 is the field curvature (field curvature) diagram of the imaging of the second embodiment of the present invention;
图12是本实用新型第二实施例的成像的畸变(distortion)图;Fig. 12 is a distortion (distortion) diagram of the imaging of the second embodiment of the present invention;
图13是本实用新型第二实施例的五个视场(实际像高0、0.675、1.35、2.025、2.7mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 13 is the modulation transfer function ( modulation transfer function) diagram;
图14是本实用新型第二实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 14 is a relative illumination (relative illumination) diagram generated by the full field of view corresponding to the zero field of view of the second embodiment of the present invention;
图15是本实用新型第三实施例的光学结构示意图;Fig. 15 is a schematic diagram of the optical structure of the third embodiment of the present invention;
图16是本实用新型三实施例的光路示意图;Fig. 16 is a schematic diagram of the optical path of the third embodiment of the utility model;
图17是本实用新型第三实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverse ray fan plot);Fig. 17 is a transverse ray fan plot (transverse ray fan plot) of five different fields of view (
图18是本实用新型第三实施例的成像的场曲(field curvature)图;Fig. 18 is the field curvature (field curvature) diagram of the imaging of the third embodiment of the present invention;
图19是本实用新型第三实施例的成像的畸变(distortion)图;Fig. 19 is a distortion diagram of the imaging of the third embodiment of the present invention;
图20是本实用新型第三实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 20 is the modulation transfer function ( modulation transfer function) diagram;
图21是本实用新型第三实施例的全视场对应零视场所产生的相对照度(relative illumination)图;Fig. 21 is a relative illumination (relative illumination) diagram generated by the full field of view corresponding to the zero field of view of the third embodiment of the present invention;
图22是本实用新型第四实施例的光学结构示意图;Fig. 22 is a schematic diagram of the optical structure of the fourth embodiment of the utility model;
图23是本实用新型四实施例的光路示意图;Fig. 23 is a schematic diagram of the optical path of the fourth embodiment of the utility model;
图24是本实用新型第四实施例的五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverse ray fan plot);Fig. 24 is the transverse ray fan plot (transverse ray fan plot) of five different fields of view (
图25是本实用新型第四实施例的成像的场曲(field curvature)图;Fig. 25 is a field curvature diagram of the imaging of the fourth embodiment of the present invention;
图26是本实用新型第四实施例的成像的畸变(distortion)图;Fig. 26 is a distortion diagram of the imaging of the fourth embodiment of the present invention;
图27是本实用新型第四实施例的五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图;Fig. 27 is the modulation transfer function ( modulation transfer function) diagram;
图28是本实用新型第四实施例的全视场对应零视场所产生的相对照度(relative illumination)图。Fig. 28 is a diagram of relative illumination generated by the full field of view corresponding to the zero field of view in the fourth embodiment of the present invention.
附图标记说明:L1-第一透镜件;11-物侧面(凸面);12-像侧面(凹面);13-孔径光阑;L2-第二透镜件;21-像侧面(凸面);22-物侧面(凹面);L3-第三透镜件;4-红外线滤光片;5-影像传感器;51-感测面。Explanation of reference numerals: L1-first lens part; 11-object side (convex); 12-image side (concave); 13-aperture stop; L2-second lens part; 21-image side (convex); 22 - object side (concave surface); L3 - third lens element; 4 - infrared filter; 5 - image sensor; 51 - sensing surface.
