CN1964199A - A method and device to realize low density parity check code - Google Patents
A method and device to realize low density parity check code Download PDFInfo
- Publication number
- CN1964199A CN1964199A CN 200610145182 CN200610145182A CN1964199A CN 1964199 A CN1964199 A CN 1964199A CN 200610145182 CN200610145182 CN 200610145182 CN 200610145182 A CN200610145182 A CN 200610145182A CN 1964199 A CN1964199 A CN 1964199A
- Authority
- CN
- China
- Prior art keywords
- matrix
- sub
- parity check
- check matrix
- row
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000011159 matrix material Substances 0.000 claims abstract description 356
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 85
- 230000001788 irregular Effects 0.000 claims description 29
- 238000012300 Sequence Analysis Methods 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Error Detection And Correction (AREA)
Abstract
本发明公开了一类低密度奇偶校验码的实现方法,其特征在于,该方法包括以下步骤:A、根据预先设定的码长、码率以及行重,设置用于生成奇偶校验矩阵的数字序列;B、根据所述数字序列,采用循环移位的方式构造低密度奇偶校验码(LDPC)码的奇偶校验矩阵;C、利用所述奇偶校验矩阵,将输入数据变换为LDPC码字。本发明还公开了一类低密度奇偶校验码的实现装置,该实现装置包括:存储模块、校验矩阵生成模块和码字生成模块。应用本发明能够降低存储奇偶校验矩阵所需的存储空间。
The invention discloses a method for realizing a class of low-density parity-check codes, which is characterized in that the method includes the following steps: A. According to the preset code length, code rate and line weight, set the method for generating the parity-check matrix digital sequence; B, according to the digital sequence, adopt the mode of cyclic shift to construct the parity check matrix of low density parity check code (LDPC) code; C, utilize described parity check matrix, input data is transformed into LDPC codewords. The invention also discloses a low-density parity check code realization device, which comprises: a storage module, a check matrix generation module and a codeword generation module. The application of the present invention can reduce the storage space required for storing the parity check matrix.
Description
技术领域technical field
本发明涉及数字通信系统的编解码技术,特别涉及一类低密度奇偶校验码的实现方法及装置。The invention relates to the encoding and decoding technology of the digital communication system, in particular to a method and device for realizing a class of low-density parity check codes.
背景技术Background technique
由于随机噪声、无线传输中的多径衰落等因素的影响,使得通信系统中的数据传输经常发生各种差错,尤其是在数字多媒体广播系统中,数据量大、带宽有限、且各种突发干扰非常多,使得数据传输的可靠性问题变得更加突出。Due to the influence of factors such as random noise and multipath fading in wireless transmission, various errors often occur in data transmission in communication systems, especially in digital multimedia broadcasting systems, where data volume is large, bandwidth is limited, and various bursts There is a lot of interference, which makes the reliability problem of data transmission more prominent.
通常,采用信道编码的方法来确保在有噪声的通信信道中提供可靠的通信。现有实现方法中,低密度奇偶校验码(LDPC)被广泛认为是性能最好的纠错实现方法之一。这是因为,一种编码的性能优劣可以用接近于香农(Shannon)限的程度来衡量,而LDPC码译码复杂度较低、却具有接近于香农限的性能。下面简要介绍现有LDPC码。Typically, channel coding is used to ensure reliable communication in noisy communication channels. Among the existing implementation methods, Low Density Parity Check Code (LDPC) is widely considered as one of the best error correction implementation methods. This is because the performance of a code can be measured by the degree close to the Shannon limit, while the LDPC code has low decoding complexity but has a performance close to the Shannon limit. The existing LDPC codes are briefly introduced below.
LDPC码是一种基于稀疏奇偶校验矩阵H的线性纠错码。H矩阵的特点是矩阵中的元素0占绝大多数,而元素1的密度很低,即所谓的低密度。LDPC码中有以下几个比较基础的概念:LDPC code is a kind of linear error correction code based on sparse parity check matrix H. The characteristic of the H matrix is that the
码长,是指输入数据经编码之后,所得到的输出数据的长度,即LDPC码字的长度;校验位长度即校验方程的个数,是指输出数据中校验位所占的比特数,即码长减信息位长度;码率,是信息位长度与码长之比;列重,是指奇偶校验矩阵H的每一列中1的个数,其中,若每列中1的个数相同,则该LDPC码为规则LDPC码(regular LDPC),否则,为非规则LDPC码(Irregular LDPC);行重,是指奇偶校验矩阵H的每一行中1的个数。The code length refers to the length of the output data obtained after the input data is encoded, that is, the length of the LDPC code word; the length of the check digit is the number of check equations, which refers to the bits occupied by the check digit in the output data number, that is, the code length minus the information bit length; the code rate is the ratio of the information bit length to the code length; the column weight refers to the number of 1s in each column of the parity check matrix H, wherein, if the number of 1s in each column If the number is the same, the LDPC code is a regular LDPC code (regular LDPC), otherwise, it is an irregular LDPC code (Irregular LDPC); row weight refers to the number of 1 in each row of the parity check matrix H.
若以N表示LDPC码的码长、K表示信息位长度、M表示校验位长度、γ表示列重、ρ表示行重、v表示码率,可以将该LDPC码表示为(N,K),该LDPC码的奇偶校验矩阵H具有以下特性:If N represents the code length of the LDPC code, K represents the length of the information bit, M represents the length of the parity bit, γ represents the column weight, ρ represents the row weight, and v represents the code rate, the LDPC code can be expressed as (N, K) , the parity check matrix H of the LDPC code has the following characteristics:
1、H为M×N的满秩矩阵;1. H is a full-rank matrix of M×N;
2、γ为任意整数,且γ≥3、γ<<M;其中,<<表示远小于;2. γ is any integer, and γ≥3, γ<<M; among them, << means far less than;
3、ρ为任意整数,且ρ≥3、ρ<<N;3. ρ is any integer, and ρ≥3, ρ<<N;
4、存在关系:v=(N-M)/N=K/N;4. Existence relationship: v=(N-M)/N=K/N;
5、任何两列中元素同为1的行数不超过1,即矩阵中不存在四个角都是1的矩形,即不存在四线循环。5. The number of rows whose elements are both 1 in any two columns does not exceed 1, that is, there is no rectangle with four corners of 1 in the matrix, that is, there is no four-line loop.
下面通过一个LDPC编码器示例,说明LDPC编码过程。图1为现有LDPC编码器的结构示意图。参见图1,该编码器包括:奇偶校验矩阵构造单元、生成矩阵构造单元和编码单元。图1所示LDPC编码器的工作原理是:An example of an LDPC encoder is used below to illustrate the LDPC encoding process. FIG. 1 is a schematic structural diagram of an existing LDPC encoder. Referring to Fig. 1, the encoder includes: a parity check matrix construction unit, a generator matrix construction unit and an encoding unit. The working principle of the LDPC encoder shown in Figure 1 is:
首先,奇偶校验矩阵构造单元根据预先设定的LDPC码长、码率以及列重,构造奇偶校验矩阵H;然后,由生成矩阵构造单元根据奇偶校验矩阵H构造生成矩阵G,这里,由于LDPC码是一种线性纠错码,因此,生成矩阵G和相应的奇偶校验矩阵H是对偶矩阵,但是G不具备H的低密度特点;最后,编码单元用生成矩阵G对输入数据s进行编码,得到输出的LDPC码的码字t,并且满足Ht=0。First, the parity check matrix construction unit constructs the parity check matrix H according to the preset LDPC code length, code rate and column weight; then, the generation matrix construction unit constructs the generation matrix G according to the parity check matrix H, here, Since the LDPC code is a linear error correction code, the generator matrix G and the corresponding parity check matrix H are dual matrices, but G does not have the low-density characteristics of H; finally, the encoding unit uses the generator matrix G to input data s Encoding is performed to obtain the codeword t of the output LDPC code, and satisfy Ht=0.
从实用性角度来看,制约LDPC码广泛应用的一个重要因素是:稀疏的奇偶校验矩阵和非稀疏的生成矩阵的存储量过大,导致在使用LDPC码进行编码时所需要的存储空间非常大。此外,传统的LDPC码编码复杂度过高也是制约其广泛应用的一个比较重要的因素。由于上述缺点的存在,导致LDPC码尚未被广泛地投入实际应用中。From a practical point of view, an important factor that restricts the wide application of LDPC codes is: the storage capacity of sparse parity check matrix and non-sparse generator matrix is too large, resulting in a very large storage space when using LDPC codes for encoding. big. In addition, the high coding complexity of the traditional LDPC code is also an important factor restricting its wide application. Due to the above disadvantages, LDPC codes have not been widely used in practical applications.
发明内容Contents of the invention
有鉴于此,本发明的主要目的在于提供一类低密度奇偶校验码的实现方法,以降低存储奇偶校验矩阵所需的存储空间。In view of this, the main purpose of the present invention is to provide a method for implementing a low-density parity-check code, so as to reduce the storage space required for storing the parity-check matrix.
本发明的另一个目的在于提供一类低密度奇偶校验码的实现装置,以降低存储奇偶校验矩阵所需的存储空间。Another object of the present invention is to provide a device for implementing a low-density parity-check code, so as to reduce the storage space required for storing the parity-check matrix.
为达到上述目的,本发明的技术方案具体是这样实现的:In order to achieve the above object, the technical solution of the present invention is specifically realized in the following way:
一类低密度奇偶校验码的实现方法,该方法包括以下步骤:A method for realizing a class of low-density parity-check codes, the method comprising the following steps:
A、根据预先设定的码长、码率以及行重,设置用于生成奇偶校验矩阵的数字序列;A. According to the preset code length, code rate and line weight, set the digital sequence for generating the parity check matrix;
B、根据所述数字序列,采用循环移位的方式构造低密度奇偶校验码LDPC码的奇偶校验矩阵;B, according to described digital sequence, adopt the mode of cyclic shift to construct the parity check matrix of low density parity check code LDPC code;
C、利用所述奇偶校验矩阵,将输入数据变换为LDPC码字。C. Transform the input data into LDPC codewords by using the parity check matrix.
