CN1956230B - 发光二极管芯片 - Google Patents

发光二极管芯片 Download PDF

Info

Publication number
CN1956230B
CN1956230B CN200510114474XA CN200510114474A CN1956230B CN 1956230 B CN1956230 B CN 1956230B CN 200510114474X A CN200510114474X A CN 200510114474XA CN 200510114474 A CN200510114474 A CN 200510114474A CN 1956230 B CN1956230 B CN 1956230B
Authority
CN
China
Prior art keywords
based material
gallium nitride
layer
material layer
alloy based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200510114474XA
Other languages
English (en)
Other versions
CN1956230A (zh
Inventor
武良文
简奉任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to CN200510114474XA priority Critical patent/CN1956230B/zh
Publication of CN1956230A publication Critical patent/CN1956230A/zh
Application granted granted Critical
Publication of CN1956230B publication Critical patent/CN1956230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种发光二极管芯片,其主要包括基板、第一型掺杂半导体层、第二型掺杂半导体层、发光层、至少一掺杂铟掺质之氮化铝镓系材料层及至少一穿隧接合层。第一型掺杂半导体层设置于基板上,且发光层设置于第一型掺杂半导体层与第二型掺杂半导体层之间。掺杂铟掺质之氮化铝镓系材料层设置于发光层的至少其中一表面上,且穿隧接合层设置于掺杂铟掺质之氮化铝镓系材料层与第一型掺杂半导体层之间及/或掺杂铟掺质之氮化铝镓系材料层与第二型掺杂半导体层之间,其中掺杂铟掺质之氮化铝镓系材料层与穿隧接合层是位于发光层的同一侧。

