CN1979221A - 用于通过导电井眼套管测量地球地层电阻率的系统 - Google Patents

用于通过导电井眼套管测量地球地层电阻率的系统 Download PDF

Info

Publication number
CN1979221A
CN1979221A CN 200510129079 CN200510129079A CN1979221A CN 1979221 A CN1979221 A CN 1979221A CN 200510129079 CN200510129079 CN 200510129079 CN 200510129079 A CN200510129079 A CN 200510129079A CN 1979221 A CN1979221 A CN 1979221A
Authority
CN
China
Prior art keywords
electrode
current source
measurement
pipe
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510129079
Other languages
English (en)
Other versions
CN1979221B (zh
Inventor
库尔特·M·斯特拉克
霍斯特·吕特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJT ENTPR Inc
KJT Enterprises Inc
Original Assignee
KJT ENTPR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KJT ENTPR Inc filed Critical KJT ENTPR Inc
Priority to CN2005101290799A priority Critical patent/CN1979221B/zh
Publication of CN1979221A publication Critical patent/CN1979221A/zh
Application granted granted Critical
Publication of CN1979221B publication Critical patent/CN1979221B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

用于通过导电井筒井眼套管测量地球岩层地层电阻率的系统。公开了一种用于从钻透地球地层的井眼内侧的导电管内测量该地层的电阻率的仪器。该仪器包括首尾相连的多个壳体,所述多个壳体被调整成穿过该井眼。在各壳体上布置有至少一个电极。各所述电极被布置成与所术管的内部相电接触。该仪器包括电流源、数字电压测量电路以及切换器。该切换器被布置成将该电流源连接在所述多个电极中的一个与电流返回之间,并且被布置成将选定电极对连接到该数字电压测量电路,该电流返回位于该管的顶部位置和位于距该管的顶部选定距离处的靠近地面的位置中的一个可选位置处。选择该电极对以进行与地球地层中的选定轴向距离和选定横向深度相对应的电压测量。

