CN1939020A - Communication system - Google Patents
Communication system Download PDFInfo
- Publication number
- CN1939020A CN1939020A CN200580010803.4A CN200580010803A CN1939020A CN 1939020 A CN1939020 A CN 1939020A CN 200580010803 A CN200580010803 A CN 200580010803A CN 1939020 A CN1939020 A CN 1939020A
- Authority
- CN
- China
- Prior art keywords
- data
- substation
- central station
- coefficients
- substations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 73
- 230000008569 process Effects 0.000 claims abstract description 53
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 230000003044 adaptive effect Effects 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 21
- 230000006872 improvement Effects 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 4
- 230000006866 deterioration Effects 0.000 claims 3
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 238000006731 degradation reaction Methods 0.000 abstract description 7
- 230000000875 corresponding effect Effects 0.000 description 26
- 239000000835 fiber Substances 0.000 description 21
- 238000005457 optimization Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 17
- 238000012549 training Methods 0.000 description 16
- 238000011144 upstream manufacturing Methods 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000011664 signaling Effects 0.000 description 5
- 238000007476 Maximum Likelihood Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009118 appropriate response Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Abstract
本发明涉及通信系统,该通信系统具有中心站和多个分站。该中心站被构造成执行用于对来自所述多个分站的数据的劣化进行补偿的补偿过程,该补偿过程具有多个可调特性,这些特性由参数组来控制。该中心站存储有针对各分站的相应参数组;并且对于各分站,该中心站使用与该分站相关联的参数组对来自该分站的数据应用补偿算法。在初始化阶段,该中心站针对来自给定分站的数据对多个启动参数组进行测试,并选择提供了最佳补偿的组。存储所选择的组,以用于对来自该分站的数据进行后续补偿。
The invention relates to a communication system having a central station and a plurality of substations. The central station is configured to execute a compensation process for compensating for degradation of data from said plurality of outstations, the compensation process having a plurality of adjustable characteristics controlled by a set of parameters. The central station stores a corresponding parameter set for each substation; and for each substation, the central station applies a compensation algorithm to data from the substation using the parameter set associated with that substation. During the initialization phase, the central station tests multiple sets of start-up parameters against data from a given substation and selects the set that provides the best compensation. The selected group is stored for subsequent compensation of data from that substation.
Description
技术领域technical field
本发明涉及中心站,具体地,涉及一种被构造用于对来自多个分站的数据的劣化进行补偿的中心站。The present invention relates to a central station and, in particular, to a central station configured to compensate for degradation of data from a plurality of substations.
背景技术Background technique
用于校正信号失真的补偿程序(routine)是公知的。然而,当到达中心站的数据的源在短时间尺度上变化时,或者当到达数据严重失真时,这种公知的程序并非总是合适的。Compensation routines for correcting signal distortions are well known. However, this known procedure is not always suitable when the source of the data arriving at the central station varies on short timescales, or when the arriving data is severely distorted.
发明内容Contents of the invention
根据本发明的一个方面,提供了一种用于从多个分站接收数据的中心站,所述中心站被构造用于在使用时执行用于对来自所述多个分站的数据的劣化进行补偿的补偿过程,所述补偿过程具有由参数组控制的至少一个可调特性,其中,所述补偿过程包括以下步骤:(i)使用不同的启动参数组对来自分站的数据进行补偿;(ii)对使用所述不同启动参数组补偿后的数据的质量进行测定;以及(iii)根据所测定的质量,选择一启动参数组对来自所述分站的后续到达的数据进行补偿。According to an aspect of the present invention there is provided a central station for receiving data from a plurality of outstations, said central station being configured to, in use, perform degradation for data from said plurality of outstations performing a compensation process having at least one adjustable characteristic controlled by a parameter set, wherein the compensation process comprises the steps of: (i) compensating data from substations using different start-up parameter sets; (ii) determining the quality of data compensated using said different sets of activation parameters; and (iii) based on the determined quality, selecting an activation parameter set to compensate subsequent arrivals of data from said outstation.
按此方式,可以对多个启动参数组进行测试,从而可以选择合适的初始参数组来对到达的流量数据进行补偿。这将使得一个站可以快速地达到可以对来自给定分站的数据使用令人满意的参数组的状态。In this way, multiple start-up parameter sets can be tested so that an appropriate initial parameter set can be selected to compensate for the incoming flow data. This will allow a station to quickly reach a state where it can use a satisfactory set of parameters for data from a given substation.
优选地,为了能够对所述补偿过程进行更精细的调节,所述补偿过程具有多个可调特性,并且所述参数组分别包括用于控制所述多个可调特性的多个参数。Preferably, in order to be able to perform finer adjustments to the compensation process, the compensation process has a plurality of adjustable characteristics, and the parameter groups respectively include a plurality of parameters for controlling the plurality of adjustable characteristics.
优选地,将所述中心站构造成针对每个分站存储一参数组。这会减少所述中心站在每次接收到来自分站的数据时都计算或选择用于该分站的新参数值的需要,使得所述中心站更容易对来自分站的到达数据中的任何失真进行补偿,尤其是在来自任何给定分站的数据以短脉冲串(shortburst)形式到达所述中心站的情况下。可以将所述参数本地存储在所述中心站处,或者可以由所述中心站将所述参数存储在远程位置处。Preferably, the central station is configured to store a set of parameters for each substation. This would reduce the need for the central station to calculate or select new parameter values for a substation each time it receives data from that substation, making it easier for the central station to Distortion is compensated for, especially if data from any given outstation arrives at the central station in short bursts. The parameters may be stored locally at the central station, or may be stored by the central station at a remote location.
优选地,根据以上步骤(i)到(iii)来选择针对各分站存储的参数组。优选地,当在所述中心站处接收到来自新连接的分站的数据时,在初始化阶段执行针对各分站的所述选择。可以存储针对来自给定分站的数据而选择的选定组,以便针对来自该分站的数据进行后继使用,该后继使用可能发生在已接收并且/或者补偿了来自不同分站的数据之后。然而,例如可以使用自适应补偿过程对用于给定分站的已存储参数组进行改进,存储改进后的值,以便针对来自该分站的数据进行后期使用。Preferably, the parameter sets stored for each substation are selected according to steps (i) to (iii) above. Preferably, said selection for each outstation is performed in an initialization phase when data from a newly connected outstation is received at said central station. Selected groups selected for data from a given outstation may be stored for subsequent use of data from that outstation, possibly after data from a different outstation has been received and/or compensated for. However, a stored parameter set for a given substation may be refined, for example using an adaptive compensation process, and the refined values stored for later use with respect to data from that substation.
可以通过对使用不同组实现的质量与预定质量阈值进行比较,来从其他启动参数组中选择一启动参数组。然而,优选地,通过对使用不同启动组实现的经补偿数据的质量(即,质量的度量)进行比较来选择所述选定组,所述选定组是实现了最高质量的组。A start-up parameter set may be selected from other start-up parameter sets by comparing the quality achieved using a different set with a predetermined quality threshold. Preferably, however, the selected set is selected by comparing the quality (ie a measure of quality) of the compensated data achieved using different starting sets, the selected set being the set achieving the highest quality.
