CN1968408A - 一种视频码流过滤方法和过滤节点 - Google Patents
一种视频码流过滤方法和过滤节点 Download PDFInfo
- Publication number
- CN1968408A CN1968408A CNA2006100790231A CN200610079023A CN1968408A CN 1968408 A CN1968408 A CN 1968408A CN A2006100790231 A CNA2006100790231 A CN A2006100790231A CN 200610079023 A CN200610079023 A CN 200610079023A CN 1968408 A CN1968408 A CN 1968408A
- Authority
- CN
- China
- Prior art keywords
- module
- harmful
- content
- video code
- code flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/162—Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
- H04N7/163—Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44209—Monitoring of downstream path of the transmission network originating from a server, e.g. bandwidth variations of a wireless network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/454—Content or additional data filtering, e.g. blocking advertisements
- H04N21/4542—Blocking scenes or portions of the received content, e.g. censoring scenes
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明涉及多媒体通信技术,特别涉及一种多媒体通信过程中的视频码流过滤方法和过滤节点,以解决现有基于人工识别的深度内容过滤方法效率低,缺乏通用性的问题。本发明提供的过滤方法只需要部分解码视频码流中的部分数据,进一步基于场景分割技术进行识别。本发明所述方法可以基于现有有害内容的自动识别技术,可以高效的实现自动识别过滤并和人工识别机制配合使用,还可以同时采用现有的基于URL的过滤技术。本发明的过滤节点主要包括:视频码流延迟模块、开关模块、I帧检测/解码模块、符合特定分类定性分级标准的内容识别模块和判决模块,本发明技术方案减少了需要解码的数据数量,降低了处理复杂度。
Description
技术领域
本发明涉及多媒体通信技术,特别涉及一种多媒体通信过程中的视频码流过滤方法和过滤节点。
背景技术
流媒体(Streaming Media)作为一种基本的多媒体通信形式,派生出了众多的多媒体通信业务形式:会议电视/可视电话,IPTV,VOD,即时通信等等。因此流媒体将成为下一代网络NGN(Next Generation Network)上的基本通信形式。尤其是近几年来国内外IPTV(Internet Protocol Television,IP电视)业务的快速兴起,流媒体在网络上的应用也在急速发展。
流媒体上的一类业务比如IPTV和VOD(Video on Demand,视频点播),都是以提供视频音频内容为功能的。内容的范围非常广阔,包括影视节目、新闻、体育比赛、演唱会等等。各个国家,尤其是我国,对于内容的安全和监控一直是高度重视的,都有相关的法律。从保护未成年人角度出发,各国也有相关的规定。同时,在运营商/ISP(Internet Service Provider,因特网服务提供商)和内容提供商那里也有这样的需求。国内即将大规模开展IPTV的运营,那么首先一个问题是如何保证有效的内容监控和过滤,把有害的内容屏蔽掉,不解决这个问题,IPTV在国内的运营将无从谈起,国家相关部门也不可能发放牌照。因此,这个问题的解决对于推动IPTV产业的发展有着重要的意义。对于内容安全,通常的理解包括两个方面:
1、对于内容的保护,防止内容被没有权限的用户接收;
比如防止盗看电视节目等。对于这类入侵,有很多成熟技术,比如加密(Encryption)和加扰(Scrambling)、认证鉴权、以及数字版权管理DRM(DigitalRight Management)等。
2、对于有害和非法内容的入侵的防范,保护的对象是内容攻击的对象,通常是受众。
所谓内容过滤,就是对于内容的某些属性进行处理和判断,这些内容属性可以包括:内容提供商的名字、内容的URL(Universal Resource Locator通用资源定位器,网址是一类重要的URL)、内容提供服务器的IP地址等,以及媒体流以数据包封装情况下的数据包的包头(packet header)信息、包中的信息等。可以看出,这种处理和过滤也是按照由浅入深的层次进行的。
现有技术一主要是依据内容的外部特征,或者叫做浅层特征来进行内容过滤。其中最典型的例子是基于URL的过滤,其原理如图1所示:内容过滤设备位于网络上的核心网和边缘接入网之间,那么是来自内容源的媒体流到达接收终端之间的必由之路关口,在实际中,可以和企业网的代理、NAT(NetworkAddress Translator,网络地址翻译设备)/FW(Firewall,防火墙)放在同一个网络位置,对于宽带家庭用户的情况,可以和BAS(Broadband AdministrationSystem,宽带管理系统)/BRAS(Broadband Registration and Admission System,宽带注册和准入系统)、DISLAM放在同一个位置,或者放在ISP的POP(Pointof Presence,存在点)上。
过滤设备自己有内部数据库,存有多个内容源URL的信息,根据这个数据库就可以判断一部分内容源是否有害,并屏蔽有害内容源、放行无害内容源。同时,还有很多提供第三方服务的内容分级服务商,他们的数据库更加丰富和专业,内容过滤设备也可以和这种第三方服务商连接,使用他们的服务来进行基于URL的过滤。
现有技术一存在如下问题:
1、错杀问题:根据基于URL的过滤,可能把无害的内容过滤掉了,比如有的网站提供视频节目点播,其中有些节目是有害的,但是有些是健康的电影,仅根据URL无法区分;
2、错放问题:有些URL可能因为在分级体制中被认为是资质优良的网站,可能也会出问题(被黑客攻击冒充其网址,或者自己有违法的企图等);
3、采用基于URL的过滤,通常也还需要第三方的评级体系,这样的评级体系是有的,有些收费的评级服务商专门提供评级服务。但是他们的结果也不能完全准确和穷尽网络上所有的内容。并且网络上的内容也是经常变化的,任何一个评级体系也不可能及时跟上这些变化。
对于要求非常高的应用场景,比如面向全国公众的IPTV,如果一旦有有害内容尤其是政治敏感内容入侵成功,造成的危害是巨大的。必须做到万无一失,因此采用浅层次的过滤都是不可靠的。必须采用最深层次的内容过滤,即视频音频数据本身的过滤,比如对于图像的识别,识别其中的有害场景(暴力、色情等)、有害文字信息(字幕)、特定人物的面孔等等。
要达到很高的过滤正确率,必须深入到最深的层次,即内容数据本身。这个方面属于目前研究热点,深度包过滤DPF(Deep Packet Filtering)。
现有技术二深度DPF基于人工的深度内容设别,这种情况下,内容过滤设备能够对于媒体流进行解码并将内容播放出来(假设加密不是问题,因为加密的问题可以通过通信设备的合法监听要求解决),供人工监控者审查。如果发现有问题,监控者立即采取措施,切断有害内容,同时切换到一段无害的内容比如公益广告等。当然在内容过滤设备之后必须有一个相当大容量的延迟设备,来延迟有害内容,给监控人员一定的判断和反应处置时间(比如5秒)。
现有技术二存在如下问题:
1、缺乏通用性和可扩展性:显然人工的方法无法适应未来网络的需求。通用性差,可扩展性差。并且人工判别,判别标准和人的教育、文化水平和意识形态等很主观的因素有关,无法做到标准一致;
2、无法适用于IPTV的情况:以上人工方法可以适用于电视节目的监控,但是对于IPTV非常不适合。因为IPTV内容数量巨大,网络上的内容源数量更多,因此靠人工几乎无法胜任;
3、有大的延迟,不能适用于双方实时通信的情况:流媒体在双向的情况下,要求延时不能超过400ms,人工判别不可能做到这么低的延时。但是双向通信中,比如视频聊天却是很容易存在有害内容的地方。
发明内容
本发明提供一种多媒体通信过程中的视频码流过滤方法和过滤节点,以解决现有基于人工识别的深度内容过滤方法效率低,缺乏通用性的问题。
本发明所述一种多媒体通信过程中的视频码流过滤方法,包括如下步骤:
A、从多媒体通信过程中传输的视频码流中获取待检测的帧内编码帧,部分解码该帧内编码帧图像;
B、识别所述内编码帧图像中是否包含有害内容,如果是则切断所述视频码流的播放;否则播放该视频码流。
所述步骤A中还包括:获取并部分解码所述帧内编码帧之前和/或之后相邻的一定数目帧的图像;
所述步骤B中还包括,利用所述相邻帧的图像辅助识别所述帧内编码帧图像。
所述步骤A中,所述待检测的帧内编码帧包括所述视频码流中的每一个帧内编码帧,根据包含帧内编码帧的数据包的包头中相应设置的帧内编码帧标识信息进行识别。
所述步骤A中,所述待检测的帧内编码帧为所述视频码流中包含的每一个场景中的第一个帧内编码帧。
所述方法中还包括如下步骤:根据视频数据包的结构信息对所述的视频码流进行场景分割;和/或,根据视频流的统计信息对所述的视频码流进行场景分割。
所述方法中,当所述视频码流采用H.264协议编码时,所述的帧内编码帧是指包含帧内编码条带或宏块MB最多的帧,该帧标识有瞬时解码刷新IDR标志。
所述方法还同时包括:利用预存的有害通用资源定位器URL信息库,对多媒体通信过程中的相关信令进行基于URL的过滤。
所述步骤B中还同时包括:记录识别出的有害内容的相关URL信息并根据历史记录对该URL信息进行评级,如果该URL信息达到设定的级别则将该URL信息添加到有害URL信息库中。
所述方法还同时包括:识别所述视频码流对应的音频码流中是否包含有害声音,如果是则切断所述视频码流的播放;否则继续播放该视频码流。
所述步骤B中,将所述帧内编码帧图像输入自动识别模块,自动识别模块将预存的有害内容数据库中的有害内容与所述帧内编码帧图像中包含的相关内容进行逐一比对来进行有害内容的自动识别;和/或将所述帧内编码帧图像显示给监控者来进行有害内容的人工识别。
当人工识别和自动识别同时进行时,如果二者的识别结果出现不一致,则优先执行自动识别模块或监控者的判决结果。
当人工识别和自动识别同时进行时,由自动识别模块和监控者分别根据预先设定的规则,为识别出的有害内容给出相应的有害程度分值,然后对两个分值进行加权处理后得到最终执行的判决结果,当仅收到一方为认定的有害内容给出的分值时,默认另一方为该内容给出的分值为零。
所述的加权处理方法为:
SI=(WM×SM+WH×SH)/(WM+WH)
其中,WM和WH表示自动识别模块和监控者的权值,WM和WH之间的相对大小表示了对识别结果的信任度,SM和SH分别自动识别模块和监控者给出的分数,如果SI大于一个给定值,则判决结果为有害,否则判决结果为无害,WM、WH和给定值分别根据经验值设定。
所述方法还同时包括:录制识别出的有害内容,当人工识别和自动识别同时进行时,如果自动识别和人工识别结果不一致并最终执行了人工识别的有害判决结果,则学习被识别出的有害内容并将学习结果添加到有害内容数据库中。
所述的有害内容至少包括如下之一:有害图像、有害叠加文字或符号、特定人脸图像。
所述的过滤方法中,切断播放所述视频码流的同时,启动播放备用无害视频码流。
所述方法还同时包括:录制并保存指定时段播放的视频码流。
所述方法还同时包括:将有害内容的识别情况记录在日志并生成日志报告。
所述方法还同时包括:根据识别有害内容所需要的时间,延迟播放所述视频码流。
本发明所述一种多媒体通信过程中的视频码流过滤节点,包括:
视频码流延迟模块,用于接收多媒体通信过程中待播放的视频码流并延迟输出该视频码;
开关模块,连接所述视频码流延迟模块,用于切断该视频码流延迟模块输出的视频码流;
帧内编码帧检测/解码模块,用于从多媒体通信过程中待播放视频码流中获取待检测的帧内编码帧或者该帧内编码帧及其之前和/或之后的相邻的一定数目帧,部分解码获取的相邻帧的图像;
有害内容识别模块,连接所述帧内编码帧检测/解码模块,用于识别所述图像中是否包含有害内容,如果是则输出相应的控制信号;
判决模块,连接在有害内容识别模块和开关模块之间,用于接收到所述控制信号时向所述开关模块输出断开所述视频码流的触发信号。
所述的过滤节点还包括:场景分割模块,连接所述帧内编码帧检测/解码模块,用于接收待播放的视频码流并对该视频码流进行场景分割。
所述的过滤节点还包括:
基于URL的过滤模块,用于接收多媒体通信的相关信令,并利用预存的有害通用资源定位器URL信息库对所述相关信令进行基于URL的过滤。
URL记录和评级模块,用于记录有害内容的相关URL信息并根据历史记录对该URL信息进行评级,如果该URL信息达到设定的级别则将该URL信息添加到有害URL信息库中;
URL评级数据库,用于保存URL评级的规则和历史记录。
所述的有害内容识别模块包括自动识别子模块,连接在所述帧内编码帧检测/解码模块和判决模块之间,用于将有害内容数据库中的有害内容与所述帧内编码帧图像中包含的相关内容进行逐一比对来进行有害内容的自动识别;和/或
人工识别子模块,该人工识别子模块具体包括:帧内编码帧图像显示单元和监控指令输入单元,其中,帧内编码帧图像显示单元连接所述帧内编码帧检测/解码模块,用于将所述帧内编码帧图像显示给监控者进行有害内容的人工识别;监控指令输入单元连接所述判决模块,用于接收到监控者在识别出有害内容时输入的切断指令时,向所述判决模块输出所述控制信号。
根据有害内容的类型,所述自动识别子模块至少包括如下之一:有害图像识别单元和相连接的有害图像数据库、有害叠加文字/符号识别单元和相连接的有害叠加文字/符号数据库、人脸识别单元和相连接的人脸数据库;其中,有害图像识别单元、有害叠加文字/符号识别单元和人脸识别单元并行连接在所述帧内编码帧检测/解码模块和判决模块之间,分别对所述帧内编码帧图像中是否包含相应的有害内容进行识别。
当所述有害内容识别模块中同时包含有自动识别子模块和指令输入子模块时,所述判决模块中包括:
第一判决单元,接收所述自动识别子模块输出的控制信号;
第二判决单元,接收所述操作界面子模块输出的控制信号;
联合判决单元,分别连接所述第一判决单元和第二判决单元,用于根据设定的规则优先执行第一判决单元或第二判决单元的控制信号;或者,所述自动识别子模块和监控者分别根据预先设定的规则,为识别出的有害内容给出相应的有害程度分值,联合判决单元对两个分值进行加权处理后得到最终执行的判决结果,当仅收到一方为认定的有害内容给出的分值时,默认另一方为该内容给出的分值为零。
所述判决模块中还包括:第三判决单元,用于接收到所述视频码流对应的音频码流的有害声音判决结果时,直接或通过联合判决单元向所述开关模块输出断开所述视频码流的控制指令。
所述过滤节点还包括:
有害内容录制模块,分别连接所述帧内编码帧检测/解码模块和判决模块,所述判决模块触发断开所述视频码流的同时,启动该有害内容录制模块录制识别出的有害内容;
录制内容存储模块,连接所述有害内容录制模块,用于保存录制的有害内容。
所述过滤节点还包括:有害内容学习模块,连接所述录制内容存储模块,用于当自动识别子模块和监控者的对该内容的识别结果不一致并最终执行了监控者的有害判决结果时,学习该有害内容并将学习结果添加到有害内容数据库中。
当自动识别子模块根据有害内容的类型分别设置时,所述有害内容学习模块对应包括如下之一:
图像学习单元,连接有害图像数据库,用于学习有害图像并将学习结果添加到有害图像数据库中;
叠加文字/符号学习单元,连接有害叠加文字/符号数据库,用于学习有害叠加文字/符号并将学习结果添加到有害叠加文字/符号数据库中;
人脸学习单元,连接人脸数据库,用于学习人脸图像并将学习结果添加到人脸数据库中。
所述过滤节点还包括:
操作界面模块,用于输入相关参数或操作指令;
视频内容录制模块,连接所述操作界面模块和录制内容存储模块之间,录制监控者指定时段的视频流并存储到录制内容存储模块。
当自动识别子模块中包含有害图像识别单元时,所述过滤节点还包括:特征网络模块,连接在所述操作界面模块和有害图像数据库之间,用于向所述有害图像数据库中输入/调整特征网络模型和/或事件特征模板。
所述过滤节点还包括:参数设置模块,连接在所述操作界面模块和场景分割模块之间,用于向所述场景分割模块中输入/调整进行场景分割所需的相关参数。
所述过滤节点还包括:
判决规则设置模块,连接在所述操作界面模块和判决模块之间,用于向所述判决模块输入/调整控制信号的判决规则;和/或
评级规则设置模块,连接在所述操作界面模块和URL评级数据库之间,用于向所述URL评级数据库中输入/调整评级规则。
所述过滤节点还包括:替换片源库,连接所述开关模块为转换开关,该转换开关在断开所述视频码流的同时,接通该替换片源库。
所述过滤节点还包括:
主控模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,用于进行运行控制;
日志报告模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,用于生成并输出该过滤节点的运行日志。
所述过滤节点还包括:外部控制模块,连接所述主控模块,用于完成和外部控制设备的数据/信令交互。
所述过滤节点还包括:控制指令模块,连接在操作界面模块和主控模块之间,用于接受人类监控者的指令。
当所述过滤节点同时包括所述监控指令输入单元时,该监控指令输入单元设置在该控制指令模块中。