Description

用于通过导电井眼套管测量地球地层电阻率的系统
技术领域
本发明总体上涉及地球地层电阻率测量装置的领域。更具体地,本发明涉及用于从导电管或导电套管内测量地层电阻率的井眼仪器。
背景技术
在确定被测地球地层的特性的领域中,对地球地层的电阻率测量是已知的。所关注的特性包括地球地层的孔隙的流体含量。该领域已知的井眼电阻率测量装置通常要求:通过钻透地球地层开钻井眼来露出地球地层,并要求该地层保持暴露于井眼,使得可以从露出的地层内进行测量。
当井眼完全钻透所关注的地球地层时,往往将钢管或钢套管插入并在井眼内的适当位置处接合以保护地球地层、防止地下地球地层之间的水力流通并提供井眼的机械完整性。钢套管是高度导电的,因而使得难以使用常规(所谓的“开孔”)技术来从钢管或钢套管内确定各种地球地层的电阻率。
在该领域中已知的是,从导电套管或管内进行用于确定地球地层电阻率的测量。大量文献公开了用于进行这种测量的技术。公开了用于从导电套管内确定地球地层电阻率的各种装置和方法的文献列表包括:USSR inventor certificate no.56052,filed by Alpin,L.M.(1939),entitled,The method for logging in cased wells;USSR inventorcertificate no.56026,filed by Alpin,L.M.(1939),entitled,Process of the electrical measurement of well casing;U.S.patentno.2,459,196,to Stewart,W.H.(1949),entitled,Electricallogging method and apparatus;U.S.patent no.2,729,784 issued toFearon,R.E.(1956),entitled,Method and apparatus for electricwell logging;U.S.patent no.2,891,215 issued to Fearon,R.E.(1959),entitled,Method and apparatus for electric well logging;French patent application no. 72.41218,filed by Desbrandes,R.and Mengez,P.(1972),entitled,Method &Apparatus for measuringthe formation electrical resistivity In wells having metal casing;International Patent Application Publication no.WO 00/79307 A1,filed by Benimeli,D.(2002),entitled,A method and apparatus fordetermining of a formation surrounding a cased well;U.S. patentno.4,796,186 issued to Kaufman,A.A.(1989),entitled,Conductivity determination in a formation having a cased well;U.S.patent no.4,820,989,issued to Vail,III,W.(1989),entitled,Methods and apparatus for measurement of the resistivity ofgeological formation from within cased boreholes;U.S. patent no.4,837,518 issued to Gard et al.(1989),entitled,Method andApparatus for measuring the electrical resistivity of formationthrough metal drill pipe or casing;U.S.patent no.4,882,542issued to Vail,III,W.(1989),entitled,Methods and apparatusfor measurement of electronic properties of geological formationsthrough borehole casing;U.S.patent no.5,043,668 issued to Vail,III,W.(1991),entitled,Methods and apparatus for measurementof electronic properties of geological formations through boreholecasing;U.S.patent no.5,075,626 issued to Vail,III,W.(1991),entitled,Electronic measurement apparatus movable in a casedborehole and compensation for casing resistance differences;U.S.patent no.5,223,794 issued to Vail,III,W.(1993),entitled,Methods of apparatus measuring formation resistivity from withina cased well having one measurement and two compensation steps;U.S.patent no.5,510,712 issued to Sezginer et al.(1996),entitled,Method and apparatus for measuring formation resistivityin cased holes;U.S.patent no.5,543,715 issued to Singer et al.(1996),entitled,Method and apparatus for measuring formationresistivity through casing using single-conductor electricallogging cable;U.S.patent no.5,563,514 issued to Moulin(1996),entitled,Method and apparatus for determining formationresistivity in a cased well using three electrodes arranged in aWheatstone bridge.U.S.patent no.5,654,639 issued to Locatelliet al.(1997),entitled,Induction measuring device in the presenceof metal walls;U.S.patent no.5,570,024 issued to Vail,III,W.(1996),entitled,Determining resistivity of a formation adjacentto a borehole having casing using multiple electrodes andresistances being defined between the electrodes;U.S.patent no.5,608,323 issued to Koelman,J.M.V.A.(1997),entitled,Arrangement of the electrodes for an electrical logging system fordetermining the electrical resistivity of subsurface formation;U.S.patent no.5,633,590 issued to Vail,III,W.(1997),entitled,Formation resistivity measurements from within a cased well usedto quantitatively determine the amount of oil and gas present.U.S.patent no.5,680,049 issued to Gissler et al.(1997),entitled,Apparatus for measuring formation resistivity through casinghavinga coaxial tubing inserted therein;U.S.patent no.5,809,458issued to Tamarchenko (1998),entitled,Method of simulating theresponse of a through-casing resistivity well logging instrumentand its application to determining resistivity of earth formations;U.S.patent no.6,025,721 issued to Vail,III,W.(2000),entitled,Determining resistivity of a formation adjacent to a boreholehaving casing by generating constant current flow in portion ofcasing and using at least two voltage measurement electrodes;U.S.patent no.6,157,195 issued to Vail,III,W.(2000),entitled,Formation resistivity measurements from within a cased well usedto quantitatively determine the amount of oil and gas present;U.S.patent no.6,246,240 B1 issued to Vail,III,W.(2001),entitled,Determining resistivity of formation adjacent to a borehole havingcasing with an apparatus having all current conducting electrodeswithin the cased well;U.S.patent no.6,603,314 issued toKostelnicek et al.(2003),entitled,Simultaneous currentinjection for measurement of formation resistance through casing;and U.S.Patent No.6,667,621 issued to Benimelli,entitled,Methodand apparatus for determining the resistivity of a formationsurrounding a cased well。