优选地,用于对所述不同参数组(至少针对给定分站)进行比较的数据是相同的数据,可以在所述中心站处复制该数据,以便用于不同的启动参数组。Preferably, the data used for comparing said different sets of parameters (at least for a given outstation) is the same data, which data can be duplicated at said central station for different sets of activation parameters.
优选地,使用来自分站的测试数据对启动参数组进行评估,优选地,在来自分站的测试数据到达之前将该测试数据的副本存储在所述中心站处。这使得可以对所存储的测试数据与来自分站的经补偿的测试数据进行比较,从而可以对经补偿数据的质量进行评估。可以将所述不同的启动参数组并行地应用于测试数据,或者另选地,可以将各参数组依次应用于该数据。Preferably the set of start-up parameters is evaluated using test data from the outstation, preferably a copy of the test data is stored at the central station prior to its arrival from the outstation. This allows the stored test data to be compared with the compensated test data from the substation so that the quality of the compensated data can be assessed. The different sets of launch parameters may be applied in parallel to the test data, or alternatively each parameter set may be applied sequentially to the data.
所述补偿过程还可以包括以下步骤:在来自分站的数据流内的多个时间位置处对所述数据流进行抽样;以及对每个样本执行相应函数,优选地,各相应函数由相应的参数或参数组来控制。所述相应函数可以分别对应于所述补偿过程的一个特性。每个函数都可以是简单的加权函数,各参数是加权系数。然而,这些参数可以对可应用于所有抽样点的其他函数进行控制。例如,在所述补偿过程包括傅里叶变换步骤的情况下,可以将这些参数分别用于对傅里叶系数进行加权。The compensation process may further comprise the steps of: sampling the data stream from a substation at a plurality of time positions within the data stream; and executing a corresponding function for each sample, preferably each corresponding function is determined by a corresponding parameter or parameter group to control. The corresponding functions can each correspond to a characteristic of the compensation process. Each function can be a simple weighting function, and each parameter is a weighting coefficient. However, these parameters control other functions that apply to all sample points. For example, in case the compensation process includes a Fourier transformation step, these parameters can be used to weight the Fourier coefficients respectively.
优选地,将所述多个分站设置用于发送数据,以使得来自不同分站的数据连续到达所述中心站:即,使得在采用了波分复用的情况下,来自不同分站的数据不相交叠,至少在同一频率信道上发送的数据不相交叠。所述分站可以按循环或其他顺序方式逐个地发送数据脉冲串(优选地为数字数据)。优选地,由所述中心站按广播方式发送调度和其他定时命令,以指示所述多个分站何时发送数据。Preferably, the plurality of substations are set to send data, so that data from different substations arrive at the central station continuously: that is, when wavelength division multiplexing is adopted, data from different substations Data does not overlap, at least data sent on the same frequency channel does not overlap. The substations may transmit bursts of data (preferably digital data) one by one in a cyclic or other sequential manner. Preferably, scheduling and other timing commands are broadcast by said central station to instruct said plurality of outstations when to transmit data.
由于存储在所述中心站处的调度命令提供了分站何时会发送数据的预先通知,因此可以根据所存储的调度指令方便地选择在对所述中心站处的入局(incoming)数据应用所述补偿过程时所使用的参数组(即,所述调度命令可以至少部分地确定选择哪个参数组或哪个参数)。Since the scheduling order stored at the central station provides an advance notice of when the substations will send data, it is convenient to select the application of the incoming data at the central station according to the stored scheduling instructions. The parameter set used when describing the compensation process (ie, the scheduling command may at least in part determine which parameter set or which parameter is selected).
所述调度指令可以包含针对指定分站的允许该分站发送流量数据达指定时段(连续的时段或者分段的时段)的指令。由此,优选地,调度指令将允许分站发送有限量的数据。例如,可以将上游流量设置成多个帧的流,每一帧都包含多个信元或多个其他子部,并且调度信息可以指示或允许分站在帧的一个或更多个指定信元中发送数据。一旦分站对调度指令进行了响应,优选地,该分站就在发送进一步的流量数据之前等待进一步的调度指令(尽管不需要调度指令就可以重传定时数据或其他管理数据)。因此,一旦作为第一调度指令的结果发送了来自分站的数据,优选地,该分站就在发送进一步的流量数据之前等待进一步的调度指令。The scheduling instruction may include an instruction for a specified substation to allow the substation to send traffic data for a specified period (either a continuous period or a segmented period). Thus, preferably, the scheduling instructions will allow substations to send a limited amount of data. For example, upstream traffic can be set up as a flow of multiple frames, each frame containing multiple cells or other subsections, and the scheduling information can indicate or allow substations in one or more specified cells of the frame Send data in. Once a substation has responded to a scheduling command, the substation preferably waits for further scheduling commands before sending further traffic data (although timing data or other management data may be retransmitted without a scheduling command). Thus, once data from a substation has been sent as a result of a first dispatch instruction, the substation preferably waits for further dispatch instructions before sending further traffic data.
在一个实施例中,所述中心站将接收具有多个连续的流部分的数据流,每个流部分都具有与其相关联的不同标签,至少一些流部分具有与其他流部分不同的失真特性,其中所述中心站可以进行操作以访问调度信息,根据该调度信息可以推断出与入局流部分相关联的相应标签。所述中心站随后可以:根据该调度信息推断数据流部分的标签,并根据所推断出的标签来选择用于与所推断出的标签相关联的流部分的参数组。In one embodiment, said central station will receive a data stream having a plurality of consecutive stream parts, each stream part having a different label associated therewith, at least some stream parts having different distortion characteristics than other stream parts, Wherein said central station is operable to access scheduling information from which corresponding labels associated with incoming flow portions can be deduced. The central station may then: infer a label for the data stream portion from the scheduling information, and select a parameter set for the stream portion associated with the inferred label based on the inferred label.
优选地,所述补偿过程包括自适应算法,该自适应算法用于在接收来自给定分站的数据时对所述参数的值进行改进。可以将所述多个分站构造用于发送在所述中心站处已知的数据,以便于对所述自适应算法进行训练。当针对来自给定分站的数据仅部分地对所述自适应算法进行训练时,可以存储并保存仅被部分改进的所述参数中的一些或全部,以便在稍后从同一分站接收到进一步的数据时使用。因此,优选地,将所述中心站构造为使得当到达数据的源从第一分站改变成第二分站时,所述中心站:(i)存储针对来自第一分站的数据的改进值,以便稍后进行检索;和(ii)检索先前针对第二分站存储的参数。Preferably, said compensation process includes an adaptive algorithm for improving the value of said parameter upon receipt of data from a given substation. The plurality of substations can be configured to transmit data known at the central station in order to train the adaptation algorithm. When the adaptive algorithm is only partially trained on data from a given outstation, some or all of the parameters that are only partially improved may be stored and saved for later reception from the same outstation used for further data. Thus, preferably, the central station is structured such that when the source of arriving data changes from a first outstation to a second outstation, the central station: (i) stores a modified version of the data from the first outstation values for later retrieval; and (ii) retrieving parameters previously stored for the second outstation.