其中,所述步骤B可以包括:Wherein, the step B may include:
B1、根据所述码长和码率确定所述奇偶校验矩阵的行数和列数,构造多个分矩阵,所述分矩阵的行数为所述奇偶校验矩阵行数的分矩阵个数分之一、列数与所述奇偶校验矩阵列数相等;B1, determine the number of rows and the number of columns of the parity check matrix according to the code length and code rate, construct a plurality of sub-matrices, the number of rows of the sub-matrix is the number of sub-matrices of the number of rows of the parity-check matrix One-half of the number, the number of columns is equal to the number of columns of the parity check matrix;
B2、根据所述数字序列以及所述行重将所述奇偶校验矩阵按行均匀划分为多个分矩阵后的各个分矩阵中的第一行元素;B2. According to the digital sequence and the row weight, the parity check matrix is evenly divided into a plurality of sub-matrices according to the first row of elements in each sub-matrix;
B3、将所述分矩阵按列均匀划分为多个子矩阵,并使所述每个子矩阵为一个方阵;B3. The sub-matrix is evenly divided into a plurality of sub-matrices by columns, and each sub-matrix is a square matrix;
B4、根据所述每个子矩阵的第一行元素,采用循环移位的方式得到每个子矩阵中其他行的元素。B4. According to the elements in the first row of each sub-matrix, the elements in other rows in each sub-matrix are obtained by means of cyclic shift.
其中,所述步骤B2可以为:Wherein, the step B2 can be:
将所述数字序列划分为多个包含所述行重个数字的数字组,以所述数字序列中的每一个数字组中的数字作为相应分矩阵的第一行中元素1所处的列数。Divide the number sequence into a plurality of number groups containing multiple numbers in the row, and use the number in each number group in the number sequence as the column number of
其中,步骤B4所述循环移位可以为:循环左移和/或循环右移。Wherein, the cyclic shift in step B4 may be: cyclic left shift and/or cyclic right shift.
其中,所述奇偶校验矩阵中可以包含所述数字序列的长度个置换单位矩阵。Wherein, the parity check matrix may include permutation identity matrices of the length of the digital sequence.
其中,所述数字序列中,用于确定所述每个分矩阵的第一行中元素1所处的列数的任意两个数字对所述子矩阵的行数取模所得的值互不相同。Wherein, in the number sequence, any two numbers used to determine the number of columns where
其中,当所述LDPC码为规则LDPC码,且所述码长为4608、所述码率为1/2、所述行重为6时,Wherein, when the LDPC code is a regular LDPC code, and the code length is 4608, the code rate is 1/2, and the row weight is 6,
所述数字序列的长度为192,所述数字序列可以为:The length of the number sequence is 192, and the number sequence can be:
所述分矩阵的个数可以为32、行数可以为72、列数可以为4608;The number of the sub-matrix can be 32, the number of rows can be 72, and the number of columns can be 4608;
所述每个分矩阵中子矩阵的个数可以为64;The number of sub-matrixes in each sub-matrix can be 64;
所述子矩阵可以为72行×72列的方阵;The sub-matrix can be a square matrix with 72 rows×72 columns;
所述奇偶校验矩阵中可以包含192个置换单位矩阵。The parity check matrix may include 192 permutation identity matrices.
其中,当所述LDPC码为非规则LDPC码,且所述码长为4608、所述码率为1/2、所述行重为7时,Wherein, when the LDPC code is an irregular LDPC code, and the code length is 4608, the code rate is 1/2, and the row weight is 7,
所述数字序列的长度为224,所述数字序列可以为:The length of the number sequence is 224, and the number sequence can be:
所述分矩阵的个数可以为32、行数可以为72、列数可以为4608;The number of the sub-matrix can be 32, the number of rows can be 72, and the number of columns can be 4608;
所述每个分矩阵中子矩阵的个数可以为64;The number of sub-matrices in each sub-matrix can be 64;
所述子矩阵可以为72行×72列的方阵;The sub-matrix can be a square matrix with 72 rows×72 columns;
所述奇偶校验矩阵中可以包含224个置换单位阵。The parity check matrix may include 224 permutation identity matrices.
其中,当所述LDPC码为非规则LDPC码,且所述码长为4608、所述码率为43/64、所述行重为12或13时,Wherein, when the LDPC code is an irregular LDPC code, and the code length is 4608, the code rate is 43/64, and the row weight is 12 or 13,
所述数字序列的长度为256,所述数字序列可以为:The length of the number sequence is 256, and the number sequence can be:
所述分矩阵的个数可以为21、行数可以为72、列数可以为4608;The number of the sub-matrix can be 21, the number of rows can be 72, and the number of columns can be 4608;
所述每个分矩阵中子矩阵的个数可以为64;The number of sub-matrices in each sub-matrix can be 64;
所述子矩阵可以为72行×72列的方阵;The sub-matrix can be a square matrix with 72 rows×72 columns;
所述奇偶校验矩阵中可以包含256个置换单位阵。The parity check matrix may include 256 permutation identity matrices.
进一步地,在所述步骤B之后,可以包括:对所得到的奇偶校验矩阵进行各种角度的旋转和/或进行行置换和/或进行列置换和/或改变所述子矩阵的位置。Further, after the step B, it may include: rotating the obtained parity check matrix at various angles and/or performing row replacement and/or performing column replacement and/or changing the position of the sub-matrix.
一类低密度奇偶校验码的实现装置,该实现装置包括:存储模块、校验矩阵生成模块和码字生成模块;A device for implementing a low-density parity-check code, the device comprising: a storage module, a check matrix generation module, and a codeword generation module;
所述存储模块,用于存储数字序列,并向所述校验矩阵生成模块提供所述数字序列;The storage module is used to store a digital sequence and provide the digital sequence to the check matrix generation module;
所述校验矩阵生成模块,用于根据所述存储模块提供的所述数字序列,采用循环移位的方式构造LDPC码的奇偶校验矩阵,并将所述奇偶校验矩阵发送给所述码字生成模块;The parity check matrix generation module is used to construct the parity check matrix of the LDPC code by means of cyclic shift according to the digital sequence provided by the storage module, and send the parity check matrix to the code word generation module;
所述码字生成模块,用于接收来自于所述校验矩阵生成模块的所述奇偶校验矩阵,并利用所述奇偶校验矩阵,将输入数据变换为LDPC码字。The codeword generating module is configured to receive the parity check matrix from the parity check matrix generating module, and use the parity check matrix to transform input data into an LDPC codeword.
进一步地,所述校验矩阵生成模块可以包括:数字序列分析单元和循环移位单元;Further, the check matrix generation module may include: a digital sequence analysis unit and a cyclic shift unit;
所述存储模块,进一步用于向所述数字序列分析单元提供所述数字序列;The storage module is further configured to provide the digital sequence to the digital sequence analysis unit;
所述数字序列分析单元,用于根据所述存储模块所提供的所述数字序列,以及所述LDPC码的行重,均匀划分所述数字序列得到多个包含所述行重个数字的数字组,并根据划分所得到的每一个数字组、得到将所述奇偶校验矩阵按行均匀划分为多个分矩阵后的各个分矩阵的第一行元素,将所得到的已确定第一行元素的每一个分矩阵发送给所述循环移位单元;The digital sequence analysis unit is used to divide the digital sequence evenly according to the digital sequence provided by the storage module and the line weight of the LDPC code to obtain a plurality of digital groups containing the number of the line weight , and according to each digit group obtained by dividing, the first row elements of each sub-matrix after the parity check matrix is evenly divided into a plurality of sub-matrices by rows are obtained, and the obtained first row elements are determined Each sub-matrix of is sent to the cyclic shift unit;
所述循环移位单元,用于将来自于所述数字序列分析单元的所述每一个分矩阵按列均匀划分为方阵,得到所述奇偶校验矩阵的已确定第一行元素的子矩阵,并根据所述每一个子矩阵的第一行元素、采用循环移位的方式得到所述每一个子矩阵,所述每一个子矩阵构成所述奇偶校验矩阵,将所述奇偶校验矩阵发送给所述码字生成模块。The cyclic shift unit is used to evenly divide each sub-matrix from the digital sequence analysis unit into a square matrix by column, so as to obtain the sub-matrix of the determined first row element of the parity check matrix , and according to the elements in the first row of each sub-matrix, each sub-matrix is obtained by cyclic shifting, each sub-matrix constitutes the parity check matrix, and the parity check matrix Send to the codeword generation module.
进一步地,所述实现装置中可以包括:校验矩阵变换单元;Further, the implementation device may include: a parity check matrix conversion unit;
所述循环移位单元,进一步用于将所述奇偶校验矩阵发送给所述校验矩阵变换单元;The cyclic shift unit is further configured to send the parity check matrix to the check matrix transformation unit;
所述校验矩阵变换单元,用于对所述奇偶校验矩阵进行各种角度的旋转和/或进行行置换和/或进行列置换和/或改变所述子矩阵的位置,并将经过所述变换所得到的奇偶校验矩阵发送给所述码字生成模块。The check matrix conversion unit is used to rotate the parity check matrix at various angles and/or perform row replacement and/or perform column replacement and/or change the position of the sub-matrix, and pass through the The parity check matrix obtained by the transformation is sent to the code word generation module.
由上述技术方案可见,本发明的一类LDPC码的实现方法及装置采用了以数字序列表示奇偶校验矩阵、并对数字序列循环移位得到奇偶校验矩阵的方式,使得存储奇偶校验矩阵所需的存储空间达到了最小化。It can be seen from the above technical scheme that the implementation method and device of a class of LDPC codes of the present invention adopt the method of expressing the parity check matrix with a digital sequence, and cyclically shifting the digital sequence to obtain the parity check matrix, so that the parity check matrix can be stored The required storage space is minimized.
此外,由于本发明的奇偶校验矩阵具有准循环的结构特性,使得在实际应用中,可以利用循环移位的特性实现快速寻址,节约处理资源,简化编码和译码操作,使编码和译码操作的复杂度得以降低。In addition, since the parity check matrix of the present invention has quasi-cyclic structural characteristics, in practical applications, the characteristics of cyclic shift can be used to realize fast addressing, save processing resources, simplify encoding and decoding operations, and make encoding and decoding The complexity of code operations is reduced.
附图说明Description of drawings
图1为现有LDPC编码器的结构示意图。FIG. 1 is a schematic structural diagram of an existing LDPC encoder.
图2为本发明一类LDPC码的实现方法的示例性流程图。Fig. 2 is an exemplary flow chart of a method for implementing a class of LDPC codes in the present invention.