引用了相关技术的美国专利申请公报包括:no.2001/0033164 A1,filed by Vinegar et al.,entitled,Focused through-casingresistivity measurement;no.2001/0038287 A1,filed by Amini,Bijan K.,entitled,Logging tool for measurement of resistivitythrough casing using me tallic transparencies and magnetic lensing;no.2002/0105333 A1 filed by Amini,Bijan K.,entitled,Measurements of electrical properties through non magneticallypermeable metals using directed magnetic beams and magnetic lenses.and no.2003/0042016 A1,filed by Vinegar et al.,entitled,Wireless communication using well casing。
以下对上述技术进行简要的总结。美国专利No.2,459,196描述了一种在包套的井眼中进行测量的方法,其中,使电流沿导电套管流动,使得一些电流会“泄漏”到周围的地球地层中。电流泄漏量与地球地层的电导率有关。该专利No.2,459,196未公开用于针对套管内的电不均质性对测量进行校正的任何技术。
美国专利No.2,729,784公开了这样一种技术:使用3个电势电极来建立与井眼套管相接触的两个相对的电极对。使电流在通过被置于电势电极的上方和下方的两对电流电极的两个相对“回路”中流动,从而抵消了套管中的电不均质性效应。在这两个电极对上的电压降与进入地球地层的泄漏电流有关。美国专利No.2,891,215中的公开内容包括被置于专利No.2,729,784所公开的装置的多个测量电极之间的电流发射极,以提供用于完全补偿泄漏电流的技术。
美国专利No.4,796,186公开了非常频繁地用于通过导电套管来确定电阻率的技术,该技术包括测量进入地球地层的泄漏电流,并公开了如下内容:测量沿套管的被测量了泄漏电流同一部分流动的电流,以针对沿该套管的电阻率变化补偿对泄漏电流的测量。其他文献描述了对通过套管测量电阻率的基本技术的各种扩展和改进。
可以如下总结在该领域中已知的用于通过套管来测量电阻率的方法。将一仪器下降到井眼中,该井眼具有至少一个位于仪器(A)上的电极,将该仪器(A)布置成在套管中的不同深度处与套管相接触。将套管电流返回电极B布置在套管的顶部并与该套管相连。将地层电流返回电极B*布置在距井眼一定距离处的地面处。对以下数据进行记录:从井眼中不同深度处的电极A首先流到套管顶部处的电极B、然后流到地层返回电极B*的电压降和电流。使用通过套管(A-B)的电流和电压降,来针对套管中的不均质性效应校正对经过地层(A-B*)的电压降和电流的测量。
如果地球和套管都是均质的,则对于沿套管的电压降深度和通过套管和地层的电压降的记录将大致为线性的。如在该领域中所公知的,套管(即使套管是新的)具有不均质性,这种不均质性是由于结构容差、部件容差、甚至是由于用于将套管的多个段相互连接的“套环”(螺纹连接件)而导致的。当然,地球地层是完全不均质的,通常电阻率更大的地层是地下勘探的目标,因为这些地球地层往往与石油的存在有关,而更导电的地层往往与孔隙中的所有原生水的存在有关。因此,在使用该领域中已知的技术来确定套管外的地球地层电阻率的过程中所关注的是关于深度的电压降记录的扰动。
地球地层的电导率与从套管泄漏出来进入到地层中的电流的量有关。当电流在A与B*之间流动时,关于深度的地层电导率通常与沿A-B的电压降关于深度的二阶导数有关。典型地,使用与套管相接触地布置的最少3个轴向相隔开来的电极来测量电压降的二阶导数,将这些电极耦合到级联差动放大器,最终耦合到电压测量电路。已证实有用的对基本方法的改进包括这样的系统:其沿套管建立小的轴区,在该轴区中基本上没有电流沿套管本身流动,以降低套管的不均质性对泄漏电流压降的测量的影响。
在实践上,在该领域中已知的仪器和方法要求:该仪器从井眼内的固定位置进行测量,这使得要花很大量的时间来测量由典型井眼所穿透的所关注的地层。此外,测量的电压降很小,因此受到用于进行电压降测量的电子系统噪声的限制。此外,本领域中已知的用于提供无电流区或用于提供测量电压降的已知电流值的系统通常是模拟系统,因此受到这种模拟系统的准确度的限制。
再者,在本领域中已知的是:使用低频交流电(AC)来感生沿着套管并且在地球地层中流动的电流。使用AC来消除当使用连续直流电(DC)时由于套管和电极的电极化而导致的误差。典型地,必须将AC的频率限制在大约0.01到20HZ,以消除由介电效应和趋肤效应(skin effect)导致的测量误差。在该领域中已知的还有:使用极性切换DC进行通套管(through casing)电阻率测量,这消除了极化问题,但是在切换DC极性时可能导致测量中的瞬变效应误差。使用在本领域已知的系统不容易解决瞬变效应和低频AC误差。
发明内容
本发明的一个方面是一种用于从钻透地球地层的井眼内侧的导电管内测量地球地层电阻率的仪器。该仪器包括首尾相连的多个壳体,这些壳体适合于穿过井眼。在各壳体上布置有至少一个电极。各电极适合于被布置成与管内部相电接触。该仪器包括电流源、数字电压测量电路以及切换器。该切换器被布置成把该电流源连接在所述多个电极中的一个与电流返回之间,并将其布置成把选定电极对连接到数字电压测量电路,该电流返回位于管顶部位置和位于距管顶部选定距离处的靠近地面的位置中的一个可选位置处。选择该电极对以进行与地球地层中的选定轴向间距和选定横向深度对应的电压测量。
该仪器的一个实施例包括聚焦电流源,通过所述切换器将该聚焦电流源耦合到选定电极对,以将测量电流限制为按靠近仪器的横向向外路径流动。
该仪器的一个实施例包括位于所述多个壳体中的一个或更多个上的支持臂和被布置在包括有该支持臂的多个壳体中的一个或更多个中的地震接收器。
本发明的另一方面是一种用于从钻透地球地层的井眼内部的导电管内测量地球地层电阻率的方法。根据本发明的这一方面的方法包括将首尾相连的多个壳体插入到管内选定深度处。将各壳体上的至少一个电极布置成与管内侧相电接触。使来自测量电流源的电流穿过该多个电极中的至少一个电极进入管中。在该多个电极中的一个与电流返回之间切换来自测量电流源的返回,该电流返回位于管顶部位置和位于距管顶部选定距离处的靠近地面的位置中的一个可选位置处。在选定电极对上对电压进行数字测量。选择该电极对以进行与地球地层中的选定轴距和选定横向深度相对应的电压测量。
通过以下说明和所附权利要求,本发明的其他方面和优点将变得显见。
附图说明
图1示出了正在包套的井眼中使用的根据本发明的示例电阻率测量通套管装置;
图2更详细地示出了图1的示例装置的电路系统;
图3A到3C示出了用于进行根据本发明的通套管电阻率测量的电流波形的不同示例;
图4示出了用于通过包括电流聚焦系统的导电管来测量电阻率的示例仪器;
图5示出了包括位于探测器心轴上的可选电极阵列的装置的另选实施例;
图6示出了诸如图4所示的仪器的操作流程图,该仪器适应于根据基于模型的仪器响应来自动优化对电极使用的控制;
图7示出了一种用于通过包括中央控制单元和多个“卫星”单元在内的导电管测量电阻率的系统;
图8示出了如图7中的包括一个或更多个中央控制单元和卫星单元中的地震接收器的实施例;
图9示出了用于与导电套管的内表面进行电接触的电极的一个实施例;
图10示出了图9所示的电极的剖视图;
图11示出了一种用于对电极与导电管之间的接触质量进行估测的系统;
图12示出了用于评价管内表面状况的装置的一个示例的附加部分。
具体实施方式
图1示意性地示出了用于从井眼内测量地球地层电阻率的测井(well logging)仪器的一个实施例,其中井眼内具有导电管或导电套管。仪器10可以包括探测器或类似的心轴型壳体18。优选地,壳体18由不导电材料制成,或者在其外表面上具有这种不导电材料。壳体18适合于可以通过本领域已知的任何测井仪器运送工具将壳体18插入井眼14并从井眼14抽回壳体18。在本示例中,该运送工具可以是由绞盘28伸长和收回的铠装电缆16。可以使用该领域中已知的其他传送工具,包括盘管(coiled tubing)、钻管(drill pipe)、生产管(production tubing)等等。因此,无意用传送工具限制本发明的范围。
井眼14钻透了在22、24以及26处示意性地示出的各种地球地层。在钻进了井眼14之后,将导电管12或套管插入井眼14中。如果管12是套管,那么典型地在井眼14内的适当位置将套管12接合,但是对于仪器10的操作来说接合管或套管并不是必需的。尽管根据被插入并接合到所钻进的井眼中的“套管”描述了图1所示的实施例,但是应当理解:也可以与根据本发明的仪器一起使用其他类型的导电管,如钻管、盘管、生产管等。在一个具体示例中,管12而非套管可以是已伸入井眼14中的钻管,于是将仪器10下降到铠装电缆16上的所伸入的钻管中,以进行稍后要进一步阐述的测量。
铠装电缆16包括一个或更多个绝缘导电体(未单独示出),并被布置成将电力传导给置于井眼14中的仪器10。使用电缆16上的导电体可以从被置于地面上的记录单元30传导电力,并可以将来自仪器10的信号发送给记录单元30。记录单元30还可以用于记录和/或解释从井眼14中的仪器10发送到记录单元30的信号。记录单元30可以包括电源32,该电源32用于进行用于确定各种地球地层22、24、26的电阻率的测量。在本说明书中,将用于使得可以进行与地层电阻率相对应的测量的任何电源都称为“测量电流源”。电源32也可以仅用于为仪器10中的各种仪器和控制电路(在图1中整体地以20示出)提供电力。以下参照图2进一步阐述由仪器中的各种电路提供的功能。