为了帮助所述自适应算法进行训练(除了用于选择启动参数组以外),所述中心站可以存储预定数据,并且所述或每个分站可以存储相应的预定数据,将所述或每个分站构造用于将其预定数据发送给所述中心站,使得可以在所述中心站处对所存储的预定数据与所接收的预定数据进行比较。优选地,为了使所述自适应算法更加容易地评估失真数据被校正得怎样,所述数据中的至少一些可以是相同的(对于分站与所述中心站之间,不同的分站可以具有不同的训练数据)。接着,所述自适应算法可以对校正后的数据与失真前的原样数据(即,初始发送时的数据)进行比较。可以在制造时将这种“已知”数据包含在所述中心站和多个分站的永久存储器芯片中。In order to aid in the training of the adaptive algorithm (except for selecting a set of start-up parameters), the central station may store predetermined data, and the or each substation may store corresponding predetermined data, and the or each The substations are designed to transmit their reservation data to the central station, so that the stored reservation data can be compared with the received reservation data at the central station. Preferably, in order to make it easier for the adaptive algorithm to assess how well the distorted data is corrected, at least some of the data may be the same (between the substation and the central station, different substations may have different training data). The adaptive algorithm may then compare the corrected data to the original data before distortion (ie, the data at the time of the initial transmission). Such "known" data may be included at the time of manufacture in the persistent memory chips of the central station and the plurality of outstations.
优选地,设置诸如光纤网络的光网络来将所述中心站连接到各分站。然而,也可以在所述中心站与所述多个分站之间采用无线通信。如果采用光网络,则该网络优选地具有至少一个分支接点(也被称为“分路器(splitter)”),以使得来自多个分站的信号可以无源地复用到公共载波上,从而这些信号作为时分复用数据流到达所述中心站。由此,优选地,将该通信网络配置成,针对从所述分站传播到所述中心站的流量(即,“上游”流量)以时分多址(TDMA)方式进行工作,由此各分站在发送期内进行发送,发送期的定时是响应于来自所述中心站的一个或更多个命令指令而确定的,对各分站的发送进行选择,以降低来自不同分站的数据相交叠或同时到达所述中心站的风险。Preferably, an optical network, such as a fiber optic network, is provided to connect the central station to the substations. However, it is also possible to use wireless communication between the central station and the plurality of outstations. If an optical network is used, the network preferably has at least one branch point (also known as a "splitter") so that signals from multiple substations can be passively multiplexed onto a common carrier, These signals thus arrive at the central station as a time-division multiplexed data stream. Thus, preferably, the communications network is configured to operate in time division multiple access (TDMA) for traffic traveling from said outstations to said central station (i.e. "upstream" traffic), whereby each branch The station transmits during the transmission period, the timing of the transmission period is determined in response to one or more command instructions from the central station, and the transmission of each substation is selected to reduce the intersection of data from different substations risk of overlapping or arriving at the central station simultaneously.
附图说明Description of drawings
在所附独立权利要求中详细说明了本发明的其他方面。现在参照附图仅以示例的方式对本发明进行更详细的描述,附图中:Other aspects of the invention are specified in the appended independent claims. The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which:
图1示出了根据本发明的具有中心站和多个分站的通信系统;Figure 1 shows a communication system with a central station and a plurality of substations according to the present invention;
图2a和2b分别例示了图1的通信系统中位于分支接点处的广播和交错复用传送;Figures 2a and 2b respectively illustrate the broadcast and interleaved multiplex transmission at the branch junction in the communication system of Figure 1;
图3a和3b分别示出了下游和上游帧格式;Figures 3a and 3b show the downstream and upstream frame formats, respectively;
图4示意性地示出了图1的通信系统中的中心站的功能表示;Fig. 4 schematically shows a functional representation of a central station in the communication system of Fig. 1;
图5示意性地示出了图1所示的多个分站之一的功能表示;Figure 5 schematically shows a functional representation of one of the substations shown in Figure 1;
图6(i)到(iv)示出了从多个分站到达中心站的数据脉冲串;Figure 6(i) to (iv) show data bursts arriving at a central station from a plurality of substations;
图7是示出补偿算法中的步骤的表;Figure 7 is a table showing the steps in the compensation algorithm;
图8a和8b一起示出了表示自适应补偿算法中的多个步骤的表的不同列;Figures 8a and 8b together show different columns of a table representing various steps in an adaptive compensation algorithm;
图9a和9b一起示出了表示用于处理来自不同分站的数据的另一自适应算法中的多个步骤的表的不同列;Figures 9a and 9b together show different columns of a table representing steps in another adaptive algorithm for processing data from different outstations;
图10示出了具有图9的主要步骤的流程图;Figure 10 shows a flowchart with the main steps of Figure 9;
图11示出了补偿算法的另选表示;以及Figure 11 shows an alternative representation of the compensation algorithm; and
图12a和12b示出了从多个分站到达的数据的其他示例;Figures 12a and 12b show other examples of data arriving from multiple outstations;
图13的流程图例示了其中以并行方式对不同启动系数组进行比较的算法;The flowchart of Figure 13 illustrates an algorithm in which different activation coefficient sets are compared in parallel;
图14的流程图例示了其中以串行方式对不同启动系数组进行比较的算法;以及The flowchart of Figure 14 illustrates an algorithm in which different activation coefficient sets are compared in a serial fashion; and
图15(i)、(ii)示出了当对数据测试不同启动系数组时对数据脉冲串的补偿。Figures 15(i), (ii) show compensation for data bursts when different sets of activation coefficients are tested on the data.
具体实施方式Detailed ways
图1示出了光网络10,其也被称为无源光网络(PON),其中,中心站12(也被称为光线路终端或OLT)通过光纤网络16连接到多个分站14(每个分站也被称为光网络单元或ONU)。光纤网络16包括主干光纤部分18,在由耦合器或分路器形成的接点21处多个分支光纤部分20连接到该主干光纤部分18。分支光纤部分20中的每一个都可以具有与其相连接的相应分站14。另外,这些光纤部分中的一些或全部可以具有与其相连接的相应的其他耦合器21,以连接到多个其他分支部分。1 shows an
接点21被设置为使得从中心站12传播到分站14(将该方向称为“下游”方向)的光的强度在接点21处以优选的均匀方式分布在分支或子分支光纤当中。在相反或“上游”方向,即,朝向中心站的方向上,来自分支光纤的光在接点21处无源地并合。通常,无源光网络包括多个接点和子接点,每个接点n通常都具有32个“分路”,即,接合到公共主干的32个分支。The
为了与分站进行通信,中心站在下游方向上发送广播消息,该广播消息通常会被所有分站接收到,这些消息具有表示分站中的哪个或哪些是预期的接收者的标签或标识符。To communicate with substations, the central station sends broadcast messages in the downstream direction, usually received by all substations, with tags or identifiers indicating which of the substation(s) is the intended recipient .