Description

发光二极管芯片
技术领域
本发明涉及一种半导体元件,且特别涉及一种发光二极管(LightEmitting Diode,LED)芯片。
背景技术
发光二极管属于半导体元件,其发光芯片的材料一般可使用III-V族化学元素,如:磷化镓(GaP)、砷化镓(GaAs)、氮化镓(GaN)等化合物半导体。利用对上述这些化合物半导体施加电流,透过电子空穴对的结合,可将电能转为光能,而以光波的形态释出,达到发光的效果。由于发光二极管的发光现象是属于冷性发光,而非通过加热发光,因此发光二极管的寿命可长达十万小时以上,且无须暖灯时间(idling time)。此外,发光二极管具有反应速度快(约为10-9秒)、体积小、用电省、污染低(不含水银)、可靠度高、适合量产等优点,因此其所能应用的领域十分广泛,如扫描仪的灯源、液晶屏幕的背光源、户外显示广告牌或是车用照明设备等等。
公知的发光二极管主要是由发光层、n型掺杂半导体层及p型掺杂半导体层所组成,其中n型掺杂半导体层及p型掺杂半导体层分别设置于发光层的两侧。一般而言,由于前述各层材质之间会有晶格不匹配(latticemismatch)的现象,这会造成在外延(epitaxy)的过程中产生较大的应力(stress)而降低外延质量。此外,由于p型掺杂半导体层具有较高的电阻值,使得在p型掺杂半导体层与发光层的接合处会具有较大的压降,因此需要较高的操作电压才能操作发光二极管。
发明内容
鉴于上述情况,本发明的目的就是提供一种发光二极管芯片,其具有较低的操作电压及较平坦的表面。
本发明的再一目的是提供一种发光二极管芯片,其具有较低的漏电流。
基于上述或其它目的,本发明提出一种发光二极管芯片,其包括基板、第一型掺杂半导体层、第二型掺杂半导体层、发光层、至少一掺杂铟掺质之氮化铝镓系材料层(In doped AlxGa1-xN based material layer,0≤x<1)、至少一穿隧接合层(tunneling junction layer)、第一电极及第二电极。第一型掺杂半导体层设置于基板上,而第二型掺杂半导体层设置于第一型掺杂半导体层上方,且发光层设置于第一型掺杂半导体层与第二型掺杂半导体层之间。掺杂铟掺质之氮化铝镓系材料层设置于发光层的至少其中一表面上,且穿隧接合层设置于掺杂铟掺质之氮化铝镓系材料层与第一型掺杂半导体层之间及/或掺杂铟掺质之氮化铝镓系材料层与第二型掺杂半导体层之间,其中掺杂铟掺质之氮化铝镓系材料层与穿隧接合层是位于发光层的同一侧。第一电极设置于第一型掺杂半导体层上,且第二电极设置于第二型掺杂半导体层上。
此外,本发明另提出一种发光二极管芯片,其包括基板、第一型掺杂半导体层、第二型掺杂半导体层、发光层、至少一未掺杂之氮化铝镓系材料层(undoped AlxGa1-xN based material layer,0≤x<1)、至少一穿隧接合层、第一电极及第二电极。第一型掺杂半导体层设置于基板上,而第二型掺杂半导体层设置于第一型掺杂半导体层上方,且发光层设置于第一型掺杂半导体层与第二型掺杂半导体层之间。未掺杂之氮化铝镓系材料层设置于发光层的至少其中一表面上,且穿隧接合层设置于未掺杂之氮化铝镓系材料层与第一型掺杂半导体层之间及/或未掺杂之氮化铝镓系材料层与第二型掺杂半导体层之间,其中未掺杂之氮化铝镓系材料层与穿隧接合层是位于发光层的同一侧。第一电极设置于第一型掺杂半导体层上,且第二电极设置于第二型掺杂半导体层上。
在本发明之一实施例中,上述的穿隧接合层的能隙宽度可以大于发光层的能隙宽度。
在本发明之一实施例中,上述的穿隧接合层包括第一型氮化铝镓系材料层及第二型氮化铝镓系材料层,其中第二型氮化铝镓系材料层设置于第一型氮化铝镓系材料层的其中一表面上。
在本发明之一实施例中,上述的第一型氮化铝镓系材料层可以具有硅掺质、铟掺质或其组合,且第二型氮化铝镓系材料层可以具有镁掺质、铟掺质或其组合。
在本发明之一实施例中,上述的掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层设置于发光层的上表面上,且第二型氮化铝镓系材料层设置于掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层与第一型氮化铝镓系材料层之间。
在本发明之一实施例中,上述的掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层设置于发光层的下表面上,且第一型氮化铝镓系材料层设置于掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层与第二型氮化铝镓系材料层之间。