本发明的有益效果如下:
本发明提供的一种多媒体通信过程中的视频码流过滤方法,只需要部分解码视频码流中的I帧图像或者该I帧以及之前和/或之后相邻的一定数目帧的图像,不需要解码其他绝大多数据帧的图像,减小了处理复杂度,缩短了视频码流播放的延迟时间,提高了视频内容深度过滤的效率;
本发明进一步基于场景分割技术,部分解码每一个场景中的第一帧图像或者该第一帧以及之前和/或之后相邻的一定数目帧的图像,并利用解码的图像进行识别,在保证识别可靠性的同时一定程度的减少了需要解码的数据帧,使处理复杂独进一步降低;
本发明所述方法基于现有有害内容的自动识别技术,可以高效的实现自动识别过滤,保证了常见有害内容的快速有效识别;
本发明所述方法同时可以和人工识别机制配合使用,可以防止新发生有害内容的漏查;
本发明还提供有害内容学习机制,在人工识别出新发生有害内容时,可以学习并添加到有害内容数据库中;
本发明多数方法还可以同时采用现有的基于URL的过滤技术,可以在信令层面禁止有害内容的来源;并且,发明进一步提供了有害内容的URL信息评级机制,可以逐步发现新的有害URL源,并将新的有害URL源及时添加到有害URL信息库中;
本发明所述方法还提供日志报告机制,可以记录视频码流过滤过程中的各种事件;
本发明所述的视频码流过滤节点可以方便实现本发明所述的方法,具有很好的通用性;
显然,应用本发明技术方案可以解决目前IPTV、数字电视等多媒体业务中的内容安全问题,保证这些业务提供的安全可靠。
附图说明
图1为现有基于内容的URL进行过滤的原理示意图;
图2为本发明视频序列中帧和场景的关系示意图;
图3为本发明场景、帧和视频码流中数据包之间的对应关系示意图;
图4为本发明特征网络模型的一个示例图;
图5为本发明所述的一种视频码流内容过滤方法的流程示意图;
图6-图9为实现本发明所述视频码流过滤方法的一种视频码流过滤节点的主要结构示意图。
具体实施方式
本发明提供一种设置在网络种合适位置上的视频码流过滤节点(Node),该过滤节点可以实现对于流式视频中的内容进行自动过滤和人工过滤,并可以同时基于URL的过滤或者类似的浅层过滤方法进行过滤。
下面首先给出本发明的视频内容的自动过滤方法,本发明的自动过滤方法是将视频码流中的I帧作为待检测对象,解码I帧后还原出I帧图像进行有害内容的识别,具体包括两种方法,一种是将所有的I帧进行解码并还原,另一种是将每一个场景中的第一个I帧进行解码还原。视频码流中,包含I帧的数据包的包头中相应设置有I帧标识,可以进行识别。
下面详细说明第二种方法,参阅图2,图2所示为视频序列中帧和场景的关系示意图,对于通过过滤节点的视频码流,首先分割成不同的场景(Scene),将原来作为一个由多个帧(Frame)组成的视频序列,分割成不同场景组成的场景序列。一个场景包含不等个数的帧,每个场景内部的各个帧在背景和前景上基本相同,只是存在一定的运动。可以理解成一个镜头,镜头切换的时候,产生新的场景。
对于分割场景,必须说明的是,场景本来是在视频内容拍摄(镜头切换)和制作(加入特效比如两个镜头之间的3D过渡效果等)的时候已经产生了的。在过滤节点上进行场景分割就是要把视频码流中的码流分成一段一段的,每一段对应于原来的一个场景。当然因为目前的场景设别技术还不能做到100%的识别精度,因此可能最终在过滤节点上分割出来的场景和视频码流中固有的场景不完全一致,但是不影响本发明的应用。
参阅图3,图3为场景、帧和视频码流中数据包之间的对应关系示意图,因为视频码流是从流媒体服务器(Streaming Media Server)等设备发出来的,是在压缩后进行了打包(Packetization),和具体的打包协议无关)的,包是按照时间顺序发出的,每个包都有对应的序列号或者时间戳(Time Stamp等),根据这些信息就过滤节点就可以正确重构包的原来顺序,从而把包和场景进行对应。因此,最终是一个场景对应于一系列的视频数据包。
其实,过滤节点只要识别每个场景的第一帧就可以了,这样就能够把所有的场景分割出来,在一个场景第一帧和下一个场景第一帧之间的所有帧都属于该场景。一般来说,一个场景中存在至少一个I帧(帧内编码帧),所谓I帧是对于P(预测编码帧)帧和B帧(双向预测编码帧)而言的。I帧的编码完全由其本身决定,而不需要依赖其他帧,而P帧要依赖其前面的参考帧才能解码,B帧则要依赖其前后的参考帧才能解码。因此I帧的解码最为简单。只要是基于DCT变换+熵编码思想的压缩编码标准中,比如ITU H.26x系列和MPEG系列,I帧的解码都只需要进行反熵编码,去量化和反DCT变换就可以了,不需要运动补偿。因此解码的计算量最少。其他类型的帧,比如P帧,要从视频码流中解码该P帧,则需要解码其前面若干个P帧,一直到前面离它最近的一个I帧。但是对于I帧,则只需要解码该I帧本身。两相比较,解码的复杂度相差巨大。其实在编码器中,虽然标准一般没有强制规定,但是一般来说,在场景发生变化时都会加入I帧,场景的第一帧往往就是I帧。对于H.264这类新的标准中,视频码流中可能没有完整的I帧,而只是一个帧的某个部分进行帧内编码比如一个条带(Slice)可以独立进行帧内编码。对于可能不存在完整I帧的这种情况,可以定义一些修正的选取准则:比如选取存在帧内编码条带或者宏块MB(Macroblock)最多的帧。对于一般的编码协议,都有标识机制来标识I帧或者帧内编码的条带等。比如在ITU的H.264标准中,是通过瞬时解码刷新IDR(Instantaneous Decoding Refresh)标志来标识的。因此过滤节点依据这些具体的标识就可以正确提取I帧或者帧内编码的条带/宏块等。
为了能够精确识别,还可以同时部分解码I帧之前及之后的相邻几帧相邻图像,用于辅助识别I帧图像,根据经验,在绝大多数情况下,一般取5帧就可以达到精确识别的目的了。当然,也可以在解码出的I帧图像的精度无法进行精确识别时,再部分解码I帧之前及之后的相邻几帧相邻图像,用于辅助识别I帧图像。
为了表述方便,下面以I帧为例进行说明。可能在一个场景内(镜头比较长),存在多个I帧,那么规定一个场景内选取第一个I帧。
在获得了一个场景内的第一个I帧后,过滤节点解码该I帧并还原该I帧图像,然后对该帧图像进行识别,包括以下两种识别方式:
1、人工识别,将I帧图像显示出来供人类监控者察看以实现人工过滤功能;
2、自动识别,将I帧图像输入自动识别模块中,利用有害内容数据库进行自动的比对识别,如果发现马上切断视频码流的播放并报告给人类监控者进行处理,现有技术中可以进行自动识别的有害内容包括下述方面:
1)、对于有害的图像内容进行自动识别,比如淫秽、暴力等场景,该图像识别技术属于成熟的已有技术;
2)、对于有害的叠加文字或者符号进行识别。首先经过处理,将文字或者符号所在区域定位出来,然后识别是垂直方向还是水平方向,再具体进行文字和背景的分割,最后把处理的结果送入一个已有的光学文字识别OCR(Optical Character Recognition)模块进行识别。将识别结果和数据库进行匹配,如果和数据库中的有害判断条件匹配成功,则确定为有害叠加文字或者符号,该叠加文字或者符号的识别技术属于成熟的已有技术;
3)、对于图像中可能存在的特定人脸进行识别,将该帧图像直接送入已有的人脸识别模块进行识别。当然已有人脸识别模块的数据库中的数据由内容监控部门自行建立,其中可以根据需要存储各类人脸:嫌疑犯、重要人物、恐怖分子等,该人脸识别技术属于成熟的已有技术。
当人工识别和自动识别同时采用时,可以定义判断条件:
1、完全以自动识别模块的识别结果为准。
2、完全以人类监控者的识别结果为准。
3、介于两者之间的,要同时参考以上两种识别结果,给出联合判决。一个实施例是:基于分数的加权平均。自动识别模块和人类监控者不但要判定是否有害,还有给出有害的分数,比如从0-100,有害程度越高,分数越高,0表示无害。那么将自动识别模块的分数和人类监控者的分数加权相加如下:
SI=(WM×SM+WH×SH)/(WM+WH)
其中WM和WH表示自动识别模块和人类监控者的权值。两者之间的相对大小表示了更加信任自动识别模块还是人类,SM和SH分别表示自动识别模块和人类给出的分数。如果最终得到的综合分数SI大于一个给定的值,比如50,那么联合判决是有害,否则是无害,如果仅有一方识别出有害内容并给出了有害内容的分值,则可以默认另一方对该内容给出的分值为0。
上述判断条件可以根据具体情况灵活使用,当然在实际中,还可以制定更为详细的综合判决规则。
一旦发现有害内容,采取的措施可以是:
1、马上切断有害视频码流和相应的音频码流,以及相关联的其他媒体流;
2、插播无害内容(公益广告或者系统检修等文字)。
过滤节点还应该具有学习功能,如果有害内容不是自动识别模块自动发现的,而是人类监控者发现的,或者通过其他渠道发现的,那么过滤节点中的学习模块就要学写该有害视频码流。为了学习系统需要把每个被监控的码流进行一定时间长度的存储比如(10分钟,考虑到需要的容量,这个时间长度应该进行最佳地调整)。为了进一步降低需要的存储容量,可以对于每个场景只存储其用于识别的I帧。一旦人类监控者发现有害内容发生于某个时刻t前后,那么学习模块就要把t-TW/2到t+TW/2(TW为学习的时间窗口长度,比如30秒)内对应的场景的I帧从数据库中读取出来,进行学习。经过学习,自动识别模块以后就可以识别此类相关的场景。学习的方法有很多,包括人工智能(ArtificialIntelligence)、模糊推理(Fuzzy Logic)、人工神经网络(Artificial Neural Network)等。