具体实施方式 Detailed ways
下面结合附图对本实用新型作进一步说明:Below in conjunction with accompanying drawing, the utility model is further described:
参照图1、2所示,其分别是本实用新型第一实施例的结构示意图与光路示意图,本实用新型三镜片式光学取像镜头(optical imaging lens),由物侧依序(in orderfrom the object side)包含:一正屈光度的第一透镜件(a first lens element of positiverefractive power)L1设在物侧(on the object side),其为一新月型非球面透镜,且其凸面11是在物侧,而其凹面12是在像侧(on the image side),且其凸面11与凹面12至少有一面为非球面;一负屈光度(a second lens element of negativerefractive power)的第二透镜件L2设在第一透镜件L1与第三透镜件L3之间,为一新月型非球面透镜,且其凸面21是在像侧,且其凸面21与凹面22至少有一面为非球面;一负屈光度的第三透镜件(a third lens element of negative refractivepower),为一M字型非球面透镜,且其物侧面与像侧面都为M字型,而其在光轴上之中央面可为凸面或凹面;一红外线滤光片(IR cut-off filter)4;与一影像传感器(image sensing chip)5;并以同一光轴(optical axis)X依序排列构成如图1所示;取像时,光线是先经过第一透镜件L1、第二透镜件L2与第三透镜件L3后,再经过红外线滤光片4而成像在影像传感器(image sensing chip)5的感测面51上如图2所示。又本实用新型取像镜头设一前置光圈,其孔径光阑(aperturestop)13是设在第一透镜件L1的物侧凸面(convex object-side surface)11上如图1、2所示。Referring to Figs. 1 and 2, which are respectively a schematic structural view and a schematic view of the optical path of the first embodiment of the present invention, the three-mirror optical imaging lens (optical imaging lens) of the present invention, in order from the object side (in order from the object side) includes: a positive diopter first lens element (a first lens element of positiverefractive power) L1 is located on the object side (on the object side), which is a crescent-shaped aspheric lens, and its
并且本实用新型三透镜式光学取像镜头满足以下条件(the following conditionsare satisfied):And the utility model three-lens type optical imaging lens satisfies the following conditions (the following conditions are satisfied):
0.4f≤d<0.9f;0.4f≤d<0.9f;
0.3<|R1/R2|<0.6;0.3<|R1/R2|<0.6;
2.8≤Fno<3.6;2.8≤Fno<3.6;
0.2<br/f<0.4;0.2<br/f<0.4;
0.5<f1/f<1;与0.5<f1/f<1; and
-4.0<f3/f<-1.1;-4.0<f3/f<-1.1;
其中,f为本取像镜头(系统)的有效焦距,d为第一透镜件物侧面至第三透镜像侧面的距离,R1为第一透镜件物侧面的曲率半径,R2为第一透镜件像侧面的曲率半径,Fno为本取像镜头(系统)的焦数,br为本取像镜头(系统)的后焦距,f1为第一透镜件的有效焦距,f3为第三透镜件的有效焦距;凭借上述结构,可有效校消像差与降低主光线角度,使本实用新型取像镜头具有高分辨率而又能有效缩小镜头长度,使取像镜头具有较小体积与较低成本,而提升取像镜头的应用性。Wherein, f is the effective focal length of the imaging lens (system), d is the distance from the object side of the first lens element to the image side of the third lens, R1 is the radius of curvature of the object side of the first lens element, and R2 is the first lens element The radius of curvature of the side of the image, Fno is the focal number of the imaging lens (system), br is the back focal length of the imaging lens (system), f1 is the effective focal length of the first lens element, and f3 is the effective focal length of the third lens element Focal length: By virtue of the above structure, the aberration can be effectively corrected and the chief ray angle can be reduced, so that the imaging lens of the utility model has high resolution and can effectively reduce the length of the lens, so that the imaging lens has a smaller volume and lower cost, And improve the applicability of the imaging lens.
现列举几个较佳实施例,并分别说明如下:Now enumerate several preferred embodiments, and explain as follows respectively:
<第一实施例><First embodiment>
请参考图1至图7所示,其分别是第一实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to Fig. 1 to Fig. 7, which are respectively the schematic structural diagram of the first embodiment, the schematic diagram of the optical path, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (
下列表(一)中分别列有第一实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the objectside of the first embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.