在本发明之一实施例中,上述的第一型氮化铝镓系材料层可以具有镁掺质、铟掺质或其组合,且第二型氮化铝镓系材料层可以具有硅掺质、铟掺质或其组合。
在本发明之一实施例中,上述的掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层设置于发光层的上表面上,且第二型氮化铝镓系材料层设置于掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层与第一型氮化铝镓系材料层之间。
在本发明之一实施例中,上述的掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层设置于发光层的下表面上,而第一型氮化铝镓系材料层设置于掺杂铟掺质之氮化铝镓系材料层/未掺杂之氮化铝镓系材料层与第二型氮化铝镓系材料层之间。
在本发明之一实施例中,上述的第一型掺杂半导体层包括缓冲层(buffer layer)、结晶层(nucleation layer)及第一型接触层。缓冲层设置于基板上,而结晶层设置于缓冲层上,且第一型接触层设置于结晶层上。
在本发明之一实施例中,上述的第二型掺杂半导体层包括第二型接触层。
综合上述,由于穿隧接合层可以有效降低第一/第二型掺杂半导体层与发光层之间的压降,因此本发明的发光二极管具有较低的操作电压。此外,掺杂铟掺质之氮化铝镓系材料层可使发光二极管芯片具有较平坦的表面,而未掺杂之氮化铝镓系材料层可使发光二极管芯片具有较低的漏电流。因此,上述的优良特性均有效提高本发明的发光二极管芯片的质量。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1为依照本发明的第一实施例的发光二极管芯片的剖面示意图。
图2为依照本发明的第二实施例的发光二极管芯片的剖面示意图。
图3为依照本发明的第三实施例的发光二极管芯片的剖面示意图。
图4为依照本发明的第四实施例的发光二极管芯片的剖面示意图。
主要元件标记说明
100、200、300、400:发光二极管芯片
110:基板
120:第一型掺杂半导体层
122:缓冲层
124:结晶层
126:第一型接触层
130:第二型掺杂半导体层
132:第二型接触层
140:发光层
150、250:掺杂铟掺质之氮化铝镓系材料层
160、260、360、460:穿隧接合层
162、262、362、462:第一型氮化铝镓系材料层
164、264、364、464:第二型氮化铝镓系材料层
170:第一电极
180:第二电极
具体实施方式
第一实施例
图1为依照本发明的第一实施例的发光二极管芯片的剖面示意图。请参照图1,本发明的发光二极管芯片100包括基板110、第一型掺杂半导体层120、第二型掺杂半导体层130、发光层140、掺杂铟掺质之氮化铝镓系材料层(In doped AlxGa1-xN based material layer,0≤x<1)150、穿隧接合层(tunneling junction layer)160、第一电极170及第二电极180。第一型掺杂半导体层120设置于基板110上,而第二型掺杂半导体层130设置于第一型掺杂半导体层110上方,且发光层140设置于第一型掺杂半导体层120与第二型掺杂半导体层130之间。此外,第一电极170设置于第一型掺杂半导体层110上,且第二电极180设置于第二型掺杂半导体层130上。当由第一电极170及第二电极180通以顺向电流时,电子及空穴会分别经由第一型掺杂半导体层120及第二型掺杂半导体层130传递至发光层140中结合,并以光波的形态释放能量而达到发光的效果。
在本实施例中,掺杂铟掺质之氮化铝镓系材料层150设置于发光层140的上表面上。由于本发明设置掺杂铟掺质之氮化铝镓系材料层150以减缓第二型掺杂半导体层130与发光层140材质之间晶格不匹配的现象,可降低发光二极管芯片100在外延时产生的应力。同时,由于铟掺质具有较佳的表面迁移能(surface migration capability),因此,发光二极管芯片100可形成较平坦的表面。详细而言,由于铟原子的原子半径大于镓原子的原子半径,故铟掺质可以降低氮元素的空乏密度(vacancy density),以使在外延的过程中提高V/III的比例,并改善发光二极管芯片100中的差排缺陷。
请再参照图1,在本实施例中,穿隧接合层160设置于掺杂铟掺质之氮化铝镓系材料层150与第二型掺杂半导体层130之间,如此可降低第二型掺杂半导体层130与发光层140之间的压降,因而本发明的发光二极管芯片100具有较低的操作电压。此外,当穿隧接合层160的能隙宽度大于发光层140的能隙宽度时,发光二极管芯片100具有较佳的发光特性。