当同时基于URL进行过滤时,过滤节点还要“记住”有害内容所来自内容源的URL和其它相关信息,存入对应的“嫌疑”数据库,并根据历史记录对URL和其它相关信息进行评级。对于存入这个“嫌疑”数据库的URL,也是需要一些更加精细的处理。如果某个合法的URL只是因为一些差错或者被别人假冒了URL播放了有害内容,那么虽然被存入了“嫌疑”数据库,只要以后不再发生,经过一段时间可以消除其“嫌疑”,相反,如果多次发现某个URL的不良行为,就可以确定为“黑名单”,从而进行完全屏蔽。也可以把信息和第三方URL评级服务提供商的数据库进行共享,把过滤节点的识别结果发送给第三方评级服务提供商数据库,这样可以进行互利互惠的合作。
本发明用到的场景分割技术一般包括以下两种:
1、通过视频数据包中的结构信息(比如运动向量)等对于图像中的运动区域进行估计,可以判断多大区域在运动、运动方向,运动模式(单向运动,往复运动等等),运动幅度大小等,从而判断哪些帧在运动模式上比较相似,运动模式相似的帧一般属于同一个场景;
2、通过视频码流的统计信息进行分析,将视频码流中比特率看成关于时间的随机过程,然后进行统计建模(Statistical Modelling),从而利用统计模型估算场景的开始和结束的位置。
以上两种技术都不需要解码,因此都具有很高的效率。但是和解码之后再进行的场景分割技术(比如直方图求差等)相比,一个缺点就是分割精度相对较低。这个缺点可以通过调整场景分割模块的参数(比如一些门限值)来进行解决。将参数设置得非常灵敏有可能导致的结果是可能把原本一个场景分割成了多个场景(过分割),而不要发生把原本多个场景分割成了一个场景(欠分割)。
一种两级的视频有害内容过滤技术可以解决这类问题。其基本思想是对于图像特征进行分层定义,一般分成两个大的层面,即语义(Semantic或者叫做概念Conceptual)层面特征,以及事件(Event)层面特征。例如图4所示,如果要检测的最高的语义特征是“室外场景”,对应的较低层面语义特征包括是“海滩”、“山林”、“原野”等等,进一步有对应更低层面的语义特征,最后到事件特征,比如一座山,或者一片树木。每个事件特征都有具体的识别方法,比如识别道路,人的运动等。采用这种两层识别方法的好处是把可以自动识别的低级特征和人类可以理解的高级特征结合起来,这样的对应关系可以形成一个特征网络模型。
同样道理,可以建立“色情”,“暴力”等概念的特征网络模型,建立特征网络模型需要根据人类的理解认知过程的机理和特定领域的专家知识,属于现有技术,本发明不做进一步描述。本发明提供的是一个输入接口,通过该接口,人类专家可以定义特征网络模型的表达形式,而过滤节点可以根据这个特征网络模型进行自动识别工作。
用于本发明的有害叠加文字和图形符号的过滤方法,不需要解码即可定位到图像中的叠加字幕和图形符号区域,然后把他们提取出来,经过一定的背景前景分割,输入一个OCR(Optical Character Recognition,光学字符识别)模块进行识别,通过对于视频码流中数据包中离散余玄变换DCT(Discrete CosineTransform)系数的处理,可以定为出包含叠加文字或者图形符号的矩形区域,然后通过对于该区域的水平和垂直投影(Projection,实际上就是沿着通过该区域的所有水平或者垂直直线,对于直线上的像素亮度进行积分求和,从而得到一个一维亮度分布曲线),判断文字或者符号的走向,然后利用类似的投影方法进行行和字的分割。
本发明所述的过滤节点还可以实现日志记录功能,并和外部控制设备相连,实现与外不控制设备的数据和信令交互。
综上所述,本发明首先提供了一种基于I帧的深度内容过滤方法,如图5所示,每一个待检测I帧的识别处理方法包括如下步骤:
S1、从多媒体通信过程中待播放视频码流中荻取一个待检测的I帧以及该I帧之前和之后的相邻几帧;
待检测的I帧可以包括视频码流中的每一个I帧,根据包含I帧的数据包的包头中相应设置的I帧标识信息进行识别;
也可以只将视频码流中包含的每一个场景中的第一个I帧作为待检测的I帧。一个场景中的第一帧一般为该场景的I帧,当视频码流采用H.264协议编码时,I帧是指包含帧内编码条带或宏块MB最多的帧,该帧标识有瞬时解码刷新IDR标志。
S2、部分解码该待检测的I帧及其前后的若干帧图像;
也可以在解码出的I帧图像的精度无法进行精确识别时,再部分解码I帧之前及之后的相邻几帧相邻图像,用于辅助识别I帧图像。
S3、识别该I帧图像中是否包含有害内容,如果是则执行步骤S4;否则执行步骤S5;
S4、立即切断该视频码流的播放;
在切断该视频码流的播放的同时,还可以启动播放替换视频源。
S5、继续播放该视频码流。
如果基于场景分割技术,则在获取待检测帧之前,先对视频码流进行场景分割,然后将每一个场景中的第一帧作为待检测帧,部分解码该第一帧或帧该第一帧以及之前和/或之后相邻的一定数目帧。
本发明所述方法可以和现有的基于URL的过滤配合使用,基于URL的过滤可以对多媒体通信过程中的相关信令进行过滤,如果相关信令中包含有害URL信息,则拒绝执行该信令,从而防止接收来自有害URL源的视频码流。
本发明在基于URL的过滤的同时,还提供了有害URL信息评级机制,可以防止错杀偶发有害URL信息,并发现新的有害URL信息,然后及时将新发现的有害URL信息添加到有害URL信息库中。
本发明所述方法中,具体识别方法可以采用人工识别和自动识别,一般情况下,同时采用两种识别方法可以得到更高的效率和更保险的识别,这时,可以设定优先执行人工识别或自动识别的判决结果,当然,也可以综合考虑双方的判决结果以便得到更负责任的控制模式。
本发明所述方法还提供内容录制机制,包括对识别出的有害内容的录制和指定时段中播放的视频码流的录制,对有害内容进行录制的目的在于:如果自动识别中没有储存的有害内容信息被人工识别出来,则本发明还提供学习机制保证新出现的有害内容及时的添加到自动识别机制的有害内容数据库中;对指定时段中播放的视频码流录制目的在于:可以进一步检查来自特定URL源的视频码流,或者在视频码流中的有害内容被漏查后,为以后的学习提供资料。
本发明所述方法还同时提供日志记录和报告机制,对视频码流的过滤过程进行记录并可以生成日志报告。
如图6所示,为实现本发明所述的视频码流过滤方法,本发明提供的视频码流过滤结点主要包括:
视频码流延迟模块,用于接收多媒体通信过程中待播放的视频码流并延迟输出该视频码;具体延迟时间根据识别有害内容的所需要的经验时间确定;
开关模块,连接所述视频码流延迟模块,用于切断该视频码流延迟模块输出的视频码流;
I帧检测/解码模块,用于从多媒体通信过程中待播放视频码流中获取待检测的I帧I帧之前及之后的相邻几帧,部分解码待检测的I帧图像以及该I帧之前及之后的相邻几帧相邻图像;
当然,也可以在解码出的I帧图像的精度无法进行精确识别时,再从视频码流延迟模块中获取该I帧之前及之后的相邻几帧,并部分解码I帧之前及之后的相邻几帧相邻图像,用于辅助识别I帧图像,这时,I帧检测/解码模块同时连接视频码流延迟模块。
有害内容识别模块,连接所述I帧检测/解码模块,用于识别所述I帧图像中是否包含有害内容,如果是则输出相应的控制信号;
判决模块,连接在有害内容识别模块和开关模块之间,用于接收到所述控制信号时向所述开关模块输出断开所述视频码流的触发信号;
如果基于场景分割技术获取待检测的I帧,则过滤节点还包括:
场景分割模块,连接I帧检测/解码模块,用于和视频码流延迟模块并行接收待播放的视频码流并对该视频码流进行场景分割;
如图7所示,图7为有害内容识别模块和判决模块的一种机构示意图,其中有害内容识别模块中包括:
实现自动识别功能的自动识别子模块,连接在所述I帧检测/解码模块和判决模块之间,用于将有害内容数据库中的有害内容与所述I帧图像中包含的相关内容进行逐一比对来进行有害内容的自动识别;
根据有害内容的类型,自动识别子模块进一步包括:有害图像识别单元和相连接的有害图像数据库、有害叠加文字/符号识别单元和相连接的有害叠加文字/符号数据库、人脸识别单元和相连接的人脸数据库,并行对所述I帧图像中是否包含相应的有害内容进行识别。其中,有害图像数据库中还保存有害图像内容识别的各种已有特征网络(每次人类输入的特征网络都存储在这里)和识别低级事件特征的各种模板,比如统计直方图模板等;有害文字和符号数据库存储各种有害文字和符号的模板,比如反动和色情的词汇俚语等,还有已知的有害图形符号,比如纳粹符号等;人脸数据库为人脸识别模块提供必要数据和各种模板,比如嫌疑犯、被检控对象,重要人物的人脸模板等;
有害内容识别模块中还包括用于实现人工识别功能人工识别子模块,该人工识别子模块中具体包括:I帧图像显示单元和监控指令输入单元,其中,I帧图像显示单元连接所述I帧检测/解码模块,用于将所述I帧图像显示给监控者进行有害内容的人工识别;监控指令输入单元连接所述判决模块,用于接收到监控者在识别出有害内容时输入的切断指令时,向所述判决模块输出所述控制信号。