图3为本发明实施例一中(4608,2304)规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。FIG. 3 is a schematic diagram of a performance curve of (4608, 2304) regular QC-LDPC codes using BPSK modulation in an AWGN channel in
图4为本发明实施例一中(4608,2304)规则QC-LDPC码在在T-MMB系统的AWGN信道中采用8DPSK调制的BER性能曲线示意图。FIG. 4 is a schematic diagram of the BER performance curve of the (4608, 2304) regular QC-LDPC code in the AWGN channel of the T-MMB system using 8DPSK modulation in
图5为本发明实施例二中(4608,2304)非规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。FIG. 5 is a schematic diagram of performance curves of (4608, 2304) irregular QC-LDPC codes using BPSK modulation in an AWGN channel in Embodiment 2 of the present invention.
图6为本发明实施例三中(4608,3096)非规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。FIG. 6 is a schematic diagram of performance curves of (4608, 3096) irregular QC-LDPC codes using BPSK modulation in an AWGN channel in Embodiment 3 of the present invention.
图7为本发明实施例四中QC-LDPC码的实现装置的结构示意图。FIG. 7 is a schematic structural diagram of an apparatus for implementing a QC-LDPC code in Embodiment 4 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明作进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples.
本发明的主要思想是根据预先设定的码长、码率以及行重,设置用于生成奇偶校验矩阵的数字序列,然后根据数字序列、采用循环移位的方式构造具有准循环(QC:Quasi Cyclic)结构的LDPC码的奇偶校验矩阵,再以所得到的奇偶校验矩阵对输入数据进行变换,得到包含奇偶校验信息的LDPC码字。如此,只需用非常少量的存储空间存储数字序列,即可解决奇偶校验矩阵存储量过大的问题。The main idea of the present invention is to set the digital sequence used to generate the parity check matrix according to the preset code length, code rate and line weight, and then construct a quasi-cyclic (QC: The parity check matrix of the LDPC code of the Quasi Cyclic) structure, and then transform the input data with the obtained parity check matrix to obtain the LDPC code word containing the parity check information. In this way, only a very small amount of storage space is needed to store the digital sequence, and the problem of excessive storage of the parity check matrix can be solved.
图2为本发明一类LDPC码的实现方法的示例性流程图。参见图2,该方法包括以下步骤:Fig. 2 is an exemplary flow chart of a method for implementing a class of LDPC codes in the present invention. Referring to Figure 2, the method comprises the following steps:
步骤201:根据预先设定的码长、码率以及行重,设置用于生成奇偶校验矩阵的数字序列。Step 201: Set a digital sequence for generating a parity check matrix according to preset code length, code rate and row weight.
本示例中,根据预先设定的码长、码率以及行重,确定本示例将要构造的奇偶校验矩阵的行数和列数,其中,行数为LDPC码的码长,表示为N;列数为校验位长度,表示为M,并假设所构造的本发明QC-LDPC码的奇偶校验矩阵H如(1)所示:In this example, according to the preset code length, code rate and row weight, determine the number of rows and columns of the parity check matrix to be constructed in this example, where the number of rows is the code length of the LDPC code, expressed as N; The column number is the check bit length, expressed as M, and the parity check matrix H of the constructed QC-LDPC code of the present invention is assumed to be as shown in (1):
(1)中,Ai,j是t行×t列的循环矩阵,称为奇偶校验矩阵H的子矩阵,由于Ai,j是循环矩阵,也可将其称为奇偶校验矩阵H的循环子矩阵,因此本发明奇偶校验矩阵H具有准循环结构,故而将本发明所构造的LDPC码称为QC-LDPC码。In (1), A i, j is a circular matrix of t rows × t columns, which is called a sub-matrix of the parity check matrix H. Since A i, j is a circular matrix, it can also be called a parity check matrix H Circular sub-matrix, so the parity check matrix H of the present invention has a quasi-cyclic structure, so the LDPC code constructed by the present invention is called QC-LDPC code.
根据上述确定的奇偶校验矩阵H的行数和列数构造多个分矩阵,使得所构造的分矩阵的行数为矩阵H的行数的分矩阵个数分之一、列数与矩阵H的列数相等,并令所构造的每个分矩阵与上述矩阵H中的每一行循环子矩阵相对应,即可以将每个分矩阵表示为:According to the number of rows and the number of columns of the parity check matrix H determined above, multiple sub-matrixes are constructed, so that the number of rows of the constructed sub-matrix is one-half of the number of sub-matrixes of the number of rows of matrix H, and the number of columns is the same as that of matrix H The number of columns is equal, and each sub-matrix constructed corresponds to each row of the cyclic sub-matrix in the above matrix H, that is, each sub-matrix can be expressed as:
Ai=[Ai,1,Ai,2…,Ai,c] (i=1,2,…,u) (2)A i = [A i, 1 , A i, 2 . . . , A i, c ] (i=1, 2, . . . , u) (2)
其中,分矩阵的个数u=N/t,分矩阵中子矩阵的个数c=M/t。本步骤中所设置的数字序列用于确定每个分矩阵的第一行中元素1所处的列数,也即得到了每个分矩阵中的第一行,因此,可以将该数字序列称为奇偶校验矩阵的行生成规则。这里,为了保证所构造的校验矩阵是稀疏的,每一行中任意两个元素1所处的列数对t取模所得的值应互不相同,因此,在所设置的数字序列中,用于确定每个分矩阵的第一行中元素1所处的列数的任意两个数字对t取模所得的值互不相同。Wherein, the number of sub-matrices u=N/t, and the number of sub-matrices in the sub-matrix c=M/t. The number sequence set in this step is used to determine the number of columns where
对于规则LDPC码以及行重相同的非规则LDPC码,若以ρ表示行重、u表示校验矩阵中分矩阵的个数,由于该数字序列中的每ρ个数字代表一个分矩阵的第一行中元素1所处的列数,因此,该数字序列由ρ×u个数字组成,相对于M×N来说,所需的存储空间得以极大地减少;对于行重不相同的非规则LDPC码,虽然其行重不确定,但是,该数字序列中所包含的数字个数最多为行重最大值与u之积,因此,相对于M×N来说,其所需的存储空间也将得以极大地减少。For regular LDPC codes and irregular LDPC codes with the same row weight, if ρ represents the row weight and u represents the number of sub-matrixes in the parity check matrix, since each ρ number in the digital sequence represents the first part of a sub-matrix The number of columns where
步骤202:根据所设置的数字序列,采用循环移位的方式构造LDPC码的奇偶校验矩阵。Step 202: Construct a parity check matrix of the LDPC code in a cyclic shift manner according to the set digital sequence.
本步骤中,首先根据数字序列确定每一个分矩阵中的第一行元素;然后将每个分矩阵按列均匀划分为c个子矩阵,使得每个子矩阵是一个方阵,这里,c与步骤201所述c的物理含义相同;最后,根据每个子矩阵的第一行元素,采用循环移位的方式得到整个子矩阵中其他行的元素,即为本发明所述循环子矩阵,如此,得到由各个循环子矩阵构成的本示例中QC-LDPC码的奇偶校验矩阵。假设所设置的用于生成奇偶校验矩阵的数字序列包含y个数字,由于该数字序列中,用于确定每个分矩阵的第一行中元素1所处的列数的任意两个数字对t取模所得的值互不相同,因此,每个循环子矩阵的每一行中至多只有一个元素1,于是,所得到的校验矩阵中包含y个含有元素1的循环子矩阵,由矩阵的性质可知,这些含有元素1的循环子矩阵是置换单位阵。In this step, first determine the first row element in each sub-matrix according to the sequence of numbers; then divide each sub-matrix into c sub-matrices evenly by column, so that each sub-matrix is a square matrix, here, c and step 201 The physical meaning of the c is the same; finally, according to the elements of the first row of each sub-matrix, the elements of other rows in the whole sub-matrix are obtained by cyclic shifting, which is the cyclic sub-matrix of the present invention, so, obtained by The parity check matrix of the QC-LDPC code in this example constituted by each cyclic sub-matrix. Assuming that the set number sequence used to generate the parity check matrix contains y numbers, because in the number sequence, any two pairs of numbers used to determine the number of columns where
本步骤中,得到奇偶校验矩阵之后,可以对其进行各种角度的旋转、行置换、列置换或改变循环子矩阵位置的任何变换。In this step, after the parity check matrix is obtained, it can be rotated at various angles, replaced by rows, replaced by columns, or any transformation that changes the position of the cyclic sub-matrix.
步骤203:利用所得到的奇偶校验矩阵,将输入数据变换为LDPC码字。Step 203: Using the obtained parity check matrix, transform the input data into LDPC codewords.
本步骤中,得到奇偶校验矩阵之后,可以按照与现有技术相同的方式对输入数据进行编码,得到包含奇偶校验信息的输出数据。In this step, after the parity check matrix is obtained, the input data may be encoded in the same manner as in the prior art to obtain output data including parity check information.
至此,结束本发明一类准循环的LDPC码的实现方法的示例性流程。So far, the exemplary flow of the implementation method of a class of quasi-cyclic LDPC codes in the present invention is ended.
在实际应用中,将经过本发明QC-LDPC实现方法编码之后的数据进行交织、调制之后,即可向外发射。这里,调制方式可以包括:正交幅度调制(QAM)、相移键控(PSK)、幅度相移键控(APSK)、差分相移键控(DPSK)、绝对相移键控(BPSK)、差分幅度相移键控(DAPSK)和正交频分复用(OFDM)等。调制信号可以通过各种通信系统来传输,包括支持移动多媒体广播的地面链路等,例如:可以通过地面移动多媒体广播系统(T-MMB:Terrestrial Mobile Multimedia Broadcasting)来传输。In practical applications, the data encoded by the QC-LDPC implementation method of the present invention can be transmitted outside after being interleaved and modulated. Here, the modulation method may include: quadrature amplitude modulation (QAM), phase shift keying (PSK), amplitude phase shift keying (APSK), differential phase shift keying (DPSK), absolute phase shift keying (BPSK), Differential Amplitude Phase Shift Keying (DAPSK) and Orthogonal Frequency Division Multiplexing (OFDM), etc. The modulated signal can be transmitted through various communication systems, including terrestrial links supporting mobile multimedia broadcasting, etc. For example, it can be transmitted through a terrestrial mobile multimedia broadcasting system (T-MMB: Terrestrial Mobile Multimedia Broadcasting).