图2a例示了下游方向上的传送。在上游方向,连续的多个分站在各自的时隙201中发送数据,这些时隙被设置为使得当来自不同分支光纤的光在接点21处并合时,来自不同分站的数据不应当相交叠。按此方式,来自分站的数据在接点处无源地交错或等同地时分复用为帧结构202,如图2b所例示。中心站12通过从各个站读取时隙(即,使用时分多址(TDMA)协议)来访问来自该站的数据。在PON中,通常使用ATM(异步传输模式)信元在分站与中心站之间进行通信。图3a(针对下游方向)和图3b(针对上游方向)中示出了具有多个ATM信元的帧结构的示例。ATM信元的长度为424位,在上游方向上被保护频带分开,以考虑从各分站进行的发送中的定时误差。除数据有效载荷以外,每个ATM信元都含有包括寻址字段和其他定义类型的信息的头部。在下游方向上,这些帧具有间隔开的信令信元,并且ATM信元承载存在于这些信令信元之间的流量数据。在图3b的示例中,信令信元是由OLT信元用来分配(或等同地,授予)带宽的PLOAM信元,即,“物理层运行、管理及维护”信元。PLOAM信元还提供同步,并用于测距(ranging)、误差控制、安全性以及其他“维护”功能。发送PLOAM信元的速率可以由中心站(OLT)来限定并且可以根据OLT和分站(ONU)的要求而变化。可以使用ATM信元中的上游字段来实现沿上游方向的信令。Figure 2a illustrates transport in the downstream direction. In the upstream direction, successive substations transmit data in
图4中更详细地示出了中心站12。中心站12包括:网络输入级40,用于通过公共光纤(主干光纤)从分站接收数据;网络输出级41,用于通过公共光纤或沿下游方向进行传输的另一光纤向分站发送数据;连接到输入级40和输出级41的中央控制器42,用于对各分站发送数据的时刻进行控制;补偿模块44,用于对从分站接收的数据进行处理,以对数据可能遭受的任何失真进行补偿或等同地“均衡”;数据输出级46,用于将经补偿数据从所述分站输出给接收者(未示出);以及数据输入级,用于将待发送的数据输入给所述分站。
在具有用于处理数据的至少一个处理器的至少一个处理器设施50中实现中央控制器42和补偿模块44。此外,中央控制器42和补偿模块44均可以访问用于存储数据的存储器设施52。存储器设施52可以分布在中央控制器与补偿模块之间,补偿模块可以访问本地RAM存储器521和/或快速存取存储器522。该存储器设施52可以包括预定系数存储器523。中央控制器还可以包括用于定时和同步的时钟43,以及用于对待发送到网络的数据进行短期存储的缓冲器45。
网络输入级40具有光电探测器55,该光电探测器55用于将接收到的光信号转换成电信号,使得补偿模块可以在电域中处理所接收到的光信号,优选地,将补偿模块实现在一个或更多个电芯片装置上。在输出级41处设置有用于生成待发送到分站的光信号的激光器57(或其他光源),对光信号进行调制,或者响应于来自控制器42的电信号而生成光信号。The
图5中更详细地示出了分站14。该分站具有:输入级60,用于从中心站12接收光信号;光补偿级62,用于对沿光纤路径的来自中心站的信号的可能失真进行补偿;接口级,用于(i)从至少一个用户终端接收流量,以将其发送到光网络上和(ii)将该光网络所传送的流量发送到用户终端;输出级66,用于将流量发送到光网络上;以及定时级68,用于对从本地用户经由接口级64的流量的定时进行控制。输入级60包括光电探测器61,该光电探测器61用于将光信号转换成相应的电信号,从而分站的补偿级62可以在电域中处理信号。
定时级68连接到接口级64,以接收预期发送到网络16上的流量。将正确定时的流量作为电信号传递给输出级,该输出级具有用于将流量和其他电信号转换成光信号的激光装置67(或其他源)。因而定时级68可以根据从中心站接收的指令对信号的发送进行定时,优选地,通过补偿级62将该定时级连接到输入级。具体地,定时级68包括时钟69和用于在发送之前对数据进行短期存储的缓冲器70。为了使分站进行工作,可以设置具有至少一个处理器和存储器装置77的处理器75,该存储器和处理器实现在一个或更多个芯片装置上。Timing stage 68 is connected to interface
在一种工作模式下,将中心站的中央控制器42构造成用于广播具有信令信元的帧结构(例如作为PLOAM信元的一部分),该信令信元包含:帧同步信号;和用于指示选定分站按一个或更多个相应的返回信元进行发送的调度指令,或者等同地,用于指示选定分站按照相对于帧同步信号的接收的相应延迟来发送数据的指令。中央控制器42将调度指令存储在存储器52(优选地,该存储器的可快速存取的部分,如其RAM部分)中。这会使该系统的其他部件(如补偿模块)能够利用这些调度指令来推断分站(从该分站接收到数据)的标识。In one mode of operation, the
优选地,将各分站处的时钟69构造为,与广播帧中的诸如信元同步信号或其他信号(可能是加扰数据)的数据相同步。于是,分站14的定时级68就可以使用来自该时钟的信号对延迟级进行控制,使得在发送数据之前使数据相对于帧同步信号的接收延迟指定时间。结果,中央控制器42可以对来自分站的数据发送进行“调度”。可以根据指定周期(该周期可以是可变的)来影响(affect)这种调度,尤其是在采用动态带宽分配的情况下,在正常操作过程中经常会是这样。Preferably, the
作为在初始化阶段对每个分站分配一窗口的情况的另选方式,控制器可以指示一分站发送数据而指示其余分站在未指定量的时间以内避免发送数据,直到发送了发送指令为止。由此,中心站可以与给定分站交换一系列消息,而其他分站并不参与。As an alternative to the case of assigning a window to each outstation during the initialization phase, the controller may instruct one outstation to transmit data and instruct the remaining outstations to refrain from sending data for an unspecified amount of time until a send instruction is sent . Thus, the central station can exchange a series of messages with a given outstation without the other outstations participating.
为了将来自不同分站的不同转接时间(transit time)考虑在内,中心站将实现“测距”过程,在该测距过程中,中心站指示选定分站回送信号达指定量的时间,或在接收到指令之后立即回送信号(另选地,中心站可以指示选定分站在接收到信元同步信号之后回送信号达指定量的时间,该信元同步信号通常按等时间间隔从分站发送)。根据指令发送与回送信号到达之间所经过的时间,中央控制器可以计算出差分延迟偏移,并将该偏移值发送给该分站。然后该分站的定时级68存储该偏移值,使得将该偏移值包括在来自中央控制器的任何将来定时指令中。按此方式,由分站发送的数据将按照与该偏移值相对应的附加延迟进行发送。To account for different transit times from different substations, the central station will implement a "ranging" process in which the central station instructs selected substations to send back signals for a specified amount of time, or to echo the signal immediately after receipt of the instruction (alternatively, the central station may instruct selected substations to echo the signal for a specified amount of time after receipt of the cell sync signal, which is typically equal to time interval is sent from the substation). Based on the time elapsed between the sending of the command and the arrival of the echo signal, the central controller can calculate the differential delay offset and send the offset value to the substation. The substation's timing stage 68 then stores the offset value so that it is included in any future timing instructions from the central controller. In this way, data sent by the substation will be sent with an additional delay corresponding to the offset value.