承上所述,穿隧接合层160包括第一型氮化铝镓系(AlxGa1-xN,0≤x<1)材料层162及第二型氮化铝镓系(AlxGa1-xN,0≤x<1)材料层164。在本实施例中,第二型氮化铝镓系材料层164设置于掺杂铟掺质之氮化铝镓系材料层150与第一型氮化铝镓系材料层162之间。此外,第一型氮化铝镓系材料层162可为n型氮化铝镓系材料层,且第二型氮化铝镓系材料层164可为p型氮化铝镓系材料层(如此,第一型掺杂半导体层120及第二型掺杂半导体层130则分别为n型氮化铝镓系材料层及p型氮化铝镓系材料层)。
为进一步降低发光二极管芯片100的操作电压,本发明可掺杂硅掺质、铟掺质或其组合于第一型氮化铝镓系材料层162中,亦可掺杂镁掺质、铟掺质或其组合于第二型氮化铝镓系材料层164中。值得注意的是,特别是当同时掺杂硅掺质及铟掺质于第一型氮化铝镓系材料层162中时,且同时掺杂镁掺质及铟掺质于第二型氮化铝镓系材料层164中时,发光二极管芯片100可具有更低的操作电压。
此外,上述中的掺杂铟掺质之氮化铝镓系材料层150、第一型氮化铝镓系材料层162及第二型氮化铝镓系材料层164例如是以金属有机化学气相沉积法(Metal Organic Chemical Vapor Deposition,MOCVD)形成,而其较佳的厚度是介于0.5nm~20nm之间,且其较佳的成长温度是介于800℃~1200℃之间。
以下将分段叙述发光二极管芯片100的基板及各薄膜层的材质及结构。
基板110的材质包括氧化铝单晶(Sapphire)、碳化硅(6H-SiC或4H-SiC)、硅(Si)、氧化锌(ZnO)、砷化镓(GaAs)、尖晶石(MgAl2O4)或其它晶格常数接近于氮化物半导体的单晶氧化物,且基板110的材质组成形态例如为C-Plane、E-Plane或A-Plane。
请再参照图1,第一型掺杂半导体层120包括缓冲层122、结晶层124及第一型接触层126。缓冲层122设置于基板110上,且其例如是由氮化铝镓铟(AlaGabIn1-a-bN,0≤a,b<1,a+b≤1)所构成。结晶层124设置于缓冲层122上,其主要功用在于使之后的外延可以更加快速,且外延的晶格排序较为整齐,且第一型接触层126设置于结晶层124上。
承上所述,第二型掺杂半导体层130包括第二型接触层132。在本实施例中,第一型接触层126为n型接触层,而第二型接触层132为p型接触层,且前述的接触层例如由氮化铝镓系材质所构成,并通过掺杂离子杂质种类及浓度不同而调整其特性。此外,发光层140例如是由氮化铟镓(InaGa1-aN,0≤a<1)所构成的多重量子井结构,并通过不同比例的铟镓元素,可使其发出不同波长的光线。
附带一提的是,为增进发光二极管芯片100的电特性,第一型掺杂半导体层120还可以包括第一型被覆层(图中未表示)设置于第一型接触层126上。第二型掺杂半导体层130还可以包括第二型被覆层(图中未表示)设置于第二型接触层132与发光层140之间。此外,本实施例的穿隧接合层160同时具有被覆层的特性,如此发光二极管芯片100不需设置第二型被覆层即可具有较佳的电特性。
值得注意的是,本发明可用未掺杂之氮化铝镓系材料层(undopedAlxGa1-xN based material layer,0≤x<1)以取代掺杂铟掺质之氮化铝镓系材料层150。如此,则本发明可以大幅降低发光二极管100的漏电流现象,以使其具有较佳的电特性。附带一提的是,未掺杂之氮化铝镓系材料层例如是以金属有机化学气相沉积法形成,而其较佳的厚度是介于0.5nm~20nm之间,且其较佳的成长温度是介于800℃~1200℃之间。
此外,本发明并不限定掺杂铟掺质之氮化铝镓系材料层150与穿隧接合层160只能位于第二型掺杂半导体层130及发光层140之间。以下,将列举其它实施例并配合附图说明本发明其它结构的发光二极管。
第二实施例
图2为依照本发明的第二实施例的发光二极管芯片的剖面示意图。请参照图2,第二实施例的发光二极管芯片200与第一实施例的发光二极管芯片100(如图1所示)相似,其差别在于掺杂铟掺质之氮化铝镓系材料层250与穿隧接合层260的配设位置不同。在本实施例中,掺杂铟掺质之氮化铝镓系材料层250设置于发光层140的下表面上,且穿隧接合层260设置于掺杂铟掺质之氮化铝镓系材料层250与第一型掺杂半导体层120之间。此外,穿隧接合层260包括第一型氮化铝镓系材料层262及第二型氮化铝镓系材料层264,其中第一型氮化铝镓系材料层262设置于掺杂铟掺质之氮化铝镓系材料层250与第二型氮化铝镓系材料层264之间。