本发明可以适用于规则LDPC码和非规则LDPC码,以下通过四个实施例,对本发明技术方案进行详细说明。The present invention can be applied to regular LDPC codes and irregular LDPC codes. The technical solution of the present invention will be described in detail through four embodiments below.
实施例一:Embodiment one:
本实施例以规则(4608,2304)LDPC码为例进行说明。本实施例将要实现的规则LDPC码的码长N为4608,行重ρ=6,码率v=1/2。由码率、码长以及校验方程个数之间的对应关系可知,本实施例校验矩阵中校验方程个数M=4608-2304=2304。另外,本实施例中,将以72行×72列的循环子矩阵为最小循环单位为例说明上述准循环LDPC码的实现过程。In this embodiment, the rule (4608, 2304) LDPC code is taken as an example for illustration. The code length N of the regular LDPC code to be realized in this embodiment is 4608, the row weight ρ=6, and the code rate v=1/2. It can be seen from the corresponding relationship between the code rate, the code length and the number of check equations that the number of check equations in the check matrix in this embodiment is M=4608-2304=2304. In addition, in this embodiment, the implementation process of the above-mentioned quasi-cyclic LDPC code will be described by taking a cyclic sub-matrix with 72 rows×72 columns as the minimum cyclic unit as an example.
本实施例方法流程图与图2所示本发明示例性方法流程图类似,参见图2,本实施例中QC-LDPC码的实现方法包括以下步骤:The flow chart of the method of this embodiment is similar to the flow chart of the exemplary method of the present invention shown in Figure 2. Referring to Figure 2, the implementation method of the QC-LDPC code in this embodiment includes the following steps:
在步骤201中,根据本实施例中预先设置的码长、码率以及行重,设置数字序列,如下所示:In
为方便描述,将上述本实施例的数字序列称为数字序列一。参见数字序列一,该序列中的每一行代表一个分矩阵的第一行中元素1所处的列数。For convenience of description, the number sequence in this embodiment is referred to as number sequence one. Referring to number sequence one, each row in the sequence represents the column number of
由于本实施例中LDPC码的行重为6,因此,每一个分矩阵的第一行中存在6个元素1,即存在6个取值为1的列;另外,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而校验方程的个数为2304,因此,奇偶校验矩阵中分矩阵的个数u=2304/72=32个,所以,本实施例中的数字序列一为32行×6列=192个数字组成的序列。其中,每6个数字为一组,代表了一个分矩阵的第一行中元素1所处的列数;每一组6数字组中的任意两个数字对72取模所得的值互不相同,以保证每个循环子矩阵的同一行中最多只有一个1,即保证奇偶校验矩阵是稀疏的。Since the row weight of the LDPC code in the present embodiment is 6, there are 6
在步骤202中,根据所设置的数字序列一,采用循环移位的方式构造LDPC码的奇偶校验矩阵。In
本步骤中,按照下述步骤构造LDPC码的奇偶校验矩阵:In this step, the parity check matrix of the LDPC code is constructed according to the following steps:
第1步,将数字序列一均匀划分为多个包含行重个数字的数字组,并以数字序列一中的每一个数字组中的数字作为相应分矩阵的第一行中元素1所处的列数。即,以数字序列一中的第一个数字组中的数字作为第一个分矩阵的第一行中元素1所处的列数,以数字序列一中的第二个数字组中的数字作为第二个分矩阵的第一行中元素1所处的列数,依此类推,直至以数字序列一中的最后一个数字组中的数字作为最后一个分矩阵的第一行中元素1所处的列数。In the first step, the
具体而言,将数字序列一均匀划分为多个包含6个数字的数字组,根据所得到的每一个数字组中的数字,即如数字序列一所示的每一行中的数字,得到奇偶校验矩阵的每个分矩阵的第一行元素:Specifically, the
例如,如数字序列一所示,其第一个数字组为9、212、384、2326、2803和3343,表示奇偶校验矩阵中第一个分矩阵的第一行,即奇偶校验矩阵的第一行中的第9列、第212列、第384列、第2326列、第2803列和第3343列的取值为1,第一个分矩阵的第一行中的其余列为0;For example, as shown in the number sequence one, its first number group is 9, 212, 384, 2326, 2803, and 3343, indicating the first row of the first sub-matrix in the parity check matrix, that is, the first row of the parity check matrix The values of column 9, column 212, column 384, column 2326, column 2803 and column 3343 in the first row are 1, and the remaining columns in the first row of the first sub-matrix are 0;
其第二个数字组为140、264、465、2405、2870和3445,表示奇偶校验矩阵的第二个分矩阵的第一行,即奇偶校验矩阵的第73行中的第140列、第264列、第465列、第2405列、第2870列和第3445列的取值为1,第二个分矩阵的第一行中的其余列为0,对于其他分矩阵的第一行的取值,可以参照举例类推得到,在此不再赘述。Its second number group is 140, 264, 465, 2405, 2870 and 3445, indicating the first row of the second sub-matrix of the parity check matrix, that is, the 140th column in the 73rd row of the parity check matrix, Columns 264, 465, 2405, 2870, and 3445 are 1, and the rest of the columns in the first row of the second submatrix are 0. For other submatrixes in the first row The value can be obtained by analogy with reference to an example, and will not be repeated here.
第2步,将已确定第一行取值的每个分矩阵按列均匀划分为c个子矩阵;这里,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而码长为4608,因此,每个分矩阵中循环子矩阵的个数c=4608/72=64个;经划分之后,本实施例的奇偶校验矩阵将被划分为32行×64列=2048个循环子矩阵,且每个循环子矩阵的第一行元素的取值已经确定。In the second step, each sub-matrix that has determined the value of the first row is evenly divided into c sub-matrixes by column; The length is 4608, therefore, the number of cyclic sub-matrices c=4608/72=64 in each sub-matrix; after division, the parity-check matrix of this embodiment will be divided into 32 rows×64 columns=2048 The cyclic sub-matrix, and the values of the elements in the first row of each cyclic sub-matrix have been determined.
第3步,针对每个循环子矩阵,采用将其第一行元素循环移位的方式得到该循环子矩阵中其他行元素的取值。例如,可以对第1行元素循环左移x位,得到第2行元素;对第2行元素循环左移x位,得到第3行元素,依此类推,即可得到从第2行到第72行的所有元素的取值。这里,当然也可以采取循环右移或者其他循环移位方式进行移位。Step 3: For each cyclic sub-matrix, the value of other row elements in the cyclic sub-matrix is obtained by cyclically shifting the elements in the first row of the cyclic sub-matrix. For example, you can move the elements in
经过上述第1步至第3步的操作之后,即可得到本实施例中规则QC-LDPC码的奇偶校验矩阵。由于本实施例数字序列中存在32行×6列=192个数字,并且,每一个数字组中的任意两个数字对72取模所得的值互不相同,保证了每个循环子矩阵的同一行中最多只有一个1,因此,本实施例所得到的奇偶校验矩阵中将存在192个置换单位矩阵。After the
本步骤中,得到奇偶校验矩阵之后,可以对其进行各种角度的旋转、行置换、列置换或改变循环子矩阵位置的任何变换。In this step, after the parity check matrix is obtained, it can be rotated at various angles, replaced by rows, replaced by columns, or any transformation that changes the position of the cyclic sub-matrix.
在步骤203中,按照与现有技术相同的方式利用所得到的奇偶校验矩阵,将输入数据变换为LDPC码字。In
至此,结束本发明实施例一中QC-LDPC码的实现方法的示例性流程。So far, the exemplary flow of the implementation method of the QC-LDPC code in
由上述实施例可见,本发明采用了以数字序列表示奇偶校验矩阵、并对数字序列循环移位得到奇偶校验矩阵的方式,使得存储奇偶校验矩阵所需的存储空间达到了最小化。It can be seen from the above embodiments that the present invention adopts a method of expressing the parity check matrix with a digital sequence, and cyclically shifting the digital sequence to obtain the parity check matrix, so that the storage space required for storing the parity check matrix is minimized.
此外,由于本实施例的奇偶校验矩阵具有准循环的结构特性,使得在实际应用中,可以利用循环移位的特性实现快速寻址,节约处理资源,简化编码和译码操作,使编码和译码操作的复杂度得以降低。In addition, since the parity check matrix in this embodiment has quasi-cyclic structural characteristics, in practical applications, the characteristics of cyclic shift can be used to realize fast addressing, save processing resources, simplify encoding and decoding operations, and make encoding and The complexity of the decoding operation is reduced.
下面通过与现有技术的仿真对比,说明本发明实施例一中所提供的(4608,2304)规则QC-LDPC码的性能。图3为本发明实施例一中(4608,2304)规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。本次仿真中,译码采用sum-product算法,最大迭代次数为50。The following describes the performance of the (4608, 2304) regular QC-LDPC code provided in
参见图3,其中,直线301表示香农限;Referring to Fig. 3, wherein, straight line 301 represents Shannon limit;
曲线302表示采用本发明(4608,2304)规则QC-LDPC码进行编码、BPSK方式进行调制、然后在加性高斯白噪声(AWGN)信道中传输、并采用和积译码算法(SPA:Sum-Product Arithmetic)进行译码的信号的误比特率(BER)曲线;Curve 302 represents adopting (4608,2304) rule QC-LDPC code of the present invention to encode, BPSK way to modulate, then transmit in additive white Gaussian noise (AWGN) channel, and adopt sum product decoding algorithm (SPA: Sum- Product Arithmetic) the bit error rate (BER) curve of the signal decoded;
曲线303表示采用本发明(4608,2304)规则QC-LDPC码进行编码、BPSK方式进行调制、然后在AWGN信道中传输、并采用SPA算法进行译码的信号的误帧率(BLER)曲线;Curve 303 represents the frame error rate (BLER) curve of the signal that adopts (4608, 2304) rule QC-LDPC code of the present invention to encode, BPSK mode to modulate, then transmit in AWGN channel, and adopt SPA algorithm to decode;
曲线304表示未经编码,直接采用BPSK调制,再经AWGN信道传输的信号的BER性能曲线;Curve 304 represents the BER performance curve of a signal that is directly modulated by BPSK without encoding, and then transmitted through an AWGN channel;
由图3可见,本发明(4608,2304)规则QC-LDPC码的盆底(error floor)非常低,并且,在BER=10-9处,其性能曲线距离香农限仅1.9dB。It can be seen from Fig. 3 that the (4608, 2304) regular QC-LDPC code of the present invention has a very low error floor, and its performance curve is only 1.9 dB away from the Shannon limit at BER=10 −9 .