为了保持同步,可以将各分站的定时级68构造成按时间间隔来发送同步检查信号。优选地,在接收到帧同步信号之后按相应的指定延迟从各分站发送检查信号,或相反使得来自各分站的检查信号在返回帧中按相应的指定位置到达中心站。中央控制器42存储有将各检查信号的所述指定位置与相对应的分站的标识或地址关联起来的映射。由此,如果在返回帧的预期时间位置处未接收到检查信号,则控制器可以向相对应的分站发出命令,该命令包括对检查信号的接收时刻与预期时刻之间的时间差的表示,分站的定时级对该命令进行响应,以使延迟级70将该延迟改变与所表示的时间差相对应的量。按此方式,可以使不同步(out-off-time)分站回到同步状态。In order to maintain synchronization, the timing stage 68 of each substation can be configured to send a synchronization check signal at time intervals. Preferably, the check signals are sent from the substations at corresponding specified delays after receiving the frame synchronization signal, or on the contrary, the check signals from the substations arrive at the central station at corresponding specified positions in the return frame. The
将补偿模块44构造用于运行补偿算法,该补偿算法用于对数据进行处理或均衡化,以针对任何码元间干扰(ISI)或其他失真来校正该数据。该补偿算法具有多个可调特性,每个可调特性都代表该补偿算法对数据进行处理的方式的一个方面。由一组系数(参数)来控制这些可调特性,使得每个系数都与相应的特性相关联。对这些系数的值的选择将取决于失真的程度以及失真的性质(类型)。失真的性质可能取决于多个因素,例如信号沿光纤已传播的距离、光纤的材料特性、比特率,还可能取决于光纤所处的环境状况。The
典型地,对于现有的PON,分站与中心站间隔的光纤距离约为20km,但是希望至少为50km、100km、150km或甚至200km的光纤长度。中心站与分站之间的距离通常根据分站而不同,差异为20km、50km或甚至100km。除了便于对(由于不同的分站距离而导致的)突变的失真和由于较长的绝对距离而导致的增大的失真进行补偿以外,本发明还便于使用(在相应的分站处)的具有较宽带宽的光源(诸如法布里-珀罗(FabryPerot)激光器的较宽带宽的源比诸如DFB激光器的窄带宽的源更廉价,但是会导致更高的失真度)。Typically, with existing PONs, the fiber distance separating the substations from the central station is about 20 km, but fiber lengths of at least 50 km, 100 km, 150 km or even 200 km are desirable. The distance between the central station and the substations usually varies according to the substation, with a difference of 20km, 50km or even 100km. In addition to facilitating the compensation of abrupt distortions (due to different substation distances) and increased distortions due to longer absolute distances, the invention also facilitates the use (at the corresponding substation) of Broader bandwidth light source (broadband sources such as Fabry-Perot lasers are cheaper than narrow bandwidth sources such as DFB lasers, but result in higher distortion).
具体地,应当理解,在本发明的上下文中,失真的性质和程度对于来自不同分站的数据可能是不同的。此外,尽管中心站处的入局数据的失真可能根据信元而变化(即,像大约每424比特那样快),但是对于来自给定分站的数据来说,如果存在失真的话,该失真可能只是缓慢地变化。In particular, it should be understood that, in the context of the present invention, the nature and degree of distortion may be different for data from different outstations. Furthermore, while the distortion of incoming data at the central station may vary from cell to cell (i.e., as fast as about every 424 bits), for data from a given outstation the distortion, if any, may be only Change slowly.
补偿模块以表的形式存储了针对各分站的相应的系数组,该表在一行中包含了一组标识符,每个分站一个标识符,而在另一行中包含了相应的系数组,该表包含了将各分站标识符映射到一组系数的映射信息。根据所存储的调度信息,补偿模块推断每个到达的数据信元所源自的分站的标识。每次推断出数据将从不同分站到达时,补偿模块都检索出针对该分站存储的系数组,并根据新检索出的系数来运行所述算法,以对来自当前分站的数据进行处理。由此,作为调度处理的结果,补偿模块预先知道了待接收的下一信元将源自哪个分站。因此补偿模块可以在合适的系数之间进行快速切换,以对下一到达信元的失真进行补偿。结果,相邻信元会具有非常不同的失真量,因为补偿算法不必针对每个信元从头开始优化处理,而是可以快速地回调合适的系数组,因此在补偿算法中保持了合适的值。The compensation module stores the corresponding set of coefficients for each substation in the form of a table which contains a set of identifiers in one row, one for each substation, and the corresponding set of coefficients in another row, This table contains mapping information that maps each substation identifier to a set of coefficients. From the stored scheduling information, the compensation module deduces the identity of the substation from which each arriving data cell originates. Each time it is concluded that data will arrive from a different substation, the compensation module retrieves the set of coefficients stored for that substation and runs the algorithm on the data from the current substation based on the newly retrieved coefficients . Thus, as a result of the scheduling process, the compensation module knows in advance from which substation the next cell to be received will originate. Therefore, the compensation module can quickly switch between appropriate coefficients to compensate for the distortion of the next arriving cell. As a result, adjacent cells will have very different amounts of distortion, because the compensation algorithm does not have to optimize the process from scratch for each cell, but can quickly call back the appropriate set of coefficients, thus maintaining the appropriate values in the compensation algorithm.
优选地,该补偿算法是自适应的,即,优选地,该补偿算法具有从一组初始值开始对一组分量的值进行改进的优化程序。在此情况下,当到达数据的源从第一站改变成第二站时,将补偿模块构造成:(i)存储针对来自第一分站的数据而计算出的改进值,以便后期进行检索;和(ii)检索或回调先前针对第二分站计算出的系数。优选地,由来自控制器的调度指令提供对执行步骤(i)和(ii)的触发信号,这些调度指令将预先指示将来的到达数据将源自的分站的标识。由此,每当所接收到的数据的源要从一个分站改变成另一分站时,中央控制器都可以提供信号。另选地,补偿模块可以(在本地随机存取存储器521中)仅存储表示接收数据的预期源的(由中央控制器生成的)调度信息,或相反访问该调度信息。Preferably, the compensation algorithm is adaptive, ie preferably, the compensation algorithm has an optimization procedure that improves the values of a set of components starting from a set of initial values. In this case, when the source of arrival data changes from a first station to a second station, the compensation module is configured to: (i) store the improvement calculated for the data from the first substation for later retrieval ; and (ii) retrieving or recalling previously calculated coefficients for the second outstation. Preferably, the trigger to perform steps (i) and (ii) is provided by dispatch instructions from the controller which will indicate in advance the identity of the substation from which future arriving data will originate. Thus, the central controller can provide a signal whenever the source of received data is to be changed from one substation to another. Alternatively, the compensation module may only store (in local random access memory 521 ) or otherwise access scheduling information (generated by the central controller) representing the intended source of received data.