表(一)Table I)
下列表(二)列有各光学面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each optical surface:
表(二)Table II)
又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+EH12+Fh14为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient),F为十四阶非球面系数(14th Order A spherical Coefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+EH12+Fh14 is its aspherical surface formula (A spherical Surface Formula), wherein, c is the curvature, h is the height of the lens, K is the cone coefficient (Conic Constant), A is the fourth-order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth-order aspherical coefficient (6 th Order A spherical Coefficient), C is the 8th Order A spherical Coefficient, D is the 10th Order A spherical Coefficient, E is the 12th Order A spherical Coefficient, F is the 14th Order A spherical coefficient (14 th Order A spherical Coefficient).
而第一实施例的第一、二、三透镜件L1、L2、L3的材质都为塑料材质,如分别利用型号APL5014DP、PC-AD5503与APL5014DP的塑料材质,而红外线滤光片4的材质为玻璃材质如型号BK7玻璃材质,其厚度为0.3mm。The materials of the first, second and third lens parts L1, L2 and L3 of the first embodiment are all plastic materials, such as using the plastic materials of models APL5014DP, PC-AD5503 and APL5014DP respectively, and the material of the
又镜头系统有效焦距f为3.568mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.603mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.366,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.88,可以满足条件:2.8≤Fno<3.6;而br/f为0.36,可以满足条件:0.2<br/f<0.4;而f1/f为0.756,可以满足条件:0.5<f1/f<1;而f3/f为-3.929,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.568mm, and the distance d between the object-side
而由上述表(一)、表(二)与图1至图7所示,可知第一实施例取像镜头的镜头全长(totallength)为3.89292mm,由此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率且又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,从而提升本实用新型的应用性。And by above-mentioned table (one), table (two) and shown in Fig. 1 to Fig. 7, it can be seen that the total length of the lens (totallength) of the first embodiment imaging lens is 3.89292mm, thus can prove the imaging of the present utility model The lens can effectively correct aberrations and reduce the angle of the chief ray, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model .
<第二实施例><Second Embodiment>
请参考图8至图14所示,其分别是第二实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.675、1.35、2.025、2.7mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.675、1.35、2.025、2.7mm)对应0至160LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to Fig. 8 to Fig. 14, which are respectively the schematic structural diagram of the second embodiment, the schematic diagram of the optical path, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (
下列表(一)中分别列有第二实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the object side of the second embodiment, each optical surface type (Type), and each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.
表(一)Table I)
下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:
表(二)Table II)
又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 is its aspherical surface formula (A spherical Surface Formula), where c is the curvature , h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth order aspherical coefficient (6 th Order A spherical Coefficient), C is The eighth-order aspherical coefficient (8 th Order A spherical Coefficient), D is the tenth-order aspheric coefficient (10 th Order A spherical Coefficient), and E is the twelfth-order aspherical coefficient (12 th Order A spherical Coefficient).
而第二实施例的第一、二、三透镜件L1、L2、L3的材质可分别利用型号APL5014DP、OKP4与APL5014DP的塑料材质,而红外线滤光片4的材质可利用型号BK7的玻璃材质,其厚度为0.145mm。The materials of the first, second, and third lens elements L1, L2, and L3 of the second embodiment can respectively use the plastic materials of models APL5014DP, OKP4, and APL5014DP, and the material of the
又镜头系统有效焦距f为4.45408mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.93mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.51,可以满足条件:0.3<|R1/R2|<0.6;而Fno为3.5,可以满足条件:2.8≤Fno<3.6;而br/f为0.295,可以满足条件:0.2<br/f<0.4;而f1/f为0.634,可以满足条件:0.5<f1/f<1;而f3/f为-2.888,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 4.45408mm, and the distance d between the object-side
而由上述表(一)、表(二)与图8至图14所示,可知第二实施例取像镜头的镜头全长(totallength)为4.23026mm,如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。And shown in above-mentioned table (1), table (2) and Fig. 8 to Fig. 14, it can be seen that the total length of the lens (total length) of the imaging lens of the second embodiment is 4.23026 mm, so it can be proved that the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.