将本实施例所提供的(4608,2304)规则QC-LDPC码应用于T-MMB系统的AWGN信道,并采用8DPSK方式进行调制、SPA算法进行译码,将得到如图4所示的BER性能曲线。参见图4,图中所示曲线为在T-MMB系统的AWGN信道中,采用本发明(4608,2304)规则QC-LDPC码进行编码、8DPSK方式进行调制、并采用SPA算法进行译码之后的信号BER性能曲线。Apply the (4608, 2304) rule QC-LDPC code provided by this embodiment to the AWGN channel of the T-MMB system, and use 8DPSK mode for modulation and SPA algorithm for decoding, the BER performance as shown in Figure 4 will be obtained curve. Referring to Fig. 4, the curve shown in the figure is in the AWGN channel of T-MMB system, after adopting (4608,2304) rule QC-LDPC code of the present invention to encode, 8DPSK mode to modulate, and adopt SPA algorithm to decode after Signal BER performance curve.
在上述实施例一中,对本发明(4608,2304)规则QC-LDPC码的实现方法的具体实施方式进行了详细说明,下面的两个实施例中,将对本发明非规则QC-LDPC码的实现方法的具体实施方式进行详细说明。In the first embodiment above, the specific implementation method of the (4608, 2304) regular QC-LDPC code of the present invention is described in detail. In the following two embodiments, the realization of the irregular QC-LDPC code of the present invention will be described The specific implementation of the method will be described in detail.
实施例二:Embodiment two:
本实施例以(4608,2304)行重相同的非规则LDPC码为例进行说明。本实施例将要实现的规则LDPC码的码长N为4608,行重ρ=7,码率v=1/2,由码率、码长以及校验方程个数之间的对应关系可知,本实施例校验矩阵中校验方程个数M=4608-2304=2304。另外,本实施例中,与实施例一相同,以72×72的循环子矩阵为最小循环单位为例说明上述准循环LDPC码的实现过程。In this embodiment, an irregular LDPC code with the same row weight (4608, 2304) is taken as an example for illustration. The code length N of the regular LDPC code to be realized in this embodiment is 4608, the row weight ρ=7, and the code rate v=1/2. From the correspondence between the code rate, the code length and the number of check equations, it can be known that this The number of check equations in the check matrix of the embodiment is M=4608-2304=2304. In addition, in this embodiment, the same as the first embodiment, a 72×72 cyclic sub-matrix is taken as an example to illustrate the implementation process of the above-mentioned quasi-cyclic LDPC code.
本实施例方法流程图与图2所示本发明示例性方法流程图类似,参见图2,本实施例中QC-LDPC码的实现方法包括以下步骤:The flow chart of the method of this embodiment is similar to the flow chart of the exemplary method of the present invention shown in Figure 2. Referring to Figure 2, the implementation method of the QC-LDPC code in this embodiment includes the following steps:
在步骤201中,根据本实施例中预先设置的码长、码率以及行重,设置数字序列,如下所示:In
为方便描述,将上述本实施例的数字序列称为数字序列二。参见数字序列二,该序列中的每一行代表一个分矩阵的第一行中元素1所处的列数。For convenience of description, the number sequence in this embodiment is referred to as number sequence two. Referring to number sequence 2, each row in this sequence represents the column number of
由于本实施例中LDPC码的行重为7,因此,每一个分矩阵的第一行中存在7个元素1,即存在7个取值为1的列;另外,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而校验方程的个数为2304,因此,奇偶校验矩阵中分矩阵的个数u=2304/72=32个,所以,本实施例中的数字序列二为32行×7列=244个数字组成的序列。其中,每7个数字为一组,代表了一个分矩阵的第一行中元素1所处的列数;每一组7数字组中的任意两个数字对72取模所得的值互不相同,以保证每个循环子矩阵的同一行中最多只有一个1,即保证奇偶校验矩阵是稀疏的。Since the row weight of the LDPC code in the present embodiment is 7, there are 7
在步骤202中,根据所设置的数字序列二,采用循环移位的方式构造LDPC码的奇偶校验矩阵。In
本步骤中,按照下述步骤构造LDPC码的奇偶校验矩阵:In this step, the parity check matrix of the LDPC code is constructed according to the following steps:
第1步,将数字序列二均匀划分为多个包含7个数字的数字组,根据所得到的每一个数字组中的数字,即如数字序列二所示的每一行中的数字,得到奇偶校验矩阵的每个分矩阵的第一行元素:In the first step, the number sequence 2 is evenly divided into multiple number groups containing 7 numbers, and the parity check is obtained according to the obtained numbers in each number group, that is, the numbers in each row shown in number sequence 2 Elements in the first row of each submatrix of the test matrix:
例如,如数字序列二所示,其第一个数字组为923、970、2044、2100、2976、3359和4191,表示奇偶校验矩阵中第一个分矩阵的第一行,即奇偶校验矩阵的第一行中的第923列、第970列、第2044列、第2100列、第2976列、第3359列和第4191列的取值为1,第一个分矩阵的第一行中的其余列为0;For example, as shown in the number sequence two, its first number group is 923, 970, 2044, 2100, 2976, 3359, and 4191, indicating the first row of the first sub-matrix in the parity check matrix, that is, the parity check matrix The values of the 923rd, 970th, 2044th, 2100th, 2976th, 3359th and 4191th columns in the first row of the matrix are 1, and in the first row of the first sub-matrix The rest of the columns are 0;
其第二个数字组为136、288、1972、2422、2904、4243和4266,表示奇偶校验矩阵的第二个分矩阵的第一行,即奇偶校验矩阵的第73行中的第136列、第288列、第1972列、第2422列、第2904列、第4243列和第4266列的取值为1,第二个分矩阵的第一行中的其余列为0,对于其他分矩阵的第一行的取值,可以参照举例类推得到,在此不再赘述。Its second number group is 136, 288, 1972, 2422, 2904, 4243 and 4266, indicating the first row of the second sub-matrix of the parity check matrix, that is, the 136th row in the 73rd row of the parity check matrix column, the 288th column, the 1972th column, the 2422nd column, the 2904th column, the 4243rd column and the 4266th column take the value of 1, the rest of the columns in the first row of the second sub-matrix are 0, for the other sub-matrix The value of the first row of the matrix can be obtained by analogy with reference to an example, and will not be repeated here.
第2步,将已确定第一行取值的每个分矩阵按列均匀划分为c个子矩阵;这里,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而码长为4608,因此,每个分矩阵中循环子矩阵的个数c=4608/72=64个;经划分之后,本实施例的奇偶校验矩阵将被划分为32行×64列=2048个循环子矩阵,且每个循环子矩阵的第一行元素的取值已经确定。In the second step, each sub-matrix that has determined the value of the first row is evenly divided into c sub-matrixes by column; The length is 4608, therefore, the number of cyclic sub-matrices c=4608/72=64 in each sub-matrix; after division, the parity-check matrix of this embodiment will be divided into 32 rows×64 columns=2048 The cyclic sub-matrix, and the values of the elements in the first row of each cyclic sub-matrix have been determined.
第3步,针对每个循环子矩阵,采用将其第一行元素循环移位的方式得到该循环子矩阵中其他行元素的取值。例如,可以对第1行元素循环左移x位,得到第2行元素;对第2行元素循环左移x位,得到第3行元素,依此类推,即可得到从第2行到第72行的所有元素的取值。这里,当然也可以采取循环右移或者其他循环移位方式进行移位。Step 3: For each cyclic sub-matrix, the value of other row elements in the cyclic sub-matrix is obtained by cyclically shifting the elements in the first row of the cyclic sub-matrix. For example, you can move the elements in
经过上述第1步至第3步的操作之后,即可得到本实施例中非规则QC-LDPC码的奇偶校验矩阵。由于本实施例数字序列中存在32行×7列=224个数字,并且,每一个数字组中的任意两个数字对72取模所得的值互不相同,保证了每个循环子矩阵的同一行中最多只有一个1,因此,本实施例所得到的奇偶校验矩阵中将存在224个置换单位矩阵。After the
本步骤中,得到奇偶校验矩阵之后,可以对其进行各种角度的旋转、行置换、列置换或改变循环子矩阵位置的任何变换。In this step, after the parity check matrix is obtained, it can be rotated at various angles, replaced by rows, replaced by columns, or any transformation that changes the position of the cyclic sub-matrix.
在步骤203中,按照与现有技术相同的方式利用所得到的奇偶校验矩阵,将输入数据变换为LDPC码字。In
至此,结束本发明实施例二中QC-LDPC码的实现方法的示例性流程。So far, the exemplary flow of the implementation method of the QC-LDPC code in the second embodiment of the present invention is ended.
由上述实施例可见,本发明采用了以数字序列表示奇偶校验矩阵、并对数字序列循环移位得到奇偶校验矩阵的方式,使得存储奇偶校验矩阵所需的存储空间达到了最小化。It can be seen from the above embodiments that the present invention adopts a method of expressing the parity check matrix with a digital sequence, and cyclically shifting the digital sequence to obtain the parity check matrix, so that the storage space required for storing the parity check matrix is minimized.
并且,由于本实施例的奇偶校验矩阵具有准循环的结构特性,使得在实际应用中,可以利用循环移位的特性实现快速寻址,节约了处理资源,简化了编码和译码操作,使编码和译码操作的复杂度得以降低。Moreover, since the parity check matrix in this embodiment has quasi-cyclic structural characteristics, in practical applications, the characteristics of cyclic shift can be used to realize fast addressing, which saves processing resources, simplifies encoding and decoding operations, and makes The complexity of encoding and decoding operations is reduced.
下面通过与现有技术的仿真对比,说明本发明实施例二中所提供的(4608,2304)非规则QC-LDPC码的性能。图5为本发明实施例二中(4608,2304)非规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。本次仿真中,译码采用SPA算法,最大迭代次数为50。The performance of the (4608, 2304) irregular QC-LDPC code provided in Embodiment 2 of the present invention is described below by comparing it with the simulation of the prior art. FIG. 5 is a schematic diagram of performance curves of (4608, 2304) irregular QC-LDPC codes using BPSK modulation in an AWGN channel in Embodiment 2 of the present invention. In this simulation, the decoding uses the SPA algorithm, and the maximum number of iterations is 50.