再参照图1,在距井眼14的选定距离处的地面上设置有测量电流返回电极34B*。典型地,将测量电流返回电极34B*插入靠近地面的地层中,以为由井眼14穿透的地球地层22、24、26提供导电路径。具体地说,测量电流返回电极34B*提供了流过地球地层22、24、26的电流路径,用于电测量从位于仪器10上的源电极A流动的电流。如图1所示,可以将电流返回电极34B*连接到记录单元30中的电路35B*,或者另选地可以将其连接到电缆16中的所述多个导电体(未单独示出)中的一个。套管电流返回电极34B(被示出为连接到管或套管12的顶部)提供了用于对使得从位于仪器10上的电流源电极A流到套管12的顶部的电流进行电测量的返回路径。可以将套管电流返回电极34B耦合到记录单元30中的电路35B,也可以将其耦合到电缆16中的多个导体(未示出)中的一个,以返回到仪器10中的电路20。
仪器10包括在轴向相隔开的多个位置处、在探测器心轴18上布置的多个电极(在A、P0到P6处所示)。通过布置在探测器心轴18的外部或形成探测器心轴18的非导电材料将电极A、P0-P6相互电绝缘。使电极A、P0-P6中的每一个在机械和电方面适合于与套管12进行良好的电接触。在该领域中已知各种类型的套管接触电极,其包括刷、液压致动“针(spike)”、针轮以及类似装置。将电极A、P0-P6分别耦合到仪器10中的电路20的选定部分。
在仪器10被铠装电缆传送时该仪器10进行操作的过程中,由绞盘28伸长电缆16,使得将仪器10放置在井眼14中的选定深度处。通过在位于电流路径的一端处的源电极A与位于电流路径另一端处的套管返回电极34B或地层返回电极34B*之间进行选择性连接,使电力通过套管12并通过地球地层22、24、26。对基准电势电极(如图1的电极P0所示)与一个或更多个电势测量电极(图1的P1-P6)之间的电压进行测量。根据所用电极的类型(例如,刷或针接触轮),在某些实施例中可以使仪器10在正在进行测量时沿井眼14缓慢移动。其他类型的电极(如液压致动针)可能要求仪器10在任何一个测量序列中基本上保持静止。随着电压测量的进行,无论仪器10是静止还是移动的,都从井眼14逐渐收回仪器10,直到使用套管电流返回电极34B和地层电流返回电极34B*对井眼14的选定部分(包括所关注的地层22、24、26)进行了与这些部分相对应的电压测量。
图2更详细地示出了电路20的一个实施例。电路20的本实施例可以包括中央处理器(CPU)50,该CPU 50可以是预编程微计算机或可编程微计算机。在本实施例中,CPU 50适合于用于从由记录单元(图1的30)向遥测收发器和电源单元48发送的格式化遥测信号中检测控制命令。遥测收发器48还执行以下两种功能:对由CPU 50传送的数据信号进行格式化,以沿电缆导体16A发送到记录单元(图1的30);和对沿导体16A发送的电力进行接收和调整,以由电路20的各种部件来使用。当由遥测收发器48检测到命令信号并将该命令信号传给CPU 50时,还可以由这种命令信号对CPU 50进行再编程。该再编程例如可以包括:改变用于进行前述压降测量的测量电流的波形。在其他示例中,再编程还可以包括改变测量电流的幅值,并可以包括改变压降测量的采样率。下面将参照图4到6对再编程的其他形式进行阐述。
尽管图2所示的实施例包括电遥测收发器48,但是应当清楚地明白,可以将光遥测用于某些实施例,在这种实施例中,遥测收发器48将包括该领域中已知的合适的光电传感器和/或发送装置。在这种实施例中,电缆16应当包括用于传导这种遥测信号的至少一条光纤。在授权给Rafie等人的美国专利No.5,495,547中公开了铠装电缆的一个实施例,在该铠装电缆中包括用于进行信号遥测的光纤。其他实施例可以使用光纤来将电操作电力从记录单元30发送给仪器10。可以将在Rafie等人的该专利No.5,495,547中所公开的电缆或类似光纤光缆用于这种其他实施例以通过光纤向仪器发送电力。
CPU 50可以在其初始编程中包括用于使地球地层(图1的22、24、26)和套管(图1的12)通电以确定地球地层(图1的22、24、26)的电阻率的各种电流波形的数字表示(或者可以由再编程遥测信号对其进行这种编程)。该数字表示包括与要通过地层和套管传导的电流的频率成分、波形和幅值有关的信息。可以将该数字表示传给数模转换器(DAC)42,该DAC 42根据该数字表示来生成模拟信号。然后将DAC 42的模拟信号输出传给功率放大器44的输入。将功率放大器44的输出连接在电流源电极A与开关47之间。开关47受CPU 50的控制。开关47在套管返回电极B与地层返回电极B*或在其他电极布置的其他电流电极之间变换与功率放大器44的另一输出端子的连接。另选地,可以将功率放大器44的另一输出端子连接到一个或更多个电缆导体(16A或其他导电体),并可以在记录单元(图1的30)内在套管返回与地层返回之间执行切换。此外,另选例从电路20中略去了DAC 42和功率放大器44,并使用记录单元(图1的30)中的电源(图1的32)和电缆(图1的16)中的合适的导体(未示出)来提供测量电流和切换特征。在后一示例实施例中,可以通过使用一个或更多个电缆导体(如图2的16A)来将测量电流传给源电极A。
在本实施例中,可以在电势基准电极P0与多个电势测量电极P1-P6中的选定的一个之间进行电压测量。可以由多路复用器(MUX)40控制该多个电压测量电极的所述一个(在任何时刻从这一个电压测量电极进行测量),可以由CPU 50控制该MUX 40。将MUX 40的输出连接到低噪声前置放大器或放大器38的输入。将前置放大器38的输出耦合到模数转换器(ADC)36。ADC 36可以是西格马德耳塔转换器(sigma delta converter)、逐次逼近寄存器或在本领域中已知的任何其他模数转换装置,优选地,该ADC 36可以提供至少24位分辨率的输入信号。从ADC 36输出的数字信号表示基准电极P0与MUX选择的一个电势测量电极P1-P6之间的测量电势。使用如图2所示的MUX 40和单个信号前置放大器38的一个可能的优点在于:无论询问哪个电压测量电极P1-P6以确定相对于电极P0的电势降,电压测量电路的模拟部分都大致相同。因此,可以降低或消除由前置放大器38的响应差导致的测量误差。优选地,ADC 36是能够准确地分辨表示小至一个纳伏(1×10-9伏特)的电压差的测量结果的24位装置。另选地,可以将各测量电极P1-P6耦合到各电极P1-P6的分立前置放大器(图中未示出)的一个输入端子,由此从模拟输入电路去除了MUX 40。
可以将表示电压测量的数字字从ADC 36传给CPU 50,以包括在到记录单元(图1的30)的遥测中。另选地,CPU 50可以包括它自己的存储器或其他存储装置(未单独示出),该存储器或其他存储装置用于存储所述数字字,直到从井眼(图1的14)移除了仪器(图1的10)为止。在某些实施例中,ADC 36的抽样率在数千赫兹(kHz)的范围内,这样既在每电流波形周期提供了很大数量的电压信号抽样(优选地,至少一千个),还能够在把所切换的DC用作电流源来进行电阻率测量时对瞬变效应进行抽样。在这种实施例中,所切换的DC的切换频率可以在大约0.01到20Hz的范围内,由此使得ADC 36能够在所切换的DC的每个周期内进行优选的至少一千次(或多达数千次)的电压测量抽样。
在本实施例中,ADC 36基本上连续操作,以提供针对各电流源波形周期的相对较大数量的数字信号抽样。在本实施例中,ADC 36的这种基本上连续的操作可以提供对电压测量中的任何DC偏压进行精确、即时的确定的优点。必须考虑这种DC偏压,以根据电压测量来精确地确定地层电阻率。在本领域中已知的基本上不连续地操作电压测量装置的系统中,需要通过其他装置确定DC偏压。例如,参见授权给Rueter等人的美国专利No.5,467,018。
通过从CPU 50或其他存储装置(未示出)向DAC 42传导波形数值,可以生成如上所述的测量电流波形。下面参照图3A到3C,对尤其适合于进行通套管(或通导电管)电阻率测量的几种类型的电流波形进行阐述。图3A是功率放大器(图2的44)的电流输出随时间变化的曲线图。图3A的电流波形60是低频(0.01到20Hz)方波,可以通过使用所切换的DC或者通过向DAC(图2的42)传导表示这种波形的适当数字来生成该低频方波。图3A的波形60是周期性的(这意味着在选定时间范围内该波形具有基本恒定的频率),并具有100%的“占空比”(这意味着基本上在所有的时刻都流动有电流)。
在图3B的60处示出了另一可能的电流波形。图3B的电流波形是随机频率方波或伪随机频率方波,同样具有100%的占空比。与前一实施例(图3A)相同,通过从CPU(图2的50)向DAC(图2的42)传导适当的数字字,可以生成图3B所示的电流波形的实施例。随机切换具有防止了混叠或与周期数据抽样相关的其他不利效应的优势。
在图3C的60处示出了另一可能的波形。图3C的电流波形60是具有小于100%占空比的周期方波。可以根据时间间隔(62处所示,在该时间间隔中没有电流流动)推导出小于100%的占空比。与前一实施例(图3A)相同,通过从CPU(图2的50)向DAC(图2的42)传导适当的数字字,可以生成图3C所示的电流波形的实施例。使用小于100%的占空比可以具有这样的优势:在所测得电压降足够大从而可以减少所测量的电压抽样数量的情况下会节省电力。通过在切断电流之后的短时间间隔中测量各种电极(图1的P0与P1-P6之间)之间的电压降,使用小于100%的占空比还使得可以确定某些瞬态效应。这种感生电势(IP)效应可能与地球地层(图1的22、24、26)孔隙内的流体成分有关。通过把没有电流62的时段用作测量基准,使用小于100%的占空比还使得可以更好地确定任何DC偏压。
通过使用图2所示的CPU/DAC组合可以生成的电流波形并不限于图3A、3B以及3C所示的上述多个示例。如本领域的技术人员容易理解的,通过向DAC(图2的42)传导合适的数字字,可以生成基本上任何频率和波形类型,包括例如正弦波形。在某些实施例中,可以将数字字存储在CPU(图2的50)中。在其他实施例中,可以通过电缆(图1的16)将数字字本身或用于激活选定波形数字字的命令从记录单元(图1的30)发送给仪器(图1的10)。在其他实施例中,该波形可以是伪随机二进制序列(PRBS)。
再次参照图2,某些实施例可以包括一个或更多个以下特征:将程序编写到CPU 50中,或将程序编写到记录单元(图1的30)中的地面计算机中。某些实施例可以包括对在一个或更多个电极对上(P0与P1-P6中的任何一个之间)进行的电压测量进行自动编辑。例如,如果特定数字电压抽样表示选定范围以外的数字,那么可以舍弃该抽样,可以将一内插值写入CPU 50中的存储器或把它发送给记录单元(图1的30)以替代偏离的(outlying)抽样值。另选地,如果电压测量不随着P0与各种测量电极P1-P6之间的间距的增大而单调增大,那么可以:舍弃该异常的电压抽样;对其进行插值或不将其直接写入存储器。其他实施例可以包括:在井眼中的大致相同的深度堆叠与同一电极对(P0与P1-P6中的任何一个之间)相对应的电压测量字,以显著提高测量的信噪比。