<第三实施例><Third embodiment>
请参考图15至图21所示,其分别是第三实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to FIG. 15 to FIG. 21, which are respectively the structural schematic diagram, the optical path schematic diagram, and the lateral light fan diagrams of five different fields of view (actual image heights of 0, 0.575, 1.15, 1.725, and 2.3 mm) of the third embodiment ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (
下列表(一)中分别列有第三实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the object side of the third embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.
表(一)Table I)
下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:
表(二)Table II)
又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12为其非球面方程式(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A sphericalCoefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10thOrder A spherical Coefficient),E为十二阶的非球面系数(12th Order A sphericalCoefficient)。Also, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12 is its aspherical surface formula (A spherical Surface Formula), where c is the curvature , h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth order aspherical coefficient (6 th Order A spherical Coefficient), C is The eighth-order aspherical coefficient (8 th Order A spherical Coefficient), D is the tenth-order aspheric coefficient (10 th Order A spherical Coefficient), and E is the twelfth-order aspherical coefficient (12 th Order A spherical Coefficient).
而第三实施例的第一透镜件L1的材质可利用型号L-BAL42的模造玻璃材质,而第二、三透镜件L2、L3的材质可分别利用型号PC-AD5503与APL5014DP的塑料材质,而红外线滤光片4的材质为型号BK7的玻璃材质,其厚度为0.3mm。The material of the first lens element L1 of the third embodiment can use the molded glass material of the model L-BAL42, and the materials of the second and third lens elements L2 and L3 can respectively use the plastic material of the model PC-AD5503 and APL5014DP, and The material of the
又镜头系统有效焦距f为3.60562mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.638mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.38,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.88,可以满足条件:2.8≤Fno<3.6;而br/f为0.349,可以满足条件:0.2<br/f<0.4;而f1/f为0.755,可以满足条件:0.5<f1/f<1,而f3/f为-3.872,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.60562mm, and the distance d between the object-side
而由上述表(一)、表(二)与图15至图21所示,可知本实用新型取像镜头的镜头全长(totallength)为3.901mm,且如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。And shown in above-mentioned table (1), table (2) and Fig. 15 to Fig. 21, can know that the total length of lens (totallength) of the imaging lens of the present utility model is 3.901mm, and so can prove the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.
<第四实施例><Fourth Embodiment>
请参考图22至图28所示,其分别是第四实施例的结构示意图、光路示意图、五个不同视场(实际像高0、0.575、1.15、1.725、2.3mm)的横向光扇图(transverseray fan plot)、成像的场曲(field curvature)图、成像的畸变(distortion)图、五个视场(实际像高0、0.575、1.15、1.725、2.3mm)对应0至200LP/mm空间频率(spatial frequency)时所产生的调制传递函数(modulation transfer function)图、与全视场对应零视场所产生的相对照度(relative illumination)图。Please refer to FIG. 22 to FIG. 28, which are respectively the structural schematic diagram of the fourth embodiment, the optical path schematic diagram, and the lateral light fan diagrams ( Transverseray fan plot), imaging field curvature diagram, imaging distortion diagram, five fields of view (
下列表(一)中分别列有第四实施例由物侧依序编号(in order from the objectside)的光学面号码#(surface number),各光学面型态(Type),在光轴上各光学面的曲率半径R(单位:mm)(the radius of curvature R),光轴上各面之间距D(单位:mm)(the on-axis surface spacing),与镜片材质。The following table (1) respectively lists the optical surface number # (surface number) in order from the objectside of the fourth embodiment, each optical surface type (Type), each on the optical axis The radius of curvature R (unit: mm) (the radius of curvature R) of the optical surface, the distance D (unit: mm) (the on-axis surface spacing) between the surfaces on the optical axis, and the lens material.