判决模块中相应的包括:
第一判决单元,接收所述自动识别子模块输出的控制信号;
第二判决单元,接收所述操作界面子模块输出的控制信号;
联合判决单元,分别连接所述第一判决单元和第二判决单元,用于根据设定的规则优先执行第一判决单元或第二判决单元的控制信号;或者,所述自动识别子模块和监控者分别根据预先设定的规则,为识别出的有害内容给出相应的有害程度分值,联合判决单元对两个分值进行加权处理后得到最终执行的判决结果,当仅收到一方为认定的有害内容给出的分值时,默认另一方为该内容给出的分值为零;
很多情况下,单独根据视频可能不足以判断内容是否有害,还要联合音频的判决结果,因此本模块可以引入来自本节点外部的音频内容过滤结果作为一个输入,所以判决模块中还包括:
第三判决单元,用于接收到所述视频码流对应的音频码流的有害声音判决结果时直接向所述开关模块输出断开所述视频码流的触发信号,或通过联合判决单元向所述开关模块输出断开所述视频码流的触发信号,图7中所示结构为后一种实现方式。
仍参阅图6,视频码流过滤结点中还可以同时包括:
基于URL的过滤模块,用于接收多媒体通信的相关信令,并利用预存的有害通用资源定位器URL信息库对所述相关信令进行基于URL的过滤,如果判断某个URL为有害,则禁止相应的信令建立过程,从而使得对于内容的请求和发送无法正确进行;
该过滤节点还可以包括:URL记录和评级模块和URL评级数据库,其中,URL记录和评级模块用于记录有害内容的URL信息,URL评级数据库用于记录URL评级数据;URL记录和评级模块根据一个URL以前发生不良行为的频率和严重性,进行评级调整,如果该URL信息达到设定的级别则将该URL信息添加到有害URL信息库中。这样可以保证,不会因为某个URL偶然的问题,而被永远封杀,还可以向第三方评级服务上输出记录和评级结果。
URL记录和评级模块除了进行记录和评级外,还作为URL评级数据库模块对外的接口。除了主控模块外的其它模块和数据库都没有直接连线,都要通过URL记录和评级模块来访问数据库。
因此数据库只有和URL记录和评级模块以及主控模块有连线。URL记录和评级模块和以下模块有连线:主控模块;URL评级数据库模块;判决模块,判决结果引入来给相关联的URL评分定级;学习模块,学习过程中可能要参考数据库的数据;有害内容识别模块:在识别过程中,可能需要使用到数据库中的URL数据。一个例子是:如果视频中叠加了一个字幕,告诉观众去访问某个URL,比如非法网站,那么也是要进行识别和控制的。
仍参阅图6,该过滤节点还包括:
有害内容录制模块,分别连接所述I帧检测/解码模块和判决模块,所述判决模块触发断开所述视频码流的同时,启动该有害内容录制模块录制识别出的有害内容;录制的时间窗口长度TW可以由人类监控者指定;
视频内容录制模块,用于录制监控者指定时段的视频流并存储到录制内容存储模块;录制的时间窗口长度TW可以由人类监控者指定;
一般情况下,有害内容录制模块和视频内容录制模块合并设置为一个录制模块;
录制内容存储模块,分别连接有害内容录制模块和视频内容录制模块(即录制模块),用于保存录制的有害内容。
仍参阅图6,该过滤节点还包括:
有害内容学习模块,连接所述录制内容存储模块,用于当自动识别子模块和监控者的对该内容的识别结果不一致并最终执行了监控者的有害判决结果时,学习该有害内容并将学习结果添加到有害内容数据库中。
如图8所示,当自动识别子模块根据有害内容的类型分别设置时,有害内容学习模块对应包括:
图像学习单元,连接有害图像数据库,用于学习有害图像并将学习结果添加到有害图像数据库中;
叠加文字/符号学习单元,连接有害叠加文字/符号数据库,用于学习有害叠加文字/符号并将学习结果添加到有害叠加文字/符号数据库中;
人脸学习单元,连接人脸数据库,用于学习人脸图像并将学习结果添加到人脸数据库中。
如图9所示,为实现对过滤节点的控制以及参数的设置,该过滤结点还包括以下结构:
操作界面模块,用于输入相关参数或操作指令;为人类监控者提供操作界面包括用户图形界面和命令行等方式。
特征网络模块,连接在所述操作界面模块和有害图像数据库之间,用于向所述有害图像识别单元输入/调整特征网络模型和/或事件特征模板。
参数设置模块,连接在所述操作界面模块和场景分割模块之间,用于向所述场景分割模块中输入/调整进行场景分割所需的相关参数。
判决规则设置模块,连接在所述操作界面模块和判决模块之间,用于向所述判决模块输入/调整控制信号的判决规则;
评级规则设置模块,连接在所述操作界面模块和URL评级数据库之间,用于向所述URL评级数据库中输入/调整评级规则;
主控模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,该模块是本过滤节点的中心模块,起到控制全部其它模块、子模块或单元的作用;
日志报告模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,用于对于本节点的运行状态和发生的事件以及内容过滤的结果等进行日志记录和报告生成。
外部控制模块,连接所述主控模块,用于完成和外部控制设备的数据/信令交互。因为本节点在网络位置上和媒体网关等其它网络设备部署在同一网络位置,甚至在物理设备形态上,可以和媒体网关等实现在同一个物理设备中。因此,很可能接受外部控制设备比如网关控制器的控制,并且向外部设备上报信息,控制命令和数据上报采用的通信协议可以是H.248/MGCP(Media GatewayControl Protocol)等,本模块完成和外部控制设备的数据交互等。
控制指令模块,连接在操作界面模块和主控模块之间,用于接受人类监控者的指令,比如切断有害的视频码流,用无害码流替代、启动或者禁止基于URL的过滤功能、重新启动本节点等;前述的监控指令输入单元可以设置在该控制指令模块中;
最后需要说明,本发明的过滤节点可以部署在网络上,对于网络位置并没有严格指定。其实可以部署在内容源到用户终端之间的任何网络位置上,只要所要过滤的媒体流通过该网络位置就可以。在极端情况下,可以部署在用户终端上,那么就相当于在终端内置了一个内容过滤子系统。
需要说明的是,视频码流被加密并不影响本发明技术方案的实施,视频码流的加密有以下两种可能:
1、来自合法的内容源的内容,如果经过DRM等手段加密,作为国家机关的内容监控部门可以获取密钥;
2、来自非法内容源的内容,其目的是要散布有害内容,需要广大的网络人群能够接收到,必然不加密或者采用较低级的加密手段,因此可以方便解密。
本发明的上述方法中,有害内容的特定分级标准和相应的识别标准根据实际应用场景确定,具体标准或识别方法并不限定本发明的保护范围。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (39)
1、一种多媒体通信过程中的视频码流过滤方法,其特征在于,包括如下步骤:
A、从多媒体通信过程中传输的视频码流中获取待检测的帧内编码帧,部分解码该帧内编码帧图像;
B、识别所述帧内编码帧图像中是否包含有害内容,如果是则切断所述视频码流的播放;否则播放该视频码流。
2、如权利要求1所述的过滤方法,其特征在于,
所述步骤A中还包括:获取并部分解码所述帧内编码帧之前和/或之后相邻的一定数目帧的图像;
所述步骤B中还包括,利用所述相邻帧的图像辅助识别所述帧内编码帧图像。
3、如权利要求1所述的过滤方法,其特征在于,所述步骤A中,所述待检测的帧内编码帧包括所述视频码流中的每一个帧内编码帧,根据包含帧内编码帧的数据包的包头中相应设置的帧内编码帧标识信息进行识别。
4、如权利要求1所述的过滤方法,其特征在于,所述步骤A中,所述待检测的帧内编码帧为所述视频码流中包含的每一个场景中的第一个帧内编码帧。
5、如权利要求4所述的过滤方法,其特征在于,所述方法中还包括如下步骤:根据视频数据包的结构信息对所述的视频码流进行场景分割;和/或,根据视频流的统计信息对所述的视频码流进行场景分割。
6、如权利要求1-4任意之一所述的过滤方法,其特征在于,所述方法中,当所述视频码流采用H.264协议编码时,所述的帧内编码帧是指包含帧内编码条带或宏块最多的帧,该帧标识有瞬时解码刷新标志。
7、如权利要求1所述的过滤方法,其特征在于,所述方法还同时包括:利用预存的有害通用资源定位器URL信息库,对多媒体通信过程中的相关信令进行基于URL的过滤。
8、如权利要求7所述的过滤方法,其特征在于,所述步骤B中还同时包括:记录识别出的有害内容的相关URL信息并根据历史记录对该URL信息进行评级,如果该URL信息达到设定的级别则将该URL信息添加到有害URL信息库中。
9、如权利要求1所述的过滤方法,其特征在于,所述方法还同时包括:识别所述视频码流对应的音频码流中是否包含有害声音,如果是则切断所述视频码流的播放;否则继续播放该视频码流。
10、如权利要求1所述的过滤方法,其特征在于,所述步骤B中,
将所述帧内编码帧图像输入自动识别模块,自动识别模块将预存的有害内容数据库中的有害内容与所述帧内编码帧图像中包含的相关内容进行逐一比对来进行有害内容的自动识别;和/或