类似前述理由,掺杂铟掺质之氮化铝镓系材料层250可减缓第一型掺杂半导体层120与发光层140材质之间晶格不匹配的现象,以使发光二极管芯片200形成较平坦的表面。此外,穿隧接合层260可降低第一型掺杂半导体层120与发光层140之间的压降,以使发光二极管芯片200具有较低的操作电压。当然,亦可用未掺杂之氮化铝镓系材料层取代掺杂铟掺质之氮化铝镓系材料层250,以使发光二极管芯片200具有较低的漏电流。附带一提的是,本实施例的穿隧接合层260亦可同时作为被覆层而取代前述的第一型被覆层以增进发光二极管芯片200的电特性。
值得注意的是,本发明并不限定掺杂铟掺质之氮化铝镓系材料层及穿隧接合层的数量。举例而言,本发明可以结合第一实施例及第二实施例的发光二极管芯片100、200,以使掺杂铟掺质之氮化铝镓系材料层与穿隧接合层可位于发光层与第一掺杂半导体层之间,以及发光层与第二掺杂半导体层之间。所属技术领域的技术人员可以自行推得上述的情形,此处不再附图表示。
此外,本发明亦不限定第一型氮化铝镓系材料层为n型氮化铝镓系材料层,且第二型氮化铝镓系材料层为p型氮化铝镓系材料层。以下,将列举其它实施例并配合附图说明本发明其它形态的发光二极管。
第三实施例、第四实施例
图3为依照本发明的第三实施例的发光二极管芯片的剖面示意图,图4为依照本发明的第四实施例的发光二极管芯片的剖面示意图。请参照图3,第三实施例的发光二极管芯片300与第一实施例的发光二极管芯片100(如图1所示)相似,其差别在于穿隧接合层360的第一型氮化铝镓系材料层362为p型氮化铝镓系材料层,而第二型氮化铝镓系材料层364为n型氮化铝镓系材料层。请参照图4,第四实施例的发光二极管芯片400与第二实施例的发光二极管芯片200(如图2所示)相似,其差别在于穿隧接合层460的第一型氮化铝镓系材料层462为p型氮化铝镓系材料层,而第二型氮化铝镓系材料层464为n型氮化铝镓系材料层。
承上所述,请同时参照图3及图4,在这两实施例中,第一型氮化铝镓系材料层可以具有镁掺质、铟掺质或其组合,且第二型氮化铝镓系材料层364、464可以具有硅掺质、铟掺质或其组合。值得注意的是,特别是当同时掺杂镁掺质及铟掺质于第一型氮化铝镓系材料层362、462中时,且同时掺杂硅掺质及铟掺质于第二型氮化铝镓系材料层364、464中时,发光二极管芯片300、400可具有更低的操作电压。当然,在此两实施例的形态架构中,则第一型掺杂半导体层120及第二型掺杂半导体层130则需分别对应为p型氮化铝镓系材料层及n型氮化铝镓系材料层。
附带一提的是,本发明可用未掺杂之氮化铝镓系材料层取代掺杂铟掺质之氮化铝镓系材料层150、250(如图3、图4所示),以使发光二极管芯片200具有较低的漏电流。此外,本发明可以结合第三实施例及第四实施例的发光二极管芯片300、400,以使掺杂铟掺质之氮化铝镓系材料层与穿隧接合层可位于发光层与第一掺杂半导体层之间,以及发光层与第二掺杂半导体层之间。所属技术领域的技术人员可以自行推得上述的情形,此处不再附图表示。
在上述各实施例的100、200、300、400中(如图1、图2、图3、图4所示),掺杂铟掺质之氮化铝镓系材料层(或未掺杂之氮化铝镓系材料层)与穿隧接合层是位于发光层与第一掺杂半导体层之间,或是位于发光层与第二掺杂半导体层之间。然而,本发明并不限定掺杂铟掺质之氮化铝镓系材料层(或未掺杂之氮化铝镓系材料层)与穿隧接合层只能位于前述的两个位置。举例而言,其亦可以位于第二电极与第二型接触层之间,或是位于第二型接触层与第二型被覆层之间,或是位于第一型被覆层与第一型接触层之间等位置以使发光二极管芯片具有较佳的质量。
综上所述,本发明的发光二极管芯片至少具有下列优点:
一、由于设置掺杂铟掺质之氮化铝镓系材料层,可使发光二极管芯片具有较平坦的表面,并改善发光二极管芯片于外延时产生的差排缺陷。
二、由于设置未掺杂之氮化铝镓系材料层,可降低发光二极管芯片的漏电流,以提高其电特性。
三、由于穿隧接合层可有效降低第一/第二型掺杂半导体层与发光层之间的压降,因此发光二极管芯片具有较低的操作电压。
四、由于第一型氮化铝镓系材料层同时掺杂镁掺质及铟掺质,且第二型氮化铝镓系材料层同时掺杂硅掺质及铟掺质,因此可进一步降低发光二极管芯片的操作电压。
五、穿隧接合层同时具有被覆层的特性,如此发光二极管芯片不需设置被覆层即可具有较佳的电特性。
虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,任何所属技术领域的技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与改进,因此本发明的保护范围当视权利要求所界定者为准。