参见图5,其中,直线501表示香农限;Referring to Fig. 5, wherein, straight line 501 represents Shannon limit;
曲线502表示采用本发明(4608,2304)非规则QC-LDPC码进行编码、BPSK方式进行调制、然后在AWGN信道中传输、并采用SPA算法进行译码的信号的BER曲线;Curve 502 represents the BER curve of the signal that adopts (4608, 2304) irregular QC-LDPC code of the present invention to encode, BPSK mode to modulate, then transmit in AWGN channel, and adopt SPA algorithm to decode;
曲线503表示采用本发明(4608,2304)非规则QC-LDPC码进行编码、BPSK方式进行调制、然后在AWGN信道中传输、并采用SPA算法进行译码的的信号的BLER曲线;Curve 503 represents the BLER curve of the signal that adopts (4608, 2304) irregular QC-LDPC code of the present invention to encode, BPSK mode to modulate, then transmit in AWGN channel, and adopt SPA algorithm to decode;
曲线504表示未经编码,直接采用BPSK调制,再经AWGN信道传输的信号的BER性能曲线;Curve 504 represents the BER performance curve of a signal that is directly modulated by BPSK without encoding, and then transmitted through an AWGN channel;
由图5可见,本发明(4608,2304)非规则QC-LDPC码的error floor非常低,并且,在BER=10-9处,其性能曲线距离香农限仅1.6dB,比本发明实施例一中所提供的(4608,2304)规则QC-LDPC码的性能更优。As can be seen from Fig. 5, the error floor of the (4608, 2304) irregular QC-LDPC code of the present invention is very low, and, at BER= 10-9 , its performance curve is only 1.6dB away from the Shannon limit, which is higher than that of
在上述实施例二中,以行重相同的非规则QC-LDPC码为例,详细说明了本发明技术方案,下面再通过一个行重不相同的LDPC码示例,对本发明非规则QC-LDPC码的实现方法进行介绍。In the above-mentioned embodiment two, taking the irregular QC-LDPC code with the same row weight as an example, the technical solution of the present invention is described in detail. Next, an example of an LDPC code with different row weights is used to describe the irregular QC-LDPC code of the present invention. The implementation method is introduced.
实施例三:Embodiment three:
本实施例以(4608,3096)行重不相同的非规则LDPC码为例进行说明。本实施例将要实现的规则LDPC码的码长N为4608,行重ρ=12或13,码率v=43/64,由码率、码长以及校验方程个数之间的对应关系可知,本实施例校验矩阵中校验方程个数M=4608-3096=1512。另外,本实施例中,与实施例一相同,以72×72的循环子矩阵为最小循环单位为例说明上述准循环LDPC码的实现过程。In this embodiment, an irregular LDPC code with (4608, 3096) row weights is taken as an example for illustration. The code length N of the regular LDPC code to be realized in this embodiment is 4608, the line weight ρ=12 or 13, and the code rate v=43/64, as can be known from the correspondence between the code rate, the code length and the number of check equations , the number of check equations in the check matrix in this embodiment is M=4608-3096=1512. In addition, in this embodiment, the same as the first embodiment, a 72×72 cyclic sub-matrix is taken as an example to illustrate the implementation process of the above-mentioned quasi-cyclic LDPC code.
本实施例方法流程图与图2所示本发明示例性方法流程图类似,参见图2,本实施例中QC-LDPC码的实现方法包括以下步骤:The flow chart of the method of this embodiment is similar to the flow chart of the exemplary method of the present invention shown in Figure 2. Referring to Figure 2, the implementation method of the QC-LDPC code in this embodiment includes the following steps:
在步骤201中,根据本实施例中预先设置的码长、码率以及行重,设置数字序列,如下所示:In
为方便描述,将上述本实施例的数字序列称为数字序列三。参见数字序列三,该序列中的每一行代表一个分矩阵的第一行中元素1所处的列数。For convenience of description, the number sequence in this embodiment is referred to as number sequence three. Referring to number sequence three, each row in the sequence represents the column number of
由于本实施例中LDPC码的行重为12或13,因此,每一个分矩阵的第一行中存在12个或13个元素1,即存在12个或13个取值为1的列,根据数字序列三,本实施例中存在17个行重为12的分矩阵、4个行重为13的分矩阵;另外,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而校验方程的个数为1512,因此,奇偶校验矩阵中分矩阵的个数u=1512/72=21个,所以,本实施例中的数字序列三为17行×12列+4行×13列=256个数字组成的序列。其中,每12个或13个数字为一组,代表了一个分矩阵的第一行中元素1所处的列数;每一组12个或13个数字组中的任意两个数字之差对72取模所得的值互不相同,以保证每个循环子矩阵的同一行中最多只有一个1,即保证奇偶校验矩阵是稀疏的。Since the row weight of the LDPC code in this embodiment is 12 or 13, there are 12 or 13 element 1s in the first row of each sub-matrix, that is, there are 12 or 13 columns with a value of 1, according to Number sequence three, there are 17 sub-matrixes with a row weight of 12 and 4 sub-matrices with a row weight of 13 in this embodiment; in addition, since the cyclic sub-matrix of the parity check matrix in this embodiment is a matrix of 72×72 , and the number of check equations is 1512, therefore, the number u=1512/72=21 of sub-matrixes in the parity check matrix, so the number sequence three in the present embodiment is 17 rows×12 columns+4 Row × 13 columns = sequence of 256 numbers. Among them, each group of 12 or 13 numbers represents the column number of
在步骤202中,根据所设置的数字序列三,采用循环移位的方式构造LDPC码的奇偶校验矩阵。In
本步骤中,按照下述步骤构造LDPC码的奇偶校验矩阵:In this step, the parity check matrix of the LDPC code is constructed according to the following steps:
第1步,将数字序列三划分为多个包含行重个数字的数字组,根据所得到的每一个数字组中的数字,即如数字序列三所示的每一行,得到奇偶校验矩阵的每个分矩阵的第一行元素:In the first step, the number sequence three is divided into a plurality of number groups containing numbers in rows, and according to the obtained numbers in each number group, that is, each row shown in number sequence three, the parity check matrix is obtained Elements in the first row of each submatrix:
例如,如数字序列三所示,其第一个数字组为536、1098、1156、1259、1889、2012、3529、3656、3739、3749、3907和3998,表示奇偶校验矩阵中第一个分矩阵的第一行,即奇偶校验矩阵的第一行中的第536列、第1098列、第1156列、第1259列、第1889列、第2012列、第3529列、第3656列、第3739列、第3749列、第3907列和第3998列的取值为1,第一个分矩阵的第一行中的其余列为0;对于其他分矩阵的第一行的取值,可以参照举例类推得到,在此不再赘述。For example, as shown in the number sequence three, the first number group is 536, 1098, 1156, 1259, 1889, 2012, 3529, 3656, 3739, 3749, 3907, and 3998, indicating that the first group in the parity check matrix The first row of the matrix, that is, the 536th column, the 1098th column, the 1156th column, the 1259th column, the 1889th column, the 2012th column, the 3529th column, the 3656th column, the 2012th column in the first row of the parity check matrix The value of the 3739th column, the 3749th column, the 3907th column and the 3998th column is 1, and the remaining columns in the first row of the first sub-matrix are 0; for the values of the first row of other sub-matrices, you can refer to It can be obtained by analogy with an example, and will not be repeated here.
第2步,将已确定第一行取值的每个分矩阵按列均匀划分为c个子矩阵;这里,由于本实施例中奇偶校验矩阵的循环子矩阵是72×72的矩阵,而码长为4608,因此,每个分矩阵中循环子矩阵的个数c=4608/72=64个;经划分之后,本实施例的奇偶校验矩阵将被划分为32行×64列=2048个循环子矩阵,且每个循环子矩阵的第一行元素的取值已经确定。In the second step, each sub-matrix that has determined the value of the first row is evenly divided into c sub-matrixes by column; The length is 4608, therefore, the number of cyclic sub-matrices c=4608/72=64 in each sub-matrix; after division, the parity-check matrix of this embodiment will be divided into 32 rows×64 columns=2048 The cyclic sub-matrix, and the values of the elements in the first row of each cyclic sub-matrix have been determined.
第3步,针对每个循环子矩阵,采用将其第一行元素循环移位的方式得到该循环子矩阵中其他行元素的取值。例如,可以对第1行元素循环左移x位,得到第2行元素;对第2行元素循环左移x位,得到第3行元素,依此类推,即可得到从第2行到第72行的所有元素的取值。这里,当然也可以采取循环右移或者其他循环移位方式进行移位。Step 3: For each cyclic sub-matrix, the value of other row elements in the cyclic sub-matrix is obtained by cyclically shifting the elements in the first row of the cyclic sub-matrix. For example, you can move the elements in
经过上述第1步至第3步的操作之后,即可得到本实施例中非规则QC-LDPC码的奇偶校验矩阵。由于本实施例数字序列中存在256个数字,并且,每一个数字组中的任意两个数字对72取模所得的值互不相同,保证了每个循环子矩阵的同一行中最多只有一个1,因此,本实施例所得到的奇偶校验矩阵中将存在256个置换单位矩阵。After the
本步骤中,得到奇偶校验矩阵之后,可以对其进行各种角度的旋转、行置换、列置换或改变循环子矩阵位置的任何变换。In this step, after the parity check matrix is obtained, it can be rotated at various angles, replaced by rows, replaced by columns, or any transformation that changes the position of the cyclic sub-matrix.
在步骤203中,按照与现有技术相同的方式利用所得到的奇偶校验矩阵,将输入数据变换为LDPC码字。In
至此,结束本发明实施例三中QC-LDPC码的实现方法的示例性流程。So far, the exemplary flow of the implementation method of the QC-LDPC code in the third embodiment of the present invention is ended.
由上述实施例可见,本发明采用了以数字序列表示奇偶校验矩阵、并对数字序列循环移位得到奇偶校验矩阵的方式,使得存储奇偶校验矩阵所需的存储空间达到了最小化。It can be seen from the above embodiments that the present invention adopts a method of expressing the parity check matrix with a digital sequence, and cyclically shifting the digital sequence to obtain the parity check matrix, so that the storage space required for storing the parity check matrix is minimized.