将所述帧内编码帧图像显示给监控者来进行有害内容的人工识别。
11、如权利要求10所述的过滤方法,其特征在于,当人工识别和自动识别同时进行时,如果二者的识别结果出现不一致,则优先执行自动识别模块或监控者的判决结果。
12、如权利要求10所述的过滤方法,其特征在于,当人工识别和自动识别同时进行时,由自动识别模块和监控者分别根据预先设定的规则,为识别出的有害内容给出相应的有害程度分值,然后对两个分值进行加权处理后得到最终执行的判决结果,当仅收到一方为认定的有害内容给出的分值时,默认另一方为该内容给出的分值为零。
13、如权利要求12所述的过滤方法,其特征在于,所述的加权处理方法为:
SI=(WM×SM+WH×SH)/(WM+WH)
其中,WM和WH表示自动识别模块和监控者的权值,WM和WH之间的相对大小表示了对识别结果的信任度,SM和SH分别自动识别模块和监控者给出的分数,如果SI大于一个给定值,则判决结果为有害,否则判决结果为无害,WM、WH和给定值分别根据经验值设定。
14、如权利要求11或12所述的过滤方法,其特征在于,所述方法还同时包括:录制识别出的有害内容,当人工识别和自动识别同时进行时,如果自动识别和人工识别结果不一致并最终执行了人工识别的有害判决结果,则学习被识别出的有害内容并将学习结果添加到有害内容数据库中。
15、如权利要求1所述的过滤方法,其特征在于,所述的有害内容至少包括如下之一:有害图像、有害叠加文字或符号、特定人脸图像。
16、如权利要求1或9所述的过滤方法,其特征在于,切断播放所述视频码流的同时,启动播放备用无害视频码流。
17、如权利要求1所述的过滤方法,其特征在于,所述方法还同时包括:录制并保存指定时段播放的视频码流。
18、如权利要求1所述的过滤方法,其特征在于,所述方法还同时包括:将有害内容的识别情况记录在日志并生成日志报告。
19、如权利要求1所述的过滤方法,其特征在于,所述方法还同时包括:根据识别有害内容所需要的时间,延迟播放所述视频码流。
20、一种多媒体通信过程中的视频码流过滤节点,包括:
视频码流延迟模块,用于接收多媒体通信过程中待播放的视频码流并延迟输出该视频码;
开关模块,连接所述视频码流延迟模块,用于切断该视频码流延迟模块输出的视频码流;
其特征在于,所述过滤节点还包括:
帧内编码帧检测/解码模块,用于从多媒体通信过程中待播放视频码流中获取待检测的帧内编码帧或者该帧内编码帧及其之前和/或之后的相邻的一定数目帧,部分解码获取的相邻帧的图像;
有害内容识别模块,连接所述帧内编码帧检测/解码模块,用于识别所述图像中是否包含有害内容,如果是则输出相应的控制信号;
判决模块,连接在有害内容识别模块和开关模块之间,用于接收到所述控制信号时向所述开关模块输出断开所述视频码流的触发信号。
21、如权利要求20所述的过滤节点,其特征在于,该过滤节点还包括:场景分割模块,连接所述帧内编码帧检测/解码模块,用于接收待播放的视频码流并对该视频码流进行场景分割。
22、如权利要求20所述的过滤节点,其特征在于,该过滤节点还包括:
基于URL的过滤模块,用于接收多媒体通信的相关信令,并利用预存的有害通用资源定位器URL信息库对所述相关信令进行基于URL的过滤。
23、如权利要求22所述的过滤节点,其特征在于,该过滤节点还包括:
URL记录和评级模块,用于记录有害内容的相关URL信息并根据历史记录对该URL信息进行评级,如果该URL信息达到设定的级别则将该URL信息添加到有害URL信息库中;
URL评级数据库,用于保存URL评级的规则和历史记录。
24、如权利要求23所述的过滤节点,其特征在于,所述的有害内容识别模块包括自动识别子模块,连接在所述帧内编码帧检测/解码模块和判决模块之间,用于将有害内容数据库中的有害内容与所述帧内编码帧图像中包含的相关内容进行逐一比对来进行有害内容的自动识别;和/或
人工识别子模块,该人工识别子模块具体包括:帧内编码帧图像显示单元和监控指令输入单元,其中,帧内编码帧图像显示单元连接所述帧内编码帧检测/解码模块,用于将所述帧内编码帧图像显示给监控者进行有害内容的人工识别;监控指令输入单元连接所述判决模块,用于接收到监控者在识别出有害内容时输入的切断指令时,向所述判决模块输出所述控制信号。
25、如权利要求24所述的过滤节点,其特征在于,根据有害内容的类型,所述自动识别子模块至少包括如下之一:有害图像识别单元和相连接的有害图像数据库、有害叠加文字/符号识别单元和相连接的有害叠加文字/符号数据库、人脸识别单元和相连接的人脸数据库;其中,有害图像识别单元、有害叠加文字/符号识别单元和人脸识别单元并行连接在所述帧内编码帧检测/解码模块和判决模块之间,分别对所述帧内编码帧图像中是否包含相应的有害内容进行识别。
26、如权利要求25所述的过滤节点,其特征在于,当所述有害内容识别模块中同时包含有自动识别子模块和指令输入子模块时,所述判决模块中包括:
第一判决单元,接收所述自动识别子模块输出的控制信号;
第二判决单元,接收所述操作界面子模块输出的控制信号;
联合判决单元,分别连接所述第一判决单元和第二判决单元,用于根据设定的规则优先执行第一判决单元或第二判决单元的控制信号;或者,所述自动识别子模块和监控者分别根据预先设定的规则,为识别出的有害内容给出相应的有害程度分值,联合判决单元对两个分值进行加权处理后得到最终执行的判决结果,当仅收到一方为认定的有害内容给出的分值时,默认另一方为该内容给出的分值为零。
27、如权利要求26所述的过滤节点,其特征在于,所述判决模块中还包括:第三判决单元,用于接收到所述视频码流对应的音频码流的有害声音判决结果时,直接或通过联合判决单元向所述开关模块输出断开所述视频码流的控制指令。
28、如权利要求18或25所述的过滤节点,其特征在于,所述过滤节点还包括:
有害内容录制模块,分别连接所述帧内编码帧检测/解码模块和判决模块,所述判决模块触发断开所述视频码流的同时,启动该有害内容录制模块录制识别出的有害内容;
录制内容存储模块,连接所述有害内容录制模块,用于保存录制的有害内容。
29、如权利要求28所述的过滤节点,其特征在于,所述过滤节点还包括:有害内容学习模块,连接所述录制内容存储模块,用于当自动识别子模块和监控者的对该内容的识别结果不一致并最终执行了监控者的有害判决结果时,学习该有害内容并将学习结果添加到有害内容数据库中。
30、如权利要求28所述的过滤节点,其特征在于,当自动识别子模块根据有害内容的类型分别设置时,所述有害内容学习模块对应包括如下之一:
图像学习单元,连接有害图像数据库,用于学习有害图像并将学习结果添加到有害图像数据库中;
叠加文字/符号学习单元,连接有害叠加文字/符号数据库,用于学习有害叠加文字/符号并将学习结果添加到有害叠加文字/符号数据库中;
人脸学习单元,连接人脸数据库,用于学习人脸图像并将学习结果添加到人脸数据库中。
31、如权利要求28所述的过滤节点,其特征在于,所述过滤节点还包括:
操作界面模块,用于输入相关参数或操作指令;
视频内容录制模块,连接所述操作界面模块和录制内容存储模块之间,录制监控者指定时段的视频流并存储到录制内容存储模块。
32、如权利要求31所述的过滤节点,其特征在于,当自动识别子模块中包含有害图像识别单元时,所述过滤节点还包括:特征网络模块,连接在所述操作界面模块和有害图像数据库之间,用于向所述有害图像数据库中输入/调整特征网络模型和/或事件特征模板。
33、如权利要求32所述的过滤节点,其特征在于,所述过滤节点还包括:参数设置模块,连接在所述操作界面模块和场景分割模块之间,用于向所述场景分割模块中输入/调整进行场景分割所需的相关参数。
34、如权利要求32所述的过滤节点,其特征在于,所述过滤节点还包括:
判决规则设置模块,连接在所述操作界面模块和判决模块之间,用于向所述判决模块输入/调整控制信号的判决规则;和/或
评级规则设置模块,连接在所述操作界面模块和URL评级数据库之间,用于向所述URL评级数据库中输入/调整评级规则。
35、如权利要求18所述的过滤节点,其特征在于,所述过滤节点还包括:替换片源库,连接所述开关模块为转换开关,该转换开关在断开所述视频码流的同时,接通该替换片源库。
36、如权利要求22-35所述的过滤节点,其特征在于,所述过滤节点还包括:
主控模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,用于进行运行控制;
日志报告模块,分别连接该过滤节点中的其他任何一个模块、子模块或单元,用于生成并输出该过滤节点的运行日志。
37、如权利要求36所述的过滤节点,其特征在于,所述过滤节点还包括:外部控制模块,连接所述主控模块,用于完成和外部控制设备的数据/信令交互。
38、如权利要求36所述的过滤节点,其特征在于,所述过滤节点还包括:控制指令模块,连接在操作界面模块和主控模块之间,用于接受人类监控者的指令。
39、如权利要求38所述的过滤节点,其特征在于,当所述过滤节点同时包括所述监控指令输入单元时,该监控指令输入单元设置在该控制指令模块中。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100790231A CN100490532C (zh) | 2006-04-30 | 2006-04-30 | 一种视频码流过滤方法和过滤节点 |