可以参照图6(i)到(iv)来阐明补偿模块的操作,图6(i)到(iv)中的每一个都示出了来自分站A、B、C和D的信号的失真如何随时间而变化。其中,时间从左向右增加,较大宽度的线段表示较大的失真。参照t=0时的图6(i),检索出针对分站A存储的初始系数,并对从分站A接收到的数据进行处理。起初,该数据具有高失真级,但是随着时间的增加,本算法的优化程序对系数进行了改进,使得该补偿算法在减小失真方面更有效,并且使得来自分站A的信号的失真变小。在t=2时,来自A的数据终止,并通过对分站A的映射来存储针对该分站的改进系数。然后回调针对分站B存储的初始系数,并且对来自分站B的数据运行该补偿算法,以减小失真。分站B比其他分站更靠近中心站(或者具有带宽更窄的光源或者等同地具有“更高标准”的光源),使得来自B的数据具有比从其他分站接收到的初始数据更低的失真级。在t=3时,来自分站B的数据终止,存储针对该分站而计算的改进系数,并回调针对分站C的新系数。当在t=5时来自分站C的数据终止因而改为接收来自分站D的数据时,执行类似的步骤。在t=7时,针对分站A检索出在t=2时存储的以前的改进系数。由于使用了以前的改进系数,因此可以更高效地对被处理数据进行处理,使得失真级比采用初始系数时将得到的失真级更低。在图6(i)中,由t=7时来自分站A的数据的窄线宽来表示这种情况。在图6(i)中,在执行正常调度处理的标准操作之前,连续地对各ONU进行训练。可以将补偿算法的这种训练或优化过程连同测距处理一起实现为PON起动阶段的一部分,或实现为PON完成之后的独立补偿处理或“均衡化”启动阶段。一旦补偿算法将相关系数“锁定”并确定为针对一分站的指定容限,就将这些系数存储在存储器52(或本地RAM521)中,以在标准操作中进行使用。为了简化,例示了普通的顺序调度。然而,响应于来自分站的要求,PON调度处理可能更复杂。The operation of the compensation module can be elucidated with reference to Figures 6(i) to (iv), each of which shows how the signals from substations A, B, C and D are distorted Varies over time. Here, time increases from left to right, and larger width segments represent larger distortions. Referring to FIG. 6(i) at t=0, the initial coefficients stored for substation A are retrieved, and the data received from substation A is processed. Initially, the data had a high distortion level, but over time, the optimization procedure of the algorithm improved the coefficients, making the compensation algorithm more effective in reducing the distortion and making the signal from substation A less distorted. Small. At t=2, the data from A is terminated, and the improvement coefficient for substation A is stored by mapping to that substation. The initial coefficients stored for substation B are then recalled and the compensation algorithm is run on the data from substation B to reduce distortion. Substation B is closer to the central station (either with a narrower bandwidth light source or equivalently a "higher standard" light source) than the other substations, so that the data from B has a lower distortion level. At t=3, the data from substation B is terminated, the improved coefficient calculated for this substation is stored, and the new coefficient for substation C is called back. Similar steps are performed when data from substation C is terminated at t=5 and data from substation D is received instead. At t=7, the previous improvement coefficient stored at t=2 is retrieved for outstation A. Since the previously improved coefficients are used, the processed data can be processed more efficiently, resulting in a lower distortion level than would have been obtained if the original coefficients had been used. In Figure 6(i), this is represented by the narrow line width of the data from substation A at t=7. In FIG. 6(i), each ONU is continuously trained before performing the standard operation of the normal scheduling process. This training or optimization process of the compensation algorithm can be implemented as part of the PON start-up phase together with the ranging process, or as an independent compensation process or "equalization" start-up phase after PON completion. Once the compensation algorithm has "locked in" and determined the correlation coefficients to be within specified tolerances for an outstation, these coefficients are stored in memory 52 (or local RAM 521 ) for use in standard operation. For simplicity, a general sequential schedule is illustrated. However, the PON scheduling process may be more complicated in response to requests from substations.
从图6中可以明了,自适应补偿可以是分散的(distribute),使得针对一个分站的系数进行第一次改进,当下一次接收到来自该分站的数据时,保留该经改进的系数并进行第二次、进一步的改进,其中在该第一次与第二次改进之间的中间时段中接收来自另一分站的数据。As can be seen from Fig. 6, the adaptive compensation can be distributed (distribute), so that the coefficients of a substation are improved for the first time, and when data from the substation is received next time, the improved coefficients are retained and A second, further improvement is made wherein data from another outstation is received in the intermediate period between the first and second improvements.
图6(iv)例示了另选“冷”初始化过程,其中在多个信元之间分享(split)对多个分站中的每一个的初始优化处理,并且再一次使用本地RAM来存储相关系数。按照与图6(i)所示过程类似的方式,图6(iv)的过程包括以下步骤:(a)检索分站A的系数;(b)从分站A接收数据;(c)使用从分站A接收到的数据对分站A的系数进行改进,并存储经改进的系数;(d)对分站B、C和D重复步骤(a)到(c);以及(e)检索出分站A的经改进系数。然而,在图6(iv)中,由于该补偿算法已存储了分站A的经改进系数,因此可以检索出这些系数,使得当在t=4时接收到来自分站A的其他数据时,该补偿算法(具体地,其优化程序)可以继续进行训练并进一步改进系数的值。按此方式,该补偿算法可以从它先前在t=1时停止的点继续。Figure 6(iv) illustrates an alternative "cold" initialization process, where the initial optimization process for each of the multiple outstations is split among multiple cells, and again local RAM is used to store the relevant coefficient. In a similar manner to the process shown in Fig. 6(i), the process of Fig. 6(iv) includes the following steps: (a) retrieve the coefficients of substation A; (b) receive data from substation A; (c) use The data received by substation A improves the coefficients of substation A, and stores the improved coefficients; (d) repeats steps (a) to (c) for substations B, C, and D; and (e) retrieves Modified coefficient of substation A. However, in FIG. 6(iv), since the compensation algorithm has stored the improved coefficients for substation A, these coefficients can be retrieved such that when additional data from substation A is received at t=4, the The compensation algorithm (specifically, its optimizer) can continue training and further improve the values of the coefficients. In this way, the compensation algorithm can continue from the point where it previously stopped at t=1.
在图6(i)和6(iv)所例示的训练或“初始化”期间之后,补偿模块44(具体地,补偿算法)回调此时其信号正在被处理的ONU的相关系数组。当新ONU连接到PON时,可以使得该新ONU按如图6(ii)所示的单个脉冲串的方式进行初始化。然而,为了最小化对于其他用户的影响,优选地,对如图6(iii)例示的多个信元执行该初始化。其中,该调度算法对TDMA进行控制并且在多个信元上分散补偿优化。然而,对加权系数的存储使得补偿算法能够使用它先前保存的系数重新开始,从而使得它能够继续收敛到最优响应,而不是再次从头开始(在同一测距窗口中一起发送多个信元是有可能的并且更高效,但是同样的基本原理也是适用的,参见图12a和图12b,图12a示出了在测距窗口中发送多个信元的初始化阶段,图12b示出了向网络中增加新分站的情况的示例)。After the training or "initialization" period illustrated in Figures 6(i) and 6(iv), the compensation module 44 (specifically, the compensation algorithm) recalls the set of correlation coefficients for the ONU whose signal is being processed at the time. When a new ONU is connected to the PON, the new ONU can be initialized in the manner of a single burst as shown in FIG. 6(ii). However, in order to minimize the impact on other users, it is preferable to perform this initialization on a plurality of cells as exemplified in FIG. 6(iii). Among them, the scheduling algorithm controls TDMA and distributes compensation optimization on multiple cells. However, storage of the weighting coefficients enables the compensation algorithm to restart using its previously saved coefficients, thus allowing it to continue converging to the optimal response instead of starting from scratch again (sending multiple cells together in the same ranging window is It is possible and more efficient, but the same basic principles apply, see Figure 12a and Figure 12b, Figure 12a shows the initialization phase of sending multiple cells in the ranging window, Figure 12b shows the Example of a case where a new substation is added).