表(一)Table I)
下列表(二)列有各非球面的各项系数(Coeff):The following table (2) lists the coefficients (Coeff) of each aspheric surface:
表(二)Table II)
又,Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16为其非球面方程式Again, Z=ch2/{1+[1-(1+K)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 is its aspheric equation
(A spherical Surface Formula),其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant),A为四阶的非球面系数(4th Order A spherical Coefficient),B为六阶的非球面系数(6th Order A spherical Coefficient),C为八阶非球面系数(8th Order A spherical Coefficient),D为十阶的非球面系数(10th Order A sphericalCoefficient),E为十二阶的非球面系数(12th Order A spherical Coefficient),F为十四阶的非球面系数(14th OrderAspherical Coefficient),G为十六阶的非球面系数(14th Order A spherical Coefficient)。(A spherical Surface Formula), where, c is the curvature, h is the lens height, K is the cone coefficient (Conic Constant), A is the fourth-order aspheric coefficient (4 th Order A spherical Coefficient), B is the sixth-order aspherical coefficient Spherical Coefficient (6 th Order A spherical Coefficient), C is the 8th Order A spherical Coefficient , D is the 10th Order A spherical Coefficient, E is the 12th Order A spherical Coefficient Spherical Coefficient (12 th Order A spherical Coefficient), F is the 14th Order Aspherical Coefficient (14 th Order Aspherical Coefficient), G is the 16th Order A spherical Coefficient (14 th Order A spherical Coefficient).
而第四实施例的第一透镜件L1的材质可利用型号L-BAL42的模造玻璃材质,而第二、三透镜件L2、L3的材质可分别利用型号PC-AD5503与E48R的塑料材质,而红外线滤光片4的材质可利用型号BK7的玻璃材质,其厚度为0.3mm。The material of the first lens element L1 of the fourth embodiment can use the molded glass material of the model L-BAL42, and the materials of the second and third lens elements L2 and L3 can respectively use the plastic material of the model PC-AD5503 and E48R, and The material of the
又镜头系统有效焦距f为3.56392mm,而第一透镜件L1的物侧凸面11到第三透镜件L3的像侧面的距离d为2.78583mm,可以满足条件:0.4f≤d<0.9f;又依表(一)可知:|R1/R2|为0.379679,可以满足条件:0.3<|R1/R2|<0.6;而Fno为2.8,可以满足条件:2.8≤Fno<3.6;而br为1.087425mm,br/f为0.305120,可以满足条件:0.2<br/f<0.4;而f1为2.745667mm,f1/f为0.770405,可以满足条件:0.5<f1/f<1,而f3为-9.739370mm,f3/f为-2.732769,可以满足条件:-4.0<f3/f<-1.1。In addition, the effective focal length f of the lens system is 3.56392mm, and the distance d between the object-side
而由上述表(一)、表(二)与图22至图28所示,可知本实用新型取像镜头的镜头全长(totallength)为3.873mm,且如此可证明本实用新型的取像镜头可有效校消像差与降低主光线角度,使取像镜头具有高分辨率而又能有效缩小镜头长度,使本实用新型具有较小体积与较低成本,而提升本实用新型的应用性。From the above table (1), table (2) and shown in Figure 22 to Figure 28, it can be seen that the total length of the imaging lens of the present utility model is 3.873mm, and this can prove that the imaging lens of the present utility model The aberration can be effectively corrected and the angle of the chief ray can be reduced, so that the imaging lens has high resolution and can effectively reduce the length of the lens, so that the utility model has a smaller volume and lower cost, thereby improving the applicability of the utility model.