此外,由于本实施例的奇偶校验矩阵具有准循环的结构特性,使得在实际应用中,可以利用循环移位的特性实现快速寻址,节约了处理资源,简化了编码和译码操作,使编码和译码操作的复杂度得以降低。In addition, since the parity check matrix in this embodiment has quasi-cyclic structural characteristics, in practical applications, the characteristics of cyclic shift can be used to achieve fast addressing, which saves processing resources, simplifies encoding and decoding operations, and makes The complexity of encoding and decoding operations is reduced.
下面通过与现有技术的仿真对比,说明本发明实施例三中所提供的(4608,3096)非规则QC-LDPC码的性能。图6为本发明实施例三中(4608,3096)非规则QC-LDPC码在AWGN信道中采用BPSK调制的性能曲线示意图。本次仿真中,译码采用sum-product算法,最大迭代次数为50。The performance of the (4608, 3096) irregular QC-LDPC code provided in Embodiment 3 of the present invention is described below by comparing it with the simulation of the prior art. FIG. 6 is a schematic diagram of performance curves of (4608, 3096) irregular QC-LDPC codes using BPSK modulation in an AWGN channel in Embodiment 3 of the present invention. In this simulation, the decoding uses the sum-product algorithm, and the maximum number of iterations is 50.
参见图6,其中,直线601表示香农限;Referring to Fig. 6, wherein, straight line 601 represents Shannon limit;
曲线602表示采用本发明(4608,3096)非规则QC-LDPC码进行编码、BPSK方式进行调制、然后在AWGN信道中传输、并采用SPA算法进行译码的信号的BER曲线;Curve 602 represents the BER curve of the signal that adopts (4608, 3096) irregular QC-LDPC code of the present invention to encode, BPSK mode to modulate, then transmit in AWGN channel, and adopt SPA algorithm to decode;
曲线603表示采用本发明(4608,3096)非规则QC-LDPC码进行编码、BPSK方式进行调制、然后在AWGN信道中传输、并采用SPA算法进行译码的信号的BLER曲线;Curve 603 represents the BLER curve of the signal that adopts (4608, 3096) irregular QC-LDPC code of the present invention to encode, BPSK mode to modulate, then transmit in AWGN channel, and adopt SPA algorithm to decode;
曲线604表示未经编码,直接采用BPSK调制,再经AWGN信道传输的信号的BER性能曲线;Curve 604 represents the BER performance curve of a signal that is directly modulated by BPSK without encoding, and then transmitted through an AWGN channel;
由图6可见,本发明(4608,3096)非规则QC-LDPC码的error floor非常低,并且,在BER=10-9处,其性能曲线距离香农限小于1.5dB,比本发明实施例二中所实现的(4608,2304)非规则QC-LDPC码的性能更优。As can be seen from Fig. 6, the error floor of the (4608, 3096) irregular QC-LDPC code of the present invention is very low, and, at BER=10 -9 place, its performance curve distance Shannon limit is less than 1.5dB, compared with the second embodiment of the present invention The performance of the (4608, 2304) irregular QC-LDPC code implemented in is better.
在上面的实施例中对本发明QC-LDPC码的实现方法进行了详细的说明,下面通过一个编码器示例说明本发明QC-LDPC码的编码器的具体实施方式。The realization method of the QC-LDPC code of the present invention is described in detail in the above embodiment, and the specific implementation of the coder of the QC-LDPC code of the present invention will be described below through an example of an encoder.
实施例四:Embodiment four:
图7为本发明实施例四中QC-LDPC码的实现装置的结构示意图。参见图7,该实现装置包括:存储模块710、校验矩阵生成模块720和码字生成模块730,其中,校验矩阵生成模块720中进一步包括:数字序列分析单元721和循环移位单元722。FIG. 7 is a schematic structural diagram of an apparatus for implementing a QC-LDPC code in Embodiment 4 of the present invention. Referring to FIG. 7 , the implementation device includes: a storage module 710 , a check matrix generation module 720 and a codeword generation module 730 , wherein the check matrix generation module 720 further includes a digital sequence analysis unit 721 and a cyclic shift unit 722 .
图7所示实现装置中,存储模块710,用于存储数字序列,并向校验矩阵生成模块720中的数字序列分析单元721提供其所存储的数字序列;In the implementation device shown in Figure 7, the storage module 710 is used to store the digital sequence, and provides the stored digital sequence to the digital sequence analysis unit 721 in the check matrix generation module 720;
校验矩阵生成模块720中的数字序列分析单元721,用于根据存储模块710所提供的数字序列,以及LDPC码的行重,均匀划分数字序列得到多个包含所述行重个数字的数字组,并根据划分所得到的每一个数字序列、得到将奇偶校验矩阵按行均匀划分为多个分矩阵后的各个分矩阵的第一行元素,并将所得到的已确定第一行元素的每一个分矩阵发送给校验矩阵生成模块720中的循环移位单元722;The digital sequence analysis unit 721 in the check matrix generation module 720 is used to divide the digital sequence evenly according to the digital sequence provided by the storage module 710 and the row weight of the LDPC code to obtain a plurality of digital groups comprising the row heavy digits , and according to each number sequence obtained by division, the first row elements of each sub-matrix after the parity check matrix is evenly divided into multiple sub-matrices by row are obtained, and the obtained determined elements of the first row are obtained Each sub-matrix is sent to the cyclic shift unit 722 in the check matrix generation module 720;
校验矩阵生成模块720中的循环移位单元722,用于将来自于数字序列分析单元721的每一个分矩阵按列均匀划分为方阵,得到该奇偶校验矩阵的已确定第一行元素的子矩阵,并根据每一个子矩阵的第一行元素、采用循环移位的方式得到每一个子矩阵,这里,每一个子矩阵即构成了本实施例中的奇偶校验矩阵,将该奇偶校验矩阵发送给码字生成模块730;The cyclic shift unit 722 in the check matrix generation module 720 is used to divide each sub-matrix from the digital sequence analysis unit 721 into a square matrix evenly by column, and obtain the determined first row element of the parity check matrix sub-matrix, and according to the first row element of each sub-matrix, each sub-matrix is obtained by cyclic shifting. Here, each sub-matrix constitutes the parity check matrix in this embodiment, and the parity The check matrix is sent to the codeword generation module 730;
码字生成模块730,用于接收来自于校验矩阵生成模块720中的循环移位单元722的奇偶校验矩阵,并利用该奇偶校验矩阵,将输入数据变换为LDPC码字。The codeword generation module 730 is configured to receive the parity check matrix from the cyclic shift unit 722 in the check matrix generation module 720, and use the parity check matrix to transform the input data into an LDPC codeword.
在图7所示实现装置中,可以进一步包括:校验矩阵变换单元,该校验矩阵变换单元,可以用于对循环移位单元722得到的奇偶校验矩阵进行各种角度的旋转、行置换、列置换或改变子矩阵位置等各种变换,然后将经过变换所得到的奇偶校验矩阵发送给码字生成模块730。In the implementation device shown in FIG. 7 , it may further include: a parity check matrix conversion unit, which can be used to perform various angle rotations and row replacements on the parity check matrix obtained by the cyclic shift unit 722 , column permutation or changing sub-matrix positions and other transformations, and then send the transformed parity check matrix to the code word generation module 730 .
该校验矩阵变换单元可以单独设置于本实施例的实现装置中,也可以设置于校验矩阵生成模块720中,或者也可以设置于其他模块之中。The parity check matrix conversion unit may be set separately in the implementation device of this embodiment, or may be set in the parity check matrix generating module 720, or may be set in other modules.
由上述实施例可见,本发明采用了以数字序列表示奇偶校验矩阵、并对数字序列循环移位得到奇偶校验矩阵的方式,使得存储奇偶校验矩阵所需的存储空间达到了最小化。It can be seen from the above embodiments that the present invention adopts a method of expressing the parity check matrix with a digital sequence, and cyclically shifting the digital sequence to obtain the parity check matrix, so that the storage space required for storing the parity check matrix is minimized.
此外,由于本实施例的奇偶校验矩阵具有准循环的结构特性,使得在实际应用中,可以利用循环移位的特性实现快速寻址,节约处理资源,简化编码和译码操作,使编码和译码操作的复杂度得以降低。In addition, since the parity check matrix in this embodiment has quasi-cyclic structural characteristics, in practical applications, the characteristics of cyclic shift can be used to realize fast addressing, save processing resources, simplify encoding and decoding operations, and make encoding and The complexity of the decoding operation is reduced.