再次参照图1,其他实施例可以包括永久安装电极阵列,如在图1的套管16内侧的A和P0到P6处所示。可以将电缆或类似装置用于从靠近含油储层(例如,图1的地层24)的选定深度处的井眼14内侧电连接到地面。可以在井眼14的生命期中的多个选定时刻进行测量以确定水接触(图1中未示出)随时间的移动。在这种电极A、P0-P6的永久布置中,可以将电路20置于地面处,或者可以正如本文先前描述的电缆传送仪器那样将电路20置于井眼14中。
可以按许多不同的方式执行对仪器的操作,这里将阐述其中几种方式。在常规测量模式中,可以将仪器10移动到井眼14中的要进行测量的选定深度处。首先,通过CPU(图2的50)的内部程序设计或通过首先从记录单元(图1的30)发送的命令来对电路20进行操作,以使得能够测量由完全沿套管12流动的电流所导致的电压降。为了进行套管电压降测量,将功率放大器(图2的44)连接在位于仪器10上的电流源电极A与被耦合到地面处的套管(图1的12)的顶部的套管电流返回电极34B之间。然后在P0与P1到P6中的任何一个或更多个之间进行电压测量。然后对功率放大器(图2的44)的输出进行切换,以返回地面处的测量电流返回电极34B*处的测量电流。在P0与P1到P6中的相同电极之间进行另一组电压测量。然后可以将仪器10沿井眼14移动一选定轴向距离,从而可以重复所述测量过程。可以把在P0与P1到P6中的任何一个或更多个之间测得的电压差值在数学上转换成测得的电压降相对于井眼14的深度的二阶导数。这种二阶导数值与随深度变化的进入地球地层22、24、26的电流泄漏有关,因此与地层22、24、26中的每一个的电导率有关。具有优势的是,大致如图1和2所示地构造的仪器不需要测量在多个级联差动放大器(所有这些级联差动放大器都是模拟的)上的电压降以确定电压降相对于深度的二阶导数。
通过设置聚焦电流系统以在轴向上限制测量电流通过各种地球地层的流动,可以改进根据本发明的仪器性能。图4示意性地示出了包括聚焦电流系统的示例仪器。在授权给Fearon的美国专利No.2,729,784中描述了图4所示的示例仪器的测量原理,通过引用将其并入于此。图4的仪器包括被置于沿仪器心轴或壳体(图1的18)的多个选定位置处的电极阵列。这些电极可以在机械和电的结构方面类似于以上参照图1所述的电极。将这些电极调整成与井眼(图1的14)中的管或套管(图1的12)相电接触。
图4的实施例中的电极包括两对聚焦电流电极(示于B1A、B1B和B2A、B2B处),这两对聚焦电流电极大致等间隔地布置在中央测量电流源电极M0的轴向的任一侧。将基准电势测量电极R1A、R1B以及R2A、R2B分别布置在各聚焦电流电极对B1A、B1B;B2A、B2B与测量电流源电极M0之间。将各聚焦电流电极对B1A、B1B和B2A、B2B分别连接到对应的聚焦电流功率放大器44A、44C的输出。在本实施例中,通过利用对应DAC42A、42C的输出驱动各功率放大器44A、44C,来生成聚焦电流。可以将各DAC 42A、42C连接到总线或到CPU 50的其他类似数据连接。如以上参照图2阐述的实施例中的那样,图4所示的实施例可以包括由CPU 50存储或解释的数字字,该数字字表示待由各功率放大器44A、44C来生成并传导到套管(图1的12)的聚焦电流波形。在其他方面中,可以控制的波形方面包括幅值、相位、频率以及占空比。
将各对基准电势测量电极R1A、R1B和R2A、R2B耦合到相应的低噪声前置放大器38A、38B或与参照图2所描述的前置放大器类似的低噪声放大器的输入端子。将各低噪声前置放大器38A、38B的输出耦合到ADC42A、42B。将ADC 42A、42B的输出耦合到总线或到CPU 50。在本实施例中,优选地,ADC 42A、42B是与参照图2描述的ADC类似的24位分辨率装置。在本实施例中,分别在各对基准电势电极R1A、R1B以及R2A、R2B之间进行电势差测量。CPU 50接收表示分别在各基准电极对R1A、R1B以及R2A、R2B之间测得的电势的数字字。可以通过CPU 50控制各功率放大器44A、44C输出的聚焦电流的幅值,使得分别在各对基准电势电极R1A、R1B以及R2A、R2B之间测得的电势基本上等于零。CPU 50例如通过改变功率放大器44A、44B的输出的幅值或占空比或同时改变这两者,使得能够进行这种调节。可以针对功率放大器44A、44B中的任何一个或两个来改变幅值和/或占空比。本领域的技术人员会想到用于改变或调节各聚焦电流功率放大器44A、44C的功率输出的其他方法。进行这种聚焦电流幅值调节以分别在基准电极R1A、R1B以及R2A、R2B之间保持大致零电势的目的是为了确保在套管(图1的12)内存在这样的区域,即,其中沿着套管在任一向上或向下方向上基本上没有净电流流动。
图4的实施例可以包括数字控制测量电流源。在本实施例中,该源包括被耦合到总线或到CPU 50的测量电流DAC 42B。通过将波形字传给DAC 42B生成了测量电流,该DAC 42B将该字转换成驱动信号,该驱动信号用于在其输入处被耦合到DAC 42B的输出的测量电流功率放大器44B。可以将测量电流功率放大器44B的测量电流输出耦合到测量电流源电极M0,并可以在地面处、返回电极34B*处或另选地在套管电流返回34B处返回该测量电流输出。在测量电流源电极M0的两侧布置有测量电势电极M1A、M1B。将每个测量电势电极M1A、M1B以及源电极M0都耦合到相应的测量电势低噪声放大器38B、38C的输入。将各测量电势低噪声放大器38B、38C的输出耦合到相应的ADC 36B、36C,其中,把表示在各对测量电势电极M1A、M0以及M1B、M0之间测得的电势值的数字字传给CPU 50以进行处理。优选地,测量电势ADC 44B也是24位分辨率装置。套管外部的地球地层的电阻率与测量电势电极之间的电势和测量电流的幅值有关。可以按与参照图2的实施例所阐述的方式基本上类似的方式控制测量电流的波形、频率以及占空比。
如图4所示的系统的可能优点包括:与先前可能的相比可以更准确地控制聚焦电流特性,使得对测量电极M1A、M1B之间的电势的测量更准确。
图5示意性地示出了根据本发明的仪器的另一实施例。该仪器包括按轴向间隔开的多个位置布置在仪器壳体18上的电极阵列。将这些电极表示为A、B、P、O、N以及M。通过被表示为“控制单元”50A(可以将其引入以形成在设计上与图2的CPU 50相似的控制器的一部分)的切换系统将这些电极耦合起来。控制单元50A选择将哪个电极耦合到哪个或选定的电路。该电路包括电流源52。该电流源52可以是数字合成器,并可以包括DAC和功率放大器(未单独示出)。该电路可以包括电压(或电势)测量电路51,该电压测量电路51可以包括如参照图2所阐述的低噪声前置放大器和ADC(未单独示出)。该电路还可以包括电压反馈单元53,该电压反馈单元53可以在结构上类似于参照图4所阐述的聚焦电流源。
为了执行各种类型的测量,图5所示的仪器可以选择要施加给所述多个电极中的选定电极和选定电极对的测量电流源和聚焦电流源,并选择要在这些电极和电极对之间进行的电压测量。在下表中阐述了各种测量模式的示例和用于在各模式中进行测量的电极。
     测量模式 电流源和返回电极 在电极之间测得的 电势
    井下,完全包含 A、B M与N;O与P
    深穿透电阻率 B、电流返回在远离套管顶部的地面处(返回34B*) M与N;O与P
    快速测量 M与N A与B;O与P
    混合 混合源 混合对
在上表中,“电流源和返回电极”栏表示被耦合到测量电流源52的电极。在如“在电极之间测得的电势”栏中表示的电极对之间进行电势测量。
根据本发明的仪器(其包括经合适地编程的CPU(图2的50))的各种结构可以提供对各种电极的选择的基本实时自动控制,这种选择的目的如以上参照图4所阐述的那样,即,选择电压测量电极的轴向间距、提供给各种聚焦电极的聚焦电流的间隔和数量。图6示出了一通用流程图,其示出了被编程为执行上述功能的系统的一个示例。在70处,初始配置的电极、电流源以及电压测量电路分别发出测量电流、聚焦电流以及进行电压测量。可以由系统操作员设置初始配置,或者对初始配置进行预编程。预编程或操作员选择的初始配置可以基于在其他参数中的诸如各种地球地层的期望厚度和各种地球地层的期望电阻率等的参数。在71处,测量至少一对电压测量电极的电压。在包括基准电势电极的结构中(如参照图4所阐述的),还可以测量这种基准电势。在72处对测得的电压进行分析。该分析可以包括确定沿套管的电压降的大小以确定套管电阻率,并可以包括确定进入地层的泄漏电流的电压降。该分析可以包括针对不是基本上等于零的基准电势测量来确定极化方向。在75处,将该分析用于确定所获得的响应是否表示一组稳定的地层电阻率计算。如果响应是稳定的,则在77处将该电压测量用于确定地层电阻率,典型地,如上所述,通过确定(针对进行测量的位置附近的套管电阻率变化经校正后的)泄漏电流的大小相对于深度的二阶导数来确定地层电阻率。
在73处,可以将电压测量用于建立在靠近仪器(图1的10)的井眼(图1的14)的外部周围的电阻率分布的模型。例如,在以下文献中公开了用于确定地球地层模型的方法:U.S.patent no.5,809,458issued to Tamarchenko(1998),entitled,Method of simulating theresponse of a through-casing resistivity well logging instrumentand its application to determining resistivity of earthformations。在74处,该模型经受灵敏度分析。通过合适的灵敏度分析,在76处可以将该模型用于确定聚焦电流电极的最优布置。如果确定的最优聚焦电流电极布置与最初或当前配置不同,则在79处改变该配置,并在78处改变聚焦电流参数以为该模型提供最优灵敏度响应。
图7示意性地示出了可用于勘探相对较长的电极间轴向跨距和较短轴向跨距的不同实施例。图7的实施例包括多个“卫星”或辅助仪器单元(通示在62处),通过多个电缆段17将它们相互轴向地耦合起来。在具体实现中可以使用任何数量的辅助单元62。每个辅助单元62可以包括一个或更多个如上所述地制作的电极,并将它们调整成与套管(图1的12)相电接触。每个辅助单元62可以包括如参照图2所阐述的那样配置的一个或更多个电流源,和同样如参照图2所阐述的那样配置的一个或更多个电压测量电路。电缆段17的长度并非是对本发明的范围的限制,但是,认为电缆段的长度典型地约为1到1.5米。