可以理解,可以通过低至10-4的比特误码率(BER)来实现测距和调度,因此可以在完成补偿之前执行调度,从而可以在补偿算法运行过程中应用调度。It can be understood that ranging and scheduling can be achieved with a bit error rate (BER) as low as 10-4, so that scheduling can be performed before compensation is completed, so that scheduling can be applied during the operation of the compensation algorithm.
为了使得优化程序可以更容易地改进系数的值(以及可以选择启动系数组,见后文),优选地,分站向中心站发送已知数据。例如在制造阶段预先将该已知数据(如伪随机比特序列)引入到相应分站的存储器中,使得优化程序能够执行反馈或递归处理,由此对被处理数据与该已知数据进行比较,并根据被处理数据与该已知数据之间的差值来生成收敛值。一旦该收敛值达到阈值,就认为系数是合适的,并且中心站保留当该收敛值达到该阈值时所计算出的系数的值。在出现这种情况时,中心站就准备接收流量数据(即,从分站接收未知数据)。In order that the optimization program can more easily refine the values of the coefficients (and optionally activate coefficient sets, see below), preferably the substations send known data to the central station. For example, the known data (such as a pseudo-random bit sequence) is introduced into the memory of the corresponding substation in advance during the manufacturing stage, so that the optimization program can perform feedback or recursive processing, thereby comparing the processed data with the known data, A convergence value is generated based on the difference between the processed data and the known data. Once the convergence value reaches a threshold value, the coefficients are considered suitable, and the central station retains the values of the coefficients calculated when the convergence value reached the threshold value. When this occurs, the central station is ready to receive traffic data (ie, receive unknown data from the substations).
链路上的ISI失真有可能会随时间而变化。(可能会导致这种变化的示例包括:ONU中的发送器劣化、模式噪声、PMD波动、添加了新光纤以及使用了不同的发送器)。因此,期望PON能够定期地(或持续地)对各ONU的加权系数进行重新优化。这可以通过按照与其中在ATMPON(BPON)中使用的物理层运行、管理、及维护(PLOAM)信元的方式类似的方式定期地发送特殊训练(非流量运送)信元来实现。另选地,可以使用流量运送信元本身对这些系数进行细调。ISI distortion on a link may vary over time. (Examples that could cause this change include: transmitter degradation in the ONU, pattern noise, PMD fluctuations, adding new fibers, and using a different transmitter). Therefore, it is expected that the PON can periodically (or continuously) re-optimize the weighting coefficients of each ONU. This can be achieved by periodically sending special training (non-traffic forwarding) cells in a manner similar to that of the Physical Layer Operations, Administration, and Maintenance (PLOAM) cells used therein in ATMPON (BPON). Alternatively, these coefficients can be fine-tuned using the traffic forwarding cells themselves.
为了提供系数的启动值,中心站存储了多个可能的启动(均衡器)系数组S1,S2,...,sj。可以对它们进行预计算,使得每个组都适合于例如由于不同的光纤长度而导致的不同量或不同类型的信号劣化(ISI)。由此,在非流量运送起动阶段,中心站将这些不同组中的每一个(顺序地或并行地)应用于入局数据,而不是根据它们的缺省值对算法的系数组进行“训练”。该入局数据序列将是已知的(例如在制造阶段可以将该数据存储在分站和中心站处)。于是,中心站只需通过比较已知数据和入局数据来选择提供了最佳性能或最小误差(即,质量最高的信号)的系数组。按此方式,对启动系数组分别进行测试,并选择最合适(优选)的系数组。中心站可以使用该选定的系数组作为用于固定(非自适应)均衡化的系数组,或作为在使用自适应算法时待改进的初始系数组。In order to provide starting values for the coefficients, the central station stores a number of possible starting (equalizer) coefficient sets S1, S2, . . . , sj. They can be pre-computed so that each set is suitable for different amounts or different types of signal degradation (ISI), eg due to different fiber lengths. Thus, rather than "training" the algorithm's coefficient sets according to their default values, the central station applies each of these different sets (sequentially or in parallel) to incoming data during the non-traffic-carrying initiation phase. This incoming data sequence will be known (for example this data could be stored at substations and central stations during the manufacturing phase). The central station then simply selects the coefficient set that provides the best performance or the smallest error (ie, the highest quality signal) by comparing the known data with the incoming data. In this way, the start-up coefficient sets are individually tested and the most suitable (preferable) coefficient set is selected. The central station can use this selected set of coefficients as the set of coefficients for fixed (non-adaptive) equalization, or as the initial set of coefficients to be improved when using an adaptive algorithm.
图13的流程图例示了起动阶段。其中,在步骤0处,从新分站接收已知数据。复制该数据,并通过补偿程序(例如下述横向抽头(tap))对该已知数据的每个副本进行补偿。使用不同的系数组(或矢量)并行地对该已知数据的每个副本进行处理。在步骤2处,对使用不同系数组处理后的数据的信号质量进行评估。例如,可以通过确定已接收和之前“已知”数据的高值与低值之间的相关度来进行该评估(如果该数据是数字形式)。在步骤3处,选择并存储提供了最大信号质量的系数组,如果均衡化(补偿)过程是自适应的,则对随后的到达数据立即应用该系数组。否则,如果均衡化是自适应的,则在存储该系数组以便稍后在步骤7处使用之前在步骤4和5处对该系数组进行改进或“调节”。The flowchart of Figure 13 illustrates the start-up phase. Wherein, at
图14的流程图例示了其中按串行方式对不同系数组进行比较的算法。其中,在步骤1处,将各启动系数组(矢量)应用于已知的到达数据的多个副本中的每一个。对经如此补偿的数据的信号质量进行评估,一旦对所有系数组都进行了测试,就按照与图13(其示出了通过并行处理来选择系数)类似的方式检索出得到最高信号质量的系数组,以备后用。The flowchart of Figure 14 illustrates an algorithm in which different sets of coefficients are compared in a serial fashion. Wherein, at
图15(i)和(ii)例示了在从多个可能组之一中选择了启动系数组的情况下失真量随时间的演变。(在阶段(a)中,条形的高度表示在使用不同启动组进行补偿之后的残余失真量,而在阶段(b)中,条形的高度表示利用在使用自适应算法进行了改进的情况下的所选系数组进行补偿之后的残余失真量)。为了简化,图15(i)中示出了串行实现示例,表示了如何依次使用不同系数组中的每一个,然后选择最佳组,并随后使用自适应技术进一步对其进行优化。Figures 15(i) and (ii) illustrate the evolution of the amount of distortion over time in the case where an activation coefficient set is selected from one of a number of possible sets. (In stage (a), the height of the bar represents the amount of residual distortion after compensation using different activation groups, while in stage (b) the height of the bar represents the situation where the improvement was made using the adaptive algorithm The amount of residual distortion after compensation for the selected coefficient set below). For simplicity, a serial implementation example is shown in Fig. 15(i), showing how each of the different sets of coefficients is used in turn, and then the best set is selected, which is then further optimized using adaptive techniques.
图15(ii)例示了其中多个ONU共享带宽的PON的情况,示出了其中在执行调度的标准操作之前对各ONU串行地进行训练的初始“冷”启动期间。(可以将该训练过程连同测距处理等一起实现为PON起动阶段的一部分,或实现为PON起动阶段完成之后的单独“均衡化”启动阶段)。一旦该均衡化算法“锁定”并确定了ONU的相关系数,就将这些系数存储在本地RAM中,以在标准操作中进行使用。(为了简化,例示了普通的顺序调度处理。响应于来自ONU的要求,PON调度算法可以更智能)。图15给出的图示示出了通过均衡器使用不同系数组进行的串行尝试。如果可以进行多线程处理,则可以同时测试多个系数组,缩短了用于确定最优组所需的时间。Figure 15(ii) illustrates the case of a PON in which multiple ONUs share bandwidth, showing during an initial "cold" start-up in which ONUs are trained serially before performing scheduled standard operations. (This training process can be implemented as part of the PON start-up phase together with ranging processing etc., or as a separate "equalization" start-up phase after the PON start-up phase is completed). Once the equalization algorithm "locks" and determines the ONU's correlation coefficients, these coefficients are stored in local RAM for use in standard operation. (For simplicity, a normal sequential scheduling process is illustrated. The PON scheduling algorithm can be smarter in response to requests from ONUs). The diagram given in Fig. 15 shows serial attempts by the equalizer using different sets of coefficients. If multithreading is available, multiple sets of coefficients can be tested simultaneously, reducing the time required to determine the optimal set.
使用多个启动组的该“经改进的初始化过程”是有力的增强,因为它克服了对训练序列的长度的顾虑—不再需要长序列,因为该装置只需选择最佳系数组而不是进行完全优化。利用合理数量的已定义系数组,还克服了在网络必须传送某一最低性能级别的情况下可能要求的潜在工程限制。This "improved initialization procedure" using multiple priming sets is a powerful enhancement because it overcomes concerns about the length of the training sequences—long sequences are no longer needed because the device only needs to select the best set of coefficients instead of doing Fully optimized. With a reasonable number of defined coefficient sets, potential engineering constraints that may be required if the network must deliver a certain minimum level of performance are also overcome.
对多个启动系数组进行测试的另一优点在于:即使在失真度太大以至于无法进行测距和/或调度时,也可以执行该测试。具体地,可以在不知道发起分站的标识的情况下对启动组进行测试。如果失真(例如比特误码率)的初始级别太高以至于中心站不能正确地读取到达数据,就会出现这种情况。一旦找到了合适的系数组,就可以使用该组来读取随后的到达数据,使得如果该到达数据中含有所述标识,则中心站可以获得该标识。Another advantage of testing multiple sets of activation coefficients is that the testing can be performed even when the distortion is too great for ranging and/or scheduling. In particular, the starting group can be tested without knowing the identity of the originating outstation. This can occur if the initial level of distortion (eg bit error rate) is too high for the central station to correctly read the arriving data. Once a suitable set of coefficients has been found, this set can be used to read subsequent arrival data so that the central station can obtain the identity if it contains the identity.
补偿算法的一个示例被称为横向滤波器处理。一般来讲,该处理的操作包括在多个点(即,沿入局数据流的时间位置或“抽头”)处进行抽样。在入局数据流中抽头可以按照比一个比特小的间隔(例如比特时段的每一半或四分之一)相隔开。此外,抽样间隔不必是规则的,而可以是不规则的,以便例如将到达数据的复杂性考虑在内。优选地,抽头位于连续或“相邻”的比特位置处。于是,对于待补偿的每个目标比特,都可以将该目标比特的相邻比特的加权抽样与该目标比特混合起来。具体地,通常将加权相邻比特与目标比特相加,或从目标比特中减去加权相邻比特。(由于失真或比特之间的交叠,比特的值不再是0或1,而是可以为连续范围内的值)。One example of a compensation algorithm is known as transversal filter processing. In general, the operation of the process involves sampling at multiple points (ie, temporal positions or "taps") along the incoming data stream. Taps may be spaced apart in the incoming data stream at intervals smaller than one bit (eg, each half or quarter of a bit period). Furthermore, the sampling interval need not be regular, but could be irregular, eg to take into account the complexity of the arriving data. Preferably, taps are located at consecutive or "adjacent" bit positions. Thus, for each target bit to be compensated, weighted samples of the adjacent bits of the target bit can be mixed with the target bit. Specifically, the weighted adjacent bits are usually added to the target bit, or subtracted from the target bit. (Due to distortion or overlap between bits, the value of a bit is no longer 0 or 1, but can be a continuous range of values).
优选地,相邻比特将包括目标比特的至少一个直接邻居,例如对于3抽头滤波器处理,对目标比特及其在数据流中的两个(在本示例中是尾随的(trailing))邻居进行抽样。对于5比特抽头,被抽样的邻居中将包括目标比特的接下来的4个最近尾随邻居,等等。为了对抽样比特进行加权,将一加权函数应用于各相应比特,针对各个比特的该加权函数由与数据待校正的分站相对应的组中的系数中的相应一个来控制。优选地,该加权函数是简单的因式分解函数(例如乘法)。Preferably, adjacent bits will include at least one immediate neighbor of the target bit, e.g. for a 3-tap filter process, the target bit and its two (trailing in this example) neighbors in the data stream sampling. For a 5-bit tap, the sampled neighbors will include the next 4 nearest trailing neighbors of the target bit, and so on. To weight the sampled bits, a weighting function is applied to each corresponding bit, the weighting function for each bit being controlled by a respective one of the coefficients in the group corresponding to the substation whose data is to be corrected. Preferably, the weighting function is a simple factorization function (eg multiplication).
为了使滤波器处理进行工作,补偿模块将给定数量的连续到达的比特存储在存储器52中的相应存储器位置,例如存储在存储器52内的移位寄存器522中。实质上,在工作中,(i)通过与该数据比特所位于的存储器位置相关联的系数对各连续数据比特进行加权;(ii)保存经加权的值;以及(iii)然后对该数据进行移位,使得一个存储器位置中的数据被直接尾随的比特时隙(即已到达时隙的下一时隙)中的数据所替换。按顺序重复步骤(i)、(ii)和(iii),结果对于每次循环都产生了一值,该值是各存储器位置处的抽样数据的组合。具体地,对于每个目标数据比特,该组合都包括该目标数据比特以及在指定邻居中尾随该目标比特的加权比特。In order for the filter process to work, the compensation module stores a given number of successively arriving bits in corresponding memory locations in the
更具体来说,在中心站处接收到的数据可以由R(x)来表示,并在各个比特位置处取值R1,R2,R3,...,Rx-1,Rx、Rx+1等,Rx是待补偿的目标比特。其中,标记“x”表示比特在比特时隙流中的位置。“经补偿”数据/“输出”E(x)由通过系数进行了加权的各抽样比特之