Claims (20)

1.一种发光二极管芯片,其特征是包括:
基板;
第一型掺杂半导体层,设置于该基板上;
第二型掺杂半导体层,设置于该第一型掺杂半导体层上方;
发光层,设置于该第一型掺杂半导体层与该第二型掺杂半导体层之间;
至少一掺杂铟掺质之氮化铝镓系材料层,设置于该发光层的至少其中一表面上;
至步一穿隧接合层,设置于该掺杂铟掺质之氮化铝镓系材料层与该第一型掺杂半导体层之间及/或该掺杂铟掺质之氮化铝镓系材料层与该第二型掺杂半导体层之间,其中该掺杂铟掺质之氮化铝镓系材料层与该穿隧接合层是位于该发光层的同一侧,该穿隧接合层包括:
第一型氮化铝镓系材料层;以及
第二型氮化铝镓系材料层,设置于该第一型氮化铝镓系材料层的其中一表面上;
第一电极,设置于该第一型掺杂半导体层上;以及
第二电极,设置于该第二型掺杂半导层上。
2.根据权利要求1所述的发光二极管芯片,其特征是该穿隧接合层的能隙宽度大于该发光层的能隙宽度。
3.根据权利要求1所述的发光二极管芯片,其特征是该第一型氮化铝镓系材料层具有硅掺质、铟掺质或其组合,且第二型氮化铝镓系材料层具有镁掺质、铟掺质或其组合。
4.根据权利要求3所述的发光二极管芯片,其特征是该掺杂掺质之氮化铝镓系材料层设置于该发光层的上表面上,且该第二型氮化铝镓 系材料层设置于该掺杂铟掺质之氮化铝镓系材料层与该第一型氮化铝镓系材料层之间。
5.根据权利要求3所述的发光二极管芯片,其特征是该掺杂掺质之氮化铝镓系材料层设置于该发光层的下表面上,且该第一型氮化铝镓系材料层设置于该掺杂铟掺质之氮化铝镓系材料层与该第二型氮化铝镓系材料层之间。
6.根据权利要求1所述的发光二极管芯片,其特征是该第一型氮化铝镓系材料层具有镁掺质、铟掺质或其组合,且该第二型氮化铝镓系材料层具有硅掺质、铟掺质或其组合。
7.根据权利要求6所述的发光二极管芯片,其特征是该掺杂铟掺质之氮化铝镓系材料层设置于该发光层的上表面上,且该第二型氮化铝镓系材料层设置于该掺杂铟掺质之氮化铝镓系材料层与该第一型氮化铝镓系材料层之间。
8.根据权利要求6所述的发光二极管芯片,其特征是该掺杂铟掺质之氮化铝镓系材料层设置于该发光层的下表面上,而该第一型氮化铝镓系材料层设置于该掺杂铟掺质之氮化铝镓系材料层与该第二型氮化铝镓系材料层之间。
9.根据权利要求1所述的发光二极管芯片,其特征是该第一型掺杂半导体层包括:
缓冲层,设置于该基板上;
结晶层,设置于该缓冲层上;以及
第一型接触层,设置于该结晶层上。
10.根据权利要求1所述的发光二极管芯片,其特征是该第二型掺杂半导体层包括第二型接触层。
11.一种发光二极管芯片,其特征是包括:
基板;
第一型掺杂半导体层,设置于该基板上; 
第二型掺杂半导体层,设置于该第一型掺杂半导体层上方;
发光层,设置于该第一型掺杂半导体层与该第二型掺杂半导体层之间;
至少一未掺杂之氮化铝镓系材料层,设置于该发光层的至少其中一表面上;
至少一穿隧接合层,设置于该未掺杂之氮化铝镓系材料层与该第一型掺杂半导体层之间及/或该未掺杂之氮化铝镓系材料层与该第二型掺杂半导体层之间,其中该未掺杂之氮化铝镓系材料层与该穿隧接合层是位于该发光层的同一侧,该穿隧接合层包括:
第一型氮化铝镓系材料层;以及
第二型氮化铝镓系材料层,设置于该第一型氮化铝镓系材料层的其中一表面上;
第一电极,设置于该第一型掺杂半导体层上;以及
第二电极,设置于该第二型掺杂半导体层上。
12.根据权利要求11所述的发光二极管芯片,其特征是该穿隧接合层的能隙宽度大于该发光层的能隙宽度。
13.根据权利要求11所述的发光二极管芯片,其特征是该第一型氮化铝镓系材料层具有硅掺质、铟掺质或其组合,且第二型氮化铝镓系材料层具有镁掺质、铟掺质或其组合。
14.根据权利要求13所述的发光二极管芯片,其特征是该未掺杂之氮化铝镓系材料层设置于该发光层的上表面上,且该第二型氮化铝镓系材料层设置于该未掺杂之氮铝镓系材料层与该第一型氮化铝镓系材料层之间。
15.根据权利要求13所述的发光二极管芯片,其特征是该未掺杂之氮化铝镓系材料层设置于该发光层的下表面上,且该第一型氮化铝镓系材料层设置于该未掺杂之氮化铝镓系材料层与该第二型氮化铝镓系材料层之间。 
16.根据权利要求11所述的发光二极管芯片,其特征是该第型氮化铝镓系材料层具有镁掺质、铟掺质或其组合,且该第二型氮化铝镓系材料层具有硅掺质、铟掺质或其组合。
17.根据权利要求16所述的发光二极管芯片,其特征是该未掺杂之氮化铝镓系材料层设置于该发光层的上表面上,且该第二型氮化铝镓系材料层设置于该未掺杂之氮化铝镓系材料层与该第一型氮化铝镓系材料层之间。
18.根据权利要求16所述的发光二极管芯片,其特征是该未掺杂之氮化铝镓系材料层设置于该发光层的下表面上,而该第一型氮化铝镓系材料层设置于该未掺杂之氮化铝镓系材料层与该第二型氮化铝镓系材料层之间。
19.根据权利要求11所述的发光二极管芯片,其特征是该第一型掺杂半导体层包括:
缓冲层,设置于该基板上;
结晶层,设置于该缓冲层上;以及
第一型接触层,设置于该结晶层上。
20.根据权利要求11所述的发光二极管芯片,其特征是该第二型掺杂半导体层包括第二型接触层。 
CN200510114474XA 2005-10-27 2005-10-27 发光二极管芯片 Active CN1956230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200510114474XA CN1956230B (zh) 2005-10-27 2005-10-27 发光二极管芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200510114474XA CN1956230B (zh) 2005-10-27 2005-10-27 发光二极管芯片