可以将辅助单元62沿轴向布置在中央控制单元60的两侧,并将其电连接到中央控制单元60。中央控制单元60可以包括在配置上与参照图2所阐述的CPU类似的中央处理器。控制单元60可以对各种辅助单元62进行操作以使其充当测量电流或聚焦电流中的任何一个或两个的电流源电极和/或电流返回电极,这些电流如参照图4所阐述的那样。也可以将辅助单元62上的各种电极配置成对如参照图4所阐述的那样的测量电流和聚焦电流中的任何一个或两个进行电压测量。在某些实施例中,中央控制单元60本身可以包括一个或更多个电流源(未单独示出)和一个或更多个电压测量电路(未单独示出)。中央控制单元60还可以包括在配置上与参照图2所阐述的收发器类似的遥测收发器,将该遥测收发器适合于按选定遥测格式向地面发送测量信号并且通过电缆16从地面接收命令信号。另选地,控制单元60可以包括如参照图2所阐述的那样的记录装置,该记录装置用于存储测量结果,直到从井眼(图1的14)收回仪器。
在某些示例中,例如,通过选择最内的辅助单元(轴向上最接近控制单元60的辅助单元)以提供聚焦电流源电极并且选择最外的辅助单元62(轴向上最远离控制单元60的辅助单元)以提供聚焦电流返回电极,可以将图7所示的实施例电子地配置成在跨很长轴向跨距上提供聚焦电流。如本领域的技术人员容易理解的,聚焦电流的这种长轴向跨距可以提供测量电流的相对较大的径向(横向)的“勘探深度”,这是因为这种测量电流被限制为在横向上流动比当聚焦电流跨过较小的轴向跨距时要大的距离。
图7所示的控制单元60/辅助单元62结构的可能的优点是:可以通过中央控制单元60对各种电极选择性地进行配置并且电子地进行再配置,以对导电管外部的地球地层电阻率进行大范围不同径向深度和轴向分辨率的测量。更具体来说,通过中央控制单元60中的电路可以对各辅助单元62上的一个或更多个电极之间的电连接进行独立的寻址。尽管可以想像将图7所示的结构设计成适于单个延伸的仪器壳体,但是本领域的技术人员容易理解,由揉性电缆段17互连的一组轴向更短的单元(60、62)更容易被插入井眼并从井眼收回,尤其是在井眼不是基本上垂直的或包括具有相对较高的轨迹曲率的位置(“死弯(dog leg severity)”)。
图8示出了另一实施例。图8的实施例包括如参照图7的实施例所阐述的那样配置的中央控制单元60,并包括同样如参照图7的实施例所阐述的那样配置的多个辅助单元62。通过电缆段17将辅助单元62首尾相连地相互连接起来并连接到中央控制单元60。通过电缆16或在本领域中已知的其他传送工具可以将整个阵列的辅助单元62和中央控制单元60传送到井眼中或从井眼传送出来。
在本实施例中,中央控制单元60和辅助单元62中的任何一个或更多个可以包括被置于壳体内的地震接收器SR。优选地,该包括地震接收器SR的一个或更多个单元的壳体包括可选择性地延伸的支持臂63,该支持臂63用于促使各壳体与管或套管(图1的12)的内表面相接触。所述地震接收器可以是单个传感器元件(未单独示出),或者可以是沿不同敏感轴布置的多个传感器元件。该传感器元件可以是地震检波器、加速仪或在本领域中已知的任何其它地震感测装置。在授权给Kennedy等人的美国专利No.5,438,169中示出了用于支持臂63的致动机构以及地震传感器的合适结构,通过引用将其并入于此。优选地,其中具有地震接收器SR的所述一个或更多个单元包括这样的电路(未单独示出),即,其用于把由所述一个或更多个感测元件检测到的信号转换成适当格式化的遥测数据,以按选定遥测格式将其记录在中央单元60中并且/或者将其发送到地面。
在操作中,可以将图8的实施例移动到井眼中的选定深度,并可以延伸一个或更多个支持臂63以促使相关联的单元的壳体与套管相接触。可以按选定时间致动被置于地面处的地震能量源65,并记录由一个或更多个地震接收器SR检测到的信号(针对源65的致动时间被索引)以进行解释。按井眼中的不同选定深度可以重复对支持臂63的延伸、对源65的致动以及对信号的记录。
类似地,当把所述阵列置于井眼中的多个选定深度中的每一个深度处时,在进行地震数据记录的同时,可以通过使用一个或更多个辅助单元62来对电压降和电流幅值进行测量。根据在所述多个单元60、62中的每一个上使用的电极类型,还可以在将该阵列在井眼中移动的同时进行电压测量。
尽管图8所示的实施例包括位于中央控制单元60和辅助单元62中的每一个中的地震接收器SR和支持臂63,但是应当清楚地明白,所述多个单元60、62中的任何一个或更多个可以包括地震接收器和支持臂。
如图8所示在所述多个单元60、62中的每一个中使用支持臂63的可能的优点在于:每个支持臂63都可以起到以下两个作用:提供了单元壳体与套管之间的良好的机械接触,以增强它们之间的声耦合;和提供了支持力,使得可以促使电极(见图2)与套管内部稳固地相接触,以增强它们之间的电接触。如图8所示地配置的组合通套管电阻率测量和井孔地震仪器可以提供在操作过程中节省大量时间的优点,这是因为可以在将仪器插入到井眼中的单次插入中进行了地震勘测和电阻率测量两者。在使用传送工具(例如,井牵引机或钻管)而非重力的情况下,这种时间节省会很显著。
图8所示的实施例还可以在中央控制单元60和辅助单元中的一个或更多个中包括重力传感器(通示于G处)。该一个或更多个重力传感器G可以是全重力场传感器,或差分重力传感器。例如,在授权给Orban的美国专利No.6,671,057中公开了合适类型的重力或差分重力传感器。例如在对地下储层进行流体位移监测时,可以使用如图8所示地配置的包括电阻率传感器、重力传感器以及地震传感器的仪器。
图9示出了用于与套管内部相电接触的电极系统的一个示例。该电极系统包括被耦合到仪器壳体18的外表面的电绝缘层90。将多条弹性的导电导线90机械地耦合到绝缘层92,以从壳体18和绝缘层92的外部向外横向伸出。该多条导线90全都相互电接触。优选地,导线90由抗腐蚀、高强度和“类弹簧的”合金制成,并具有这样的长度,即,使得由导线90横穿过的自由直径比待勘探井眼中的管或套管(图1的14)的期望最大内径要稍大。由此可以促使导线90与管或套管的内部相擦或相刮地接触。尽管有些导线90可能没有穿透管内部上存在的垢(scale)、沉淀物或腐蚀,但是有些导线90可能穿透了这些层并因此提供了与管或套管的良好的电接触。
图10示出了导线90的能够相互电接触并与壳体内表面绝缘的一种可能的结构。将导线90接合到导电基板92B。通过下绝缘层92A将基板92B与壳体(图9的18)的外表面绝缘。可以将上绝缘层92C覆盖在基板92B的外表面上,以防止壳体(图9的18)与基板92B之间的电接触。由此,导线90用作位于基板92B和绝缘层92A、92C的位置处的单个电极。
图11示出了用于估测可延伸/可收回型电极与管内表面之间的接触质量的系统的一个实施例。通过被置于液压缸100中的活塞102来延伸并收回图11的电极106。另选地,可以使用螺线管或其他类似的电磁装置来延伸和收回电极106。通过0形环100等将本实施例中的活塞102相对于缸100密封起来。在靠近电极106的接触末梢处设有绝缘心轴114,该绝缘心轴114包括电磁发射机天线110和电磁接收机电线112。天线110、112可以是线圈。将发射机线圈110耦合到交流(AC)108的源。优选地,交流源108具有这样的频率,即,选择该频率以使得在接收机线圈112中感生的电压和线圈110、112与管或套管14之间的距离有关。通过被耦合到接收器线圈112的电压测量电路116确定该电压。此外,将电阻测量电路(其可以是直流(DC)型,或优选地是AC型)电耦合在电极106与管14之间。可以在地面处进行管连接,或者通过仪器(图1的10)上多个电极中的不同电极进行管连接。当由电压测量电路116检测到的电压保持稳定(这表示电极106不再向管14移动)并且由电阻电路118测得的电阻达到最小时,确定电接触的质量。
如本领域的技术人员容易理解的,有时井眼中的管的内部状况是这样的:确实难以或者甚至不可能在仪器上的电极与导电管之间提供充分的电接触。大量的操作时间可能耗费在试图在这样的管段中进行这种电连接,即,这些段被相当程度地损坏或被覆盖在矿物和/或烃类沉积物中,因此使得电接触很差。根据本发明的装置的一个实施例可以包括一个或更多个类型的井眼成像装置,以辅助系统操作员确定井眼管的任何特定部分是否可能无法提供用于良好电接触的足够基础。图12示出了井眼成像子系统的一个示例。成像子系统7可以包括其中示出的井眼壁面成像装置的多个实施例中的任何一个或所有实施例。在某些实施例中,可以将成像子系统7和附加的成像子系统中的一个包含在一个或更多个辅助单元62中、中央单元60中,或包含在诸如图1所示的单壳体系统中。
可以将成像子系统7包含这样的壳体中,即,在该壳体内具有常规力和载荷承载部分122、声透明和/或光透明窗口部分120。在透明窗口部分120中可以包括光视频摄像机134和超声换能器(ultrasonictransducer)132,可以将光视频摄像机134和超声换能器132中的任何一个或两个耦合到马达130,该马达130用于使摄像机134和换能器132旋转以使得可以对管的整个内周进行成像。可以将摄像机134和换能器132的输出耦合到常规信号处理电路128,优选地,将该信号处理电路128置于壳体122中。
壳体的一部分可以包括一个或更多个电绝缘接触垫124,通过在124A处通示的可延伸臂和链接将电绝缘接触垫124耦合到壳体122。链接124A可以是在本领域中已知的任何类型,其用于从壳体122向外横向延伸垫或接触装置。所述一个或更多个垫124中的每一个可以包括多个间隔开的电极126,用于在它们之间或参照选定的电势点(如壳体122)进行流电电阻(galvanic resistance)测量。在授权给Dory等人的美国专利No.5,502,686中公开了用于形成井眼(包括管)的内表面的电图像和超声波图像的成像装置,通过引用将其并入于此。在授权给Gendron等人的美国专利No.5,134,471中公开了用于在井眼中使用的视频成像装置,通过引用也将其并入于此。根据本发明的通管电阻率测量装置的各种实施例可以包括图12所示的多个成像系统中的任何一个或更多个、或全部。
在操作过程中,系统操作员可以观察由图12所示的一个或更多个成像系统进行的测量视觉表示,例如通过图形打印或视频显示的表示。如果系统操作员确定井眼的特定部分可能难以建立良好的电接触,则操作员可以将仪器(图1的10)布置到井眼的不同部分。另选地,可以针对井眼中的深度对由一个或更多个成像系统进行的测量进行记录,同时进行如本文先前所阐述的电势测量。然后可以将图像表示与电势测量组合使用,以评估该电势测量是否更可能表示管外部的地球地层的真实电阻率,或者这种电势测量是否更可能在材料方面受到管内部状况的影响。通过提供一种用于解决不明确的测量(其中怀疑管的状况对电势测量有影响)的方法,这种成像因而可以改进解释结果的质量。
尽管已针对有限数量的实施例对本发明进行了描述,但是受益于本公开内容的本领域的技术人员将理解可以设计出不脱离这里所公开的本发明范围的其他实施例。因此,本发明的范围应当仅由所附权利要求来限定。