CNA2007800003987A CN101317455A (zh) | 2006-04-30 | 2007-04-29 | 一种视频码流过滤方法和过滤节点 |
PCT/CN2007/001463 WO2007128234A1 (fr) | 2006-04-30 | 2007-04-29 | Procédé et noeud de filtrage de flux vidéo |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100790231A CN100490532C (zh) | 2006-04-30 | 2006-04-30 | 一种视频码流过滤方法和过滤节点 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1968408A true CN1968408A (zh) | 2007-05-23 |
CN100490532C CN100490532C (zh) | 2009-05-20 |
Family
ID=38076911
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100790231A Expired - Fee Related CN100490532C (zh) | 2006-04-30 | 2006-04-30 | 一种视频码流过滤方法和过滤节点 |
CNA2007800003987A Pending CN101317455A (zh) | 2006-04-30 | 2007-04-29 | 一种视频码流过滤方法和过滤节点 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007800003987A Pending CN101317455A (zh) | 2006-04-30 | 2007-04-29 | 一种视频码流过滤方法和过滤节点 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN100490532C (zh) |
WO (1) | WO2007128234A1 (zh) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009124489A1 (zh) * | 2008-04-09 | 2009-10-15 | 华为技术有限公司 | 视频编码处理方法、系统及装置 |
CN101982981A (zh) * | 2010-11-12 | 2011-03-02 | 福州大学 | 数字电视传输流的分类检测装置 |
CN102073676A (zh) * | 2010-11-30 | 2011-05-25 | 中国科学院计算技术研究所 | 一种网络色情视频实时检测方法和系统 |
CN102801956A (zh) * | 2012-04-28 | 2012-11-28 | 武汉兴图新科电子股份有限公司 | 一种网络视频监控装置及方法 |
CN103106251A (zh) * | 2013-01-14 | 2013-05-15 | 冠捷显示科技(厦门)有限公司 | 一种过滤显示设备不能播放的媒体文件的系统及过滤方法 |
CN103596016A (zh) * | 2013-11-20 | 2014-02-19 | 韩巍 | 一种多媒体视频数据处理方法和装置 |
CN104254002A (zh) * | 2013-06-25 | 2014-12-31 | 上海尚恩华科网络科技股份有限公司 | 一种用于多地多频道的实时广告监播系统与方法 |
CN104834689A (zh) * | 2015-04-22 | 2015-08-12 | 上海微小卫星工程中心 | 一种码流类型快速识别方法 |
CN105874814A (zh) * | 2014-01-02 | 2016-08-17 | 阿尔卡特朗讯公司 | 使用分组级别的评级在客户端设备上呈现经评级的媒体内容 |
CN106708949A (zh) * | 2016-11-25 | 2017-05-24 | 成都三零凯天通信实业有限公司 | 一种视频有害内容识别方法 |
CN109089126A (zh) * | 2018-07-09 | 2018-12-25 | 武汉斗鱼网络科技有限公司 | 一种视频分析方法、装置、设备及介质 |
WO2019127651A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种识别有害视频的方法及其系统 |
WO2019127663A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种识别有害图片的方法及其系统 |
WO2019127659A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种基于用户id识别有害视频的方法及其系统 |
WO2019127658A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种基于近似图的url路径识别有害图片的方法及系统 |
CN110291794A (zh) * | 2016-12-19 | 2019-09-27 | 三星电子株式会社 | 用于对视频进行过滤的方法和设备 |
CN113891120A (zh) * | 2021-09-29 | 2022-01-04 | 广东省高峰科技有限公司 | 一种iptv服务端接入方法及其系统 |
US11470385B2 (en) | 2016-12-19 | 2022-10-11 | Samsung Electronics Co., Ltd. | Method and apparatus for filtering video |
CN118317128A (zh) * | 2024-04-16 | 2024-07-09 | 联通视频科技有限公司 | 一种机顶盒终端安全监测系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106550247B (zh) * | 2016-10-31 | 2019-06-07 | 杭州天时亿科技有限公司 | 广播电视的监控方法 |
CN110020252B (zh) * | 2017-12-30 | 2022-04-22 | 惠州学院 | 基于片尾内容的识别有害视频的方法及其系统 |
US11412303B2 (en) | 2018-08-28 | 2022-08-09 | International Business Machines Corporation | Filtering images of live stream content |
CN115734026A (zh) * | 2021-08-31 | 2023-03-03 | 北京字跳网络技术有限公司 | 视频的处理方法、装置及系统 |
CN114143614B (zh) * | 2021-10-25 | 2023-11-24 | 深蓝感知(杭州)物联科技有限公司 | 一种基于视频帧时延检测的网络自适应传输方法与装置 |
CN116109990B (zh) * | 2023-04-14 | 2023-06-27 | 南京锦云智开软件有限公司 | 一种视频的敏感违规内容检测系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030172377A1 (en) * | 2002-03-05 | 2003-09-11 | Johnson Carolynn Rae | Method and apparatus for selectively accessing programs in a parental control system |
US8397269B2 (en) * | 2002-08-13 | 2013-03-12 | Microsoft Corporation | Fast digital channel changing |
JP2004364234A (ja) * | 2003-05-15 | 2004-12-24 | Pioneer Electronic Corp | 放送番組内容メニュー作成装置及び方法 |
-
2006
- 2006-04-30 CN CNB2006100790231A patent/CN100490532C/zh not_active Expired - Fee Related
-
2007
- 2007-04-29 WO PCT/CN2007/001463 patent/WO2007128234A1/zh active Application Filing