Publications (2)

Publication Number Publication Date
CN1956230A CN1956230A (zh) 2007-05-02
CN1956230B true CN1956230B (zh) 2013-05-29

Family

ID=38063418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510114474XA Active CN1956230B (zh) 2005-10-27 2005-10-27 发光二极管芯片

Country Status (1)

Country Link
CN (1) CN1956230B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859839A (zh) * 2009-04-07 2010-10-13 璨扬投资有限公司 发光二极管芯片
CN117253947A (zh) * 2023-11-20 2023-12-19 徐州立羽高科技有限责任公司 一种深紫外发光外延片及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection

Also Published As

Publication number Publication date
CN1956230A (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
US6787814B2 (en) Group-III nitride semiconductor light-emitting device and production method thereof
RU2523747C2 (ru) Iii-нитридный светоизлучающий прибор, включающий бор
US10553749B2 (en) Nitride-based semiconductor light-emitting device
JP2012070009A (ja) 量子井戸と超格子とを有するiii族窒化物系発光ダイオード構造
KR100689975B1 (ko) 질화물계 발광 소자의 삼원 질화물계 버퍼층 및 그 제조방법
CN104465898B (zh) 一种发光二极管外延片的生长方法及发光二极管外延片
CN116504896A (zh) 一种发光二极管外延片及其制备方法、发光二极管
US6835962B2 (en) Stacked layer structure, light-emitting device, lamp, and light source unit
US7063997B2 (en) Process for producing nitride semiconductor light-emitting device
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
CN101859839A (zh) 发光二极管芯片
KR100838195B1 (ko) 질화물 반도체 발광 다이오드를 제조하는 방법 및 그것에의해 제조된 발광 다이오드
JP3724267B2 (ja) Iii族窒化物半導体発光素子
CN1956230B (zh) 发光二极管芯片
TW541709B (en) III group nitride semiconductor luminescent element with the product method
US7812354B2 (en) Alternative doping for group III nitride LEDs
EP3567643B1 (en) Light emitting diode element and method for manufacturing same
TW201904088A (zh) 發光元件
US7763902B2 (en) Light emitting diode chip
CN101859841A (zh) 发光二极管
CN102064255A (zh) 发光二极管及其制造方法
KR100730753B1 (ko) 질화물 반도체 발광 다이오드를 제조하는 방법 및 그것에의해 제조된 발광 다이오드
JP3747867B2 (ja) pn接合型化合物半導体発光素子、その製造方法、ランプ及び光源
CN100403559C (zh) 一种氮化物发光组件的三元氮化物缓冲层及其制造方法
JP2002305322A (ja) Iii族窒化物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161027

Address after: Taiwan, China Hsinchu Science Park Road No. five, No. 5

Patentee after: Jingyuan Optoelectronics Co., Ltd.

Address before: Longtan Road, Taoyuan County, Taiwan, China Longtan science and Technology Industrial Park, No. 99, Dragon Garden Road

Patentee before: Formosa Epitaxy Incorporation