Claims (34)

1、一种用于从钻透地球地层的井眼内侧的导电管内对该地层的电阻率进行测量的仪器,该仪器包括:
首尾相连的多个壳体,所述多个壳体被调整成穿过所述管的内部;
位于各壳体上的至少一个电极,各电极被布置成与所述管的内部电相接触;
电测量电流源;
至少一个数字电压测量电路;以及
至少一个切换器,该切换器被布置成将所述电测量电流源连接在所述多个电极中的一个与电流返回之间,并且被布置成把选定电极对连接到数字电压测量电路,该电流返回位于所述管顶部的位置和位于距所述管顶部选定距离处的靠近地面的位置中的一个可选位置处,选择该电极对以进行与地球地层中的选定轴向距离和选定横向深度相对应的电压测量。
2、根据权利要求1所述的仪器,还包括聚焦电流源,其中,所述切换器被布置成将选定电极对连接到该聚焦电流源,该聚焦电流源的输出是可控制的,以限制在所述多个电极中的一个与靠近地面的返回之间流动的电流,使其流到在所述井眼横向附近的基本从所述井眼横向向外的路径。
3、根据权利要求1所述的仪器,其中,所述数字电压测量电路包括至少24位分辨率的模数转化器。
4、根据权利要求3所述的仪器,其中,该模数转化器具有是用于对所述至少一个电流源电极进行通电的电流的频率的至少一千倍的抽样率。
5、根据权利要求1所述的仪器,其中,所述测量电流源包括数字波形合成器。
6、根据权利要求1所述的仪器,其中,所述测量电流源被调整成生成切换直流电。
7、根据权利要求1所述的仪器,其中,所述测量电流源被调整成生成具有小于100%的占空比的切换直流电。
8、根据权利要求1所述的仪器,其中,所述测量电流源被调整成生成具有选定频率和波形的交流电。
9、根据权利要求1所述的仪器,其中,所述测量电流源被调整成生成伪随机二进制序列。
10、根据权利要求2所述的仪器,其中,所述聚焦电流源是可控制的,以在基准电势电极对之间保持选定电压降,通过所述切换器将该基准电势电极从所述多个电极可选择地耦合到所述数字电压测量电路。
11、根据权利要求1所述的仪器,其中,所述数字电压测量电路被调整成通过基本上连续地进行操作来确定在所述多个电极上存在的直流偏压。
12、根据权利要求1所述的仪器,其中,所述多个壳体中的至少一个包括:
支持臂,用于选择性地促使所述多个壳体中的至少一个与所述管的内部相接触;和
地震接收器,用于检测来自地震源的地震信号。
13、根据权利要求1所述的仪器,其中,所述多个壳体中的每一个在其中包括:
支持臂,用于选择性地促使所述壳体与所述管的内部相接触;和
地震接收器,用于检测来自地震源的地震信号,各壳体上的所述至少一个电极被调整成:在所述多个壳体中的每一个被促使与所述管的内部相接触时,所述至少一个电极与所述管相电接触。
14、根据权利要求1所述的仪器,其还包括被布置在所述多个壳体的一个中的至少一个重力传感器。
15、根据权利要求1所述的仪器,其中,位于所述多个壳体中的至少一个上的所述至少一个电极包括多条横向延伸的、弹性的、导电导线,所述多条导线相互电接触并与所述多个壳体中的至少一个绝缘,所述多条导线横穿过比所述管的最大期望内径大的自由直径。
16、根据权利要求15所述的仪器,其中,所述多条导线被接合到导电基板。
17、根据权利要求1所述的仪器,还包括:
用于将所述多个电极中的至少一个从所述壳体横向地向外延伸的装置,电阻测量电路被可操作地耦合在该至少一个电极与所述管之间;
电磁发射机天线和电磁接收机天线,被布置在所述至少一个电极的接触端附近;
被电耦合到所述发射机天线的交流电源;以及
被电耦合到所述接收机天线的接收机电路,由此通过对所测得的电阻与由所述接收机电路检测到的电压进行比较,可以确定接触质量。
18、根据权利要求1所述的仪器,还包括至少一个成像装置,该成像装置被调整成生成所述管内表面的至少一部分的视觉外观的表示。
19、根据权利要求18所述的仪器,其中,所述成像装置包括超声波成像器、电成像器以及光成像器中的一个。
20、一种用于从钻透地球地层的井眼内部的导电管内测量地球地层电阻率的方法,该方法包括以下步骤:
将首尾相连的多个壳体插入到管内侧的选定深度处;
使各壳体上的至少一个电极被布置成与所述管的内部相电接触;
使来自测量电流源的电流通过所述多个电极中的至少一个电极流进入所述管中;
在所述多个电极中的一个与电流返回之间切换来自所述测量电流源的返回,所述电流返回位于所述管的顶部位置和位于距所述管的顶部选定距离处的靠近地面的位置中的一个可选位置处;以及
在选定电极对之间对电压进行数字测量,所述电极对被选择以进行与地球地层中的选定轴向距离和选定横向深度相对应的电压测量。
21、根据权利要求20所述的方法,还包括以下步骤:通过所述选定电极对来切换聚焦电流源,并且控制该聚焦电流源的输出,以限制来自所述测量电流源的电流在所述多个电极中的被切换到的那一个电极与靠近地面的返回之间流动,使得该电流流到在所述井眼横向附近的基本上从所述井眼横向向外的路径。
22、根据权利要求20所述的方法,其中,按至少24位分辨率来执行所述电压的数字测量步骤。
23、根据权利要求20所述的方法,其中,以如下的抽样率来执行所述数字测量步骤,该抽样率是用于对被切换到所述电流源的所述至少一个电极进行通电的电流的频率的至少一千倍。
24、根据权利要求20所述的方法,其中,所述测量电流是数字合成的。
25、根据权利要求24所述的方法,其中,所述数字合成步骤包括合成生成切换直流电。
26、根据权利要求25所述的方法,其中,所述切换直流电具有小于100%的占空比。
27、根据权利要求24所述的方法,其中,所述数字合成步骤包括生成具有选定频率和波形的交流电。
28、根据权利要求24所述的方法,其中,所述数字合成步骤包括生成伪随机二进制序列。
29、根据权利要求21所述的方法,还包括以下步骤:对所述聚焦电流源进行控制,以在基准电势电极对之间保持选定电压降,所述基准电势电极是从所述多个电极可切换地选择出的。
30、根据权利要求20所述的方法,还包括以下步骤:通过对所述多个电极上的电压进行基本上连续的数字测量,确定在所述多个电极上存在的直流偏压。
31、根据权利要求20所述的方法,还包括以下步骤:选择性地促使所述多个壳体中的至少一个与所述管的内部相接触,并且检测源自地震能量源的地震能量。
32、根据权利要求20所述的方法,还包括以下步骤:测量电流的电特性和电磁特性,这些特性与所述多个电极中的至少一个与所述管的内部之间的电接触和物理接近程度有关。
33、根据权利要求20所述的方法,还包括以下步骤:测量与所述管内部的视觉外观有关的特性,以确定所述多个电极与所述管之间的电接触的可能性。
34、根据权利要求20所述的方法,其中,所述测量所述特性的步骤包括超声波成像、电成像以及光成像中的一个。
CN2005101290799A 2005-11-30 2005-11-30 用于通过导电井眼套管测量地球地层电阻率的系统 Expired - Fee Related CN1979221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005101290799A CN1979221B (zh) 2005-11-30 2005-11-30 用于通过导电井眼套管测量地球地层电阻率的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2005101290799A CN1979221B (zh) 2005-11-30 2005-11-30 用于通过导电井眼套管测量地球地层电阻率的系统