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101451827A CN100423454C (en) | 2006-06-14 | 2006-11-17 | A Realization Method of a Class of Low Density Parity Check Codes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610087235 | 2006-06-14 | ||
CN200610087235.4 | 2006-06-14 | ||
CNB2006101451827A CN100423454C (en) | 2006-06-14 | 2006-11-17 | A Realization Method of a Class of Low Density Parity Check Codes |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101347767A Division CN101335596B (en) | 2006-06-14 | 2006-11-17 | Low density parity check code implementing apparatus |
CN200810096933XA Division CN101340262B (en) | 2006-06-14 | 2006-11-17 | Implementing method and device for low-density parity check code |
CN2008100969344A Division CN101355402B (en) | 2006-06-14 | 2006-11-17 | Method and device for implementing a class of low-density parity-check codes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1964199A true CN1964199A (en) | 2007-05-16 |
CN100423454C CN100423454C (en) | 2008-10-01 |
Family
ID=38083129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101451827A Expired - Fee Related CN100423454C (en) | 2006-06-14 | 2006-11-17 | A Realization Method of a Class of Low Density Parity Check Codes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100423454C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102025441A (en) * | 2009-09-11 | 2011-04-20 | 北京泰美世纪科技有限公司 | Method for constructing low density parity check (LDPC) code check matrix, and method and device for encoding LDPC code |
CN101577553B (en) * | 2009-05-31 | 2011-04-27 | 清华大学 | Low-complexity encoding method for low-density parity-check codes |
CN104967455A (en) * | 2015-07-09 | 2015-10-07 | 北京邮电大学 | A Recursive Encoding Method for Spatially Coupled Low Density Parity-Check Codes |
CN102904581B (en) * | 2011-07-26 | 2017-03-01 | 无锡物联网产业研究院 | The building method of LDPC check matrix and device |
CN107911123A (en) * | 2017-12-09 | 2018-04-13 | 天津大学 | For the coding method of the low-density parity check code of deep space application |
CN110402554A (en) * | 2017-03-30 | 2019-11-01 | Lg 电子株式会社 | The parity matrix based on low-density checksum (LDPC) code executes the method for coding and the terminal using it in a wireless communication system |
CN113037296A (en) * | 2019-12-24 | 2021-06-25 | 北京新岸线移动通信技术有限公司 | LDPC (Low Density parity check) cascade-based coding and decoding method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6895547B2 (en) * | 2001-07-11 | 2005-05-17 | International Business Machines Corporation | Method and apparatus for low density parity check encoding of data |
KR100996029B1 (en) * | 2003-04-29 | 2010-11-22 | 삼성전자주식회사 | Apparatus and method for encoding low density parity check code |
CN100440737C (en) * | 2003-12-04 | 2008-12-03 | 北京泰美世纪科技有限公司 | High structural LDPC coding and decoding method and coder and decoder |
US7395494B2 (en) * | 2003-12-22 | 2008-07-01 | Electronics And Telecommunications Research Institute | Apparatus for encoding and decoding of low-density parity-check codes, and method thereof |
-
2006
- 2006-11-17 CN CNB2006101451827A patent/CN100423454C/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101577553B (en) * | 2009-05-31 | 2011-04-27 | 清华大学 | Low-complexity encoding method for low-density parity-check codes |
CN102025441A (en) * | 2009-09-11 | 2011-04-20 | 北京泰美世纪科技有限公司 | Method for constructing low density parity check (LDPC) code check matrix, and method and device for encoding LDPC code |
CN102025441B (en) * | 2009-09-11 | 2013-07-31 | 北京泰美世纪科技有限公司 | Method for constructing low density parity check (LDPC) code check matrix, and method and device for encoding LDPC code |
CN102904581B (en) * | 2011-07-26 | 2017-03-01 | 无锡物联网产业研究院 | The building method of LDPC check matrix and device |
CN104967455A (en) * | 2015-07-09 | 2015-10-07 | 北京邮电大学 | A Recursive Encoding Method for Spatially Coupled Low Density Parity-Check Codes |
CN104967455B (en) * | 2015-07-09 | 2018-02-23 | 北京邮电大学 | The recursive encoding method of Space Coupling low density parity check code |
CN110402554A (en) * | 2017-03-30 | 2019-11-01 | Lg 电子株式会社 | The parity matrix based on low-density checksum (LDPC) code executes the method for coding and the terminal using it in a wireless communication system |
US11211951B2 (en) | 2017-03-30 | 2021-12-28 | Lg Electronics Inc. | Method for encoding based on parity check matrix of LDPC code in wireless communication system and terminal using this |
CN110402554B (en) * | 2017-03-30 | 2022-02-22 | Lg 电子株式会社 | Method of performing encoding based on parity check matrix of Low Density Parity Check (LDPC) code in wireless communication system and terminal using the same |
CN107911123A (en) * | 2017-12-09 | 2018-04-13 | 天津大学 | For the coding method of the low-density parity check code of deep space application |
CN107911123B (en) * | 2017-12-09 | 2019-09-17 | 天津大学 | For the coding method of the low-density parity check code of deep space application |
CN113037296A (en) * | 2019-12-24 | 2021-06-25 | 北京新岸线移动通信技术有限公司 | LDPC (Low Density parity check) cascade-based coding and decoding method and device |
Also Published As
Publication number | Publication date |
---|---|
CN100423454C (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101355402B (en) | Method and device for implementing a class of low-density parity-check codes | |
US11824558B2 (en) | Method and apparatus for encoding and decoding of low density parity check codes | |
US11043967B2 (en) | Method and apparatus for channel encoding and decoding in a communication system using a low-density parity check code | |
JP7565976B2 (en) | Data encoding method and apparatus, storage medium, and processor | |
US10305632B2 (en) | Transmitting apparatus and signal processing method thereof | |
US20170117919A1 (en) | Transmitting apparatus and signal processing method thereof | |
US11177833B2 (en) | Method and apparatus for encoding and decoding low density parity check codes | |
US10727870B2 (en) | Method and apparatus for encoding and decoding low density parity check codes | |
US9362952B2 (en) | Apparatuses and methods for encoding and decoding of parity check codes | |
US20150200747A1 (en) | Transmission method, reception method, transmitter, and receiver | |
EP2947836A1 (en) | Cyclic-block permutations for 1D-4096-QAM with quasi-cyclic LDPC codes and code rates 6/15, 7/15, and 8/15 | |
CN1964199A (en) | A method and device to realize low density parity check code | |
KR102606204B1 (en) | Transmitting apparatus and signal processing method thereof | |
US11817953B2 (en) | Transmitting apparatus and signal processing method thereof | |
EP2947837A1 (en) | Cyclic-block permutations for 1D-4096-QAM with quasi-cyclic LDPC codes and code rates 9/15 and 13/15 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: BAO DONGSHAN Free format text: FORMER OWNER: BEIJING XINANXIAN SOFTWARE SCIENCE + TECHNOLOGY CO., LTD. Effective date: 20070615 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20070615 Address after: 100084, 16 floor, building A, building 8, Tsinghua Science Park, No. 1, Zhongguancun East Road, Haidian District, Beijing Applicant after: Bao Dongshan Address before: 100084, 16 floor, building A, building 8, Tsinghua Science Park, No. 1, Zhongguancun East Road, Haidian District, Beijing Applicant before: BEIJING NUFRONT SOFTWARE SCIENCE TECH. Co.,Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: BEIJING'S NEW SHORELINE MOBILE MULTIMEDIA TECHNOL Free format text: FORMER OWNER: BAO DONGSHAN Effective date: 20071214 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20071214 Address after: A, building 16, building 1, building 8, Qinghua science park, No. 100084, Zhongguancun East Road, Beijing, Haidian District, China Applicant after: BEIJING NUFRONT MOBILE MULTIMEDIA TECH. Co.,Ltd. Address before: A, building 16, building 1, building 8, Qinghua science park, No. 100084, Zhongguancun East Road, Beijing, Haidian District, China Applicant before: Bao Dongshan |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1106882 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: BEIJING NUFRONT MOBILE COMMUNICATION TECHNOLOGY CO Free format text: FORMER OWNER: BEIJING NUFRONT MOBILE MULTIMEDIA TECHNOLOGY CO., LTD. Effective date: 20100115 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20100115 Address after: Floor 16, building A, building 8, Tsinghua Science Park, No. 1, Zhongguancun East Road, Haidian District, Beijing, China Patentee after: NUFRONT MOBILE COMMUNICATIONS TECHNOLOGY Co.,Ltd. Address before: Floor 16, building A, building 8, Tsinghua Science Park, No. 1, Zhongguancun East Road, Haidian District, Beijing, China Patentee before: BEIJING NUFRONT MOBILE MULTIMEDIA TECH. Co.,Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: BEIJING NUFRONT CHIP CO., LTD. Free format text: FORMER OWNER: BEIJING NUFRONT MOBILE MULTIMEDIA TECHNOLOGY CO., LTD. Effective date: 20110414 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20110414 Address after: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee after: BEIJING PUJIXIN TECHNOLOGY CO.,LTD. Address before: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee before: NUFRONT MOBILE COMMUNICATIONS TECHNOLOGY Co.,Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: GUANGDONG NUFRONT COMPUTER SYSTEM CHIP CO., LTD. Free format text: FORMER OWNER: BEIJING NUFRONT CHIP CO., LTD. Effective date: 20110907 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 100084 HAIDIAN, BEIJING TO: 510006 GUANGZHOU, GUANGDONG PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20110907 Address after: 510006, Guangzhou University, Panyu District,, No. 232 East Ring Road, No. 13, A District, Guangzhou University of Chinese Medicine, 408 Patentee after: GUANGDONG NUFRONT COMPUTER SYSTEM CHIP Co.,Ltd. Address before: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee before: BEIJING PUJIXIN TECHNOLOGY CO.,LTD. |
|
ASS | Succession or assignment of patent right |
Owner name: BEIJING NUFRONT CHIP CO., LTD. Free format text: FORMER OWNER: GUANGDONG NUFRONT COMPUTER SYSTEM CHIP CO., LTD. Effective date: 20121022 Owner name: BEIJING NUFRONT MOBILE COMMUNICATION TECHNOLOGY CO Free format text: FORMER OWNER: BEIJING NUFRONT CHIP CO., LTD. Effective date: 20121022 |
|
C41 | Transfer of patent application or patent right or utility model | ||
C56 | Change in the name or address of the patentee |
Owner name: BEIJING NUFRONT MOBILE MULTIMEDIA TECHNOLOGY CO., Free format text: FORMER NAME: BEIJING NUFRONT MOBILE COMMUNICATION TECHNOLOGY CO., LTD. |
|
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 510006 GUANGZHOU, GUANGDONG PROVINCE TO: 100084 HAIDIAN, BEIJING |
|
CP01 | Change in the name or title of a patent holder |
Address after: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee after: BEIJING NUFRONT MOBILE MULTIMEDIA TECH. Co.,Ltd. Address before: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee before: NUFRONT MOBILE COMMUNICATIONS TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right |
Effective date of registration: 20121022 Address after: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee after: BEIJING PUJIXIN TECHNOLOGY CO.,LTD. Address before: 510006, Guangdong, Guangzhou, Panyu District, Guangzhou University, Guangzhou University of Chinese Medicine, No. 232 East Ring Road, No. 13, A District, 408 Patentee before: GUANGDONG NUFRONT COMPUTER SYSTEM CHIP Co.,Ltd. Effective date of registration: 20121022 Address after: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee after: NUFRONT MOBILE COMMUNICATIONS TECHNOLOGY Co.,Ltd. Address before: 100084 Beijing, Zhongguancun, East Road, No. 1, Tsinghua Science and Technology Park, building science and Technology Park, building No. 8, block A, floor 16 Patentee before: BEIJING PUJIXIN TECHNOLOGY CO.,LTD. |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1106882 Country of ref document: HK |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081001 |
|
CF01 | Termination of patent right due to non-payment of annual fee |