- 2007-04-29 CN CNA2007800003987A patent/CN101317455A/zh active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009124489A1 (zh) * | 2008-04-09 | 2009-10-15 | 华为技术有限公司 | 视频编码处理方法、系统及装置 |
CN101982981A (zh) * | 2010-11-12 | 2011-03-02 | 福州大学 | 数字电视传输流的分类检测装置 |
CN102073676A (zh) * | 2010-11-30 | 2011-05-25 | 中国科学院计算技术研究所 | 一种网络色情视频实时检测方法和系统 |
CN102801956A (zh) * | 2012-04-28 | 2012-11-28 | 武汉兴图新科电子股份有限公司 | 一种网络视频监控装置及方法 |
CN102801956B (zh) * | 2012-04-28 | 2014-12-17 | 武汉兴图新科电子股份有限公司 | 一种网络视频监控装置及方法 |
CN103106251B (zh) * | 2013-01-14 | 2016-08-03 | 冠捷显示科技(厦门)有限公司 | 一种过滤显示设备不能播放的媒体文件的系统及过滤方法 |
CN103106251A (zh) * | 2013-01-14 | 2013-05-15 | 冠捷显示科技(厦门)有限公司 | 一种过滤显示设备不能播放的媒体文件的系统及过滤方法 |
CN104254002A (zh) * | 2013-06-25 | 2014-12-31 | 上海尚恩华科网络科技股份有限公司 | 一种用于多地多频道的实时广告监播系统与方法 |
CN103596016A (zh) * | 2013-11-20 | 2014-02-19 | 韩巍 | 一种多媒体视频数据处理方法和装置 |
CN105874814B (zh) * | 2014-01-02 | 2018-12-21 | 阿尔卡特朗讯公司 | 使用分组级别的评级在客户端设备上呈现经评级的媒体内容 |
CN105874814A (zh) * | 2014-01-02 | 2016-08-17 | 阿尔卡特朗讯公司 | 使用分组级别的评级在客户端设备上呈现经评级的媒体内容 |
CN104834689A (zh) * | 2015-04-22 | 2015-08-12 | 上海微小卫星工程中心 | 一种码流类型快速识别方法 |
CN104834689B (zh) * | 2015-04-22 | 2019-02-01 | 上海微小卫星工程中心 | 一种码流类型快速识别方法 |
CN106708949A (zh) * | 2016-11-25 | 2017-05-24 | 成都三零凯天通信实业有限公司 | 一种视频有害内容识别方法 |
US11470385B2 (en) | 2016-12-19 | 2022-10-11 | Samsung Electronics Co., Ltd. | Method and apparatus for filtering video |
CN110291794B (zh) * | 2016-12-19 | 2021-09-28 | 三星电子株式会社 | 用于对视频进行过滤的方法和设备 |
CN110291794A (zh) * | 2016-12-19 | 2019-09-27 | 三星电子株式会社 | 用于对视频进行过滤的方法和设备 |
WO2019127658A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种基于近似图的url路径识别有害图片的方法及系统 |
WO2019127659A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种基于用户id识别有害视频的方法及其系统 |
CN109993036A (zh) * | 2017-12-30 | 2019-07-09 | 惠州学院 | 一种基于用户id识别有害视频的方法及其系统 |
CN110020258A (zh) * | 2017-12-30 | 2019-07-16 | 惠州学院 | 一种基于近似图的url路径识别有害图片的方法及系统 |
WO2019127663A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种识别有害图片的方法及其系统 |
WO2019127651A1 (zh) * | 2017-12-30 | 2019-07-04 | 惠州学院 | 一种识别有害视频的方法及其系统 |
CN109089126B (zh) * | 2018-07-09 | 2021-04-27 | 武汉斗鱼网络科技有限公司 | 一种视频分析方法、装置、设备及介质 |
CN109089126A (zh) * | 2018-07-09 | 2018-12-25 | 武汉斗鱼网络科技有限公司 | 一种视频分析方法、装置、设备及介质 |
CN113891120A (zh) * | 2021-09-29 | 2022-01-04 | 广东省高峰科技有限公司 | 一种iptv服务端接入方法及其系统 |
CN118317128A (zh) * | 2024-04-16 | 2024-07-09 | 联通视频科技有限公司 | 一种机顶盒终端安全监测系统 |
Also Published As
Publication number | Publication date |
---|---|
CN100490532C (zh) | 2009-05-20 |
WO2007128234A1 (fr) | 2007-11-15 |
CN101317455A (zh) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1968408A (zh) | 一种视频码流过滤方法和过滤节点 | |
Bampis et al. | Study of temporal effects on subjective video quality of experience | |
CN1968137A (zh) | 一种媒体流审查系统及审查码流生成节点设备 | |
CN1968409A (zh) | 实现流媒体内容审查的用户终端设备及审查方法 | |
CN1198454C (zh) | 信息处理方法及设备、内容分配服务器及其方法 | |
CN1787631A (zh) | 用于对视频和音频内容做标记以及进行拦截的分布系统 | |
KR20140019335A (ko) | 장면 타입에 기초한 비디오 스트림 인코딩 | |
CN1650627A (zh) | 用于在mp4中支持avc的方法和设备 | |
CN101035279A (zh) | 一种在视频资源中使用信息集的方法 | |
CN1875636A (zh) | 视频发送装置以及视频接收装置 | |
TW201246946A (en) | Image predict coding method, image predict coding device, image predict coding program, image predict decoding method, image predict decoding device, and image predict decoding program | |
CN1653818A (zh) | 用于在mp4中支持avc的方法和设备 | |
CN1172537C (zh) | 活动图象解码方法、活动图象解码装置及程序记录媒体 | |
CN1714554A (zh) | 视听媒体编码系统 | |
CN101325681A (zh) | 用于录像机和视频服务器的avs编码文件格式的存储方法 | |
CN1166202C (zh) | 由视频重放系统从压缩数字视频信号中动态地提取特征 | |
CN1777284A (zh) | 图像编码方法、图像解码方法以及其装置 | |
CN1692654A (zh) | 动态图像编码方法和动态图像解码方法 | |
CN1808469A (zh) | 图像检索装置及方法、程序和程序记录介质 | |
CN1650628A (zh) | 用于支持mp4中的avc的方法和设备 | |
CN1757214A (zh) | 发送/接收系统、发送装置和方法、接收装置和方法、记录介质和程序 | |
CN1968250A (zh) | 一种视频码流审查方法、系统和设备 | |
CN102881306B (zh) | 一种视频文件转码方法及装置 | |
CN1294755C (zh) | 多媒体终端 | |
WO2021054869A3 (en) | Reference picture management methods for video coding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090520 Termination date: 20140430 |