Publications (2)

Publication Number Publication Date
CN1979221A true CN1979221A (zh) 2007-06-13
CN1979221B CN1979221B (zh) 2010-09-29

Family

ID=38130453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005101290799A Expired - Fee Related CN1979221B (zh) 2005-11-30 2005-11-30 用于通过导电井眼套管测量地球地层电阻率的系统

Country Status (1)

Country Link
CN (1) CN1979221B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946001A (zh) * 2012-11-30 2013-02-27 中国海洋石油总公司 一种与随钻电阻率测井仪相耦合的天线耦合器
CN104094137A (zh) * 2012-01-06 2014-10-08 普拉德研究及开发股份有限公司 用于地震勘测的光纤井部署
CN112443314A (zh) * 2020-11-23 2021-03-05 中国科学院电工研究所 一种测井方法及测井装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459196A (en) * 1938-12-22 1949-01-18 Sun Oil Co Electrical logging method and apparatus
US2729784A (en) * 1950-11-30 1956-01-03 Lane Wells Co Method and apparatus for electric well logging
US2891285A (en) * 1956-01-04 1959-06-23 Kaplan Harry Method of making a mold for casting a shoe last
US4796186A (en) * 1985-06-03 1989-01-03 Oil Logging Research, Inc. Conductivity determination in a formation having a cased well
US5570024A (en) * 1986-11-04 1996-10-29 Paramagnetic Logging, Inc. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes
US5633590A (en) * 1986-11-04 1997-05-27 Paramagnetic Logging, Inc. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present
US5809458A (en) * 1996-09-05 1998-09-15 Western Atlas International, Inc. Method of simulating the response of a through-casing electrical resistivity well logging instrument and its application to determining resistivity of earth formations
FR2795521B1 (fr) * 1999-06-22 2001-09-21 Schlumberger Services Petrol Procede et dispositif pour determiner la resistivite d'une formation traversee par un puits tube
US6975121B2 (en) * 2004-03-22 2005-12-13 Kjt Enterprises, Inc. System for measuring earth formation resistivity through and electrically conductive wellbore casing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094137A (zh) * 2012-01-06 2014-10-08 普拉德研究及开发股份有限公司 用于地震勘测的光纤井部署
US9798023B2 (en) 2012-01-06 2017-10-24 Schlumberger Technology Corporation Optical fiber well deployment for seismic surveying
CN102946001A (zh) * 2012-11-30 2013-02-27 中国海洋石油总公司 一种与随钻电阻率测井仪相耦合的天线耦合器
CN112443314A (zh) * 2020-11-23 2021-03-05 中国科学院电工研究所 一种测井方法及测井装置
CN112443314B (zh) * 2020-11-23 2023-09-26 中国科学院电工研究所 一种测井方法及测井装置

Also Published As

Publication number Publication date
CN1979221B (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
US7388382B2 (en) System for measuring Earth formation resistivity through an electrically conductive wellbore casing
CN102062878B (zh) 从带套管的井筒内部测量岩层电导率的方法
CN1938604B (zh) 通过导电井筒套管测量地球岩层电阻率的系统
US9611736B2 (en) Borehole electric field survey with improved discrimination of subsurface features
US8638103B2 (en) Electromagnetic logging between borehole and surface
CN101263404B (zh) 高分辨率的电阻率地层成像仪
US6714014B2 (en) Apparatus and method for wellbore resistivity imaging using capacitive coupling
US10132955B2 (en) Fiber optic array apparatus, systems, and methods
CN101268385A (zh) 高分辨率的电阻率地层成像仪
CN101473245A (zh) 用于油基泥浆内张量微电阻率成像的方法和设备
WO2010123696A2 (en) Marine source to borehole electromagnetic mapping of sub-bottom electrical resistivity
CN1979221B (zh) 用于通过导电井眼套管测量地球地层电阻率的系统
HU184067B (en) Hydrocarbon prospection method and device for indirect observing hydrocarbon reservoirs
WO2002086459A1 (en) An apparatus and method for wellbore resistivity determination and imaging using capacitive coupling
CA2524728C (en) System for measuring earth formation resistivity through an electrically conductive wellbore casing
EP1780558B1 (en) System for measuring earth formation resistivity through an electrically conductive wellbore casing
역T kkkk is subject to a terminal dis (Continued) Primary Examiner–Patrick J. Assouad (21) Appl. No.: 10/859,611 Assistant Examiner–David M. Schindler

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20181130

CF01 Termination of patent right due to non-payment of annual fee