以上所示仅为本新型的较佳实施例,对本新型而言仅是说明性的,而非限制性的。本专业技术人员理解,在本新型权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效变更,但都将落入本新型的保护范围内。What is shown above is only a preferred embodiment of the present invention, and is only illustrative, not restrictive, of the present invention. Those skilled in the art understand that many changes, modifications, and even equivalent changes can be made within the spirit and scope defined by the claims of the present invention, but all will fall within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200620175613XU CN201054035Y (en) | 2006-12-26 | 2006-12-26 | Three-lens type optical image capturing lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU200620175613XU CN201054035Y (en) | 2006-12-26 | 2006-12-26 | Three-lens type optical image capturing lens |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201054035Y true CN201054035Y (en) | 2008-04-30 |
Family
ID=39393697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU200620175613XU Expired - Fee Related CN201054035Y (en) | 2006-12-26 | 2006-12-26 | Three-lens type optical image capturing lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201054035Y (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101520542B (en) * | 2008-02-27 | 2011-02-16 | 一品光学工业股份有限公司 | Optical imaging lens |
CN102193168A (en) * | 2010-03-04 | 2011-09-21 | 大立光电股份有限公司 | Photographic lens system |
CN105093492A (en) * | 2014-05-22 | 2015-11-25 | 宁波舜宇光电信息有限公司 | Shooting optical lens assembly and iris shooting module group |
CN106483624A (en) * | 2015-08-28 | 2017-03-08 | 今国光学工业股份有限公司 | Three-piece lens module |
-
2006
- 2006-12-26 CN CNU200620175613XU patent/CN201054035Y/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101520542B (en) * | 2008-02-27 | 2011-02-16 | 一品光学工业股份有限公司 | Optical imaging lens |
CN102193168A (en) * | 2010-03-04 | 2011-09-21 | 大立光电股份有限公司 | Photographic lens system |
CN102193168B (en) * | 2010-03-04 | 2012-08-29 | 大立光电股份有限公司 | Photographic lens system |
CN105093492A (en) * | 2014-05-22 | 2015-11-25 | 宁波舜宇光电信息有限公司 | Shooting optical lens assembly and iris shooting module group |
CN105093492B (en) * | 2014-05-22 | 2018-06-26 | 宁波舜宇光电信息有限公司 | A kind of camera optical microscope group and iris camera module |
US11361591B2 (en) | 2014-05-22 | 2022-06-14 | Ningbo Sunny Opotech Co., Ltd. | Iris recognition device, manufacturing method therefor and application thereof |
US11668912B2 (en) | 2014-05-22 | 2023-06-06 | Ningbo Sunny Opotech Co., Ltd. | Iris recognition device, manufacturing method therefor and application thereof |
CN106483624A (en) * | 2015-08-28 | 2017-03-08 | 今国光学工业股份有限公司 | Three-piece lens module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102981247B (en) | Image lens group | |
CN102749788B (en) | Image acquisition system | |
CN102621671B (en) | Lens system | |
CN104656229B (en) | Six-piece optical image capturing lens and six-piece optical image capturing module | |
CN108363169B (en) | Image pickup optical lens | |
CN105319677B (en) | Six chip imaging lens groups | |
CN103592746A (en) | Image lens system set | |
CN201903684U (en) | Optical imaging lens group | |
JP2012014139A (en) | Three-piece optical pickup lens | |
CN201035206Y (en) | Two-lens type optical image capturing lens | |
CN106125255A (en) | Pick-up lens | |
CN104516089A (en) | Optical image capturing lens and optical image capturing module | |
CN107797242B (en) | Image pickup optical lens | |
CN104793319A (en) | Five-piece imaging lens group | |
CN103246045B (en) | Photographic Lens System | |
US7460314B2 (en) | Three-piece type optical lens | |
CN102466866B (en) | Optical camera lens group | |
CN104199172B (en) | Image taking shot | |
CN201054035Y (en) | Three-lens type optical image capturing lens | |
CN101520542B (en) | Optical imaging lens | |
CN101833161B (en) | Imaging lens | |
CN101750716B (en) | Imaging camera lens | |
CN108627954B (en) | A camera lens group | |
CN201054036Y (en) | Two-element optical imaging lens | |
CN110045490A (en) | A kind of imaging lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080430 Termination date: 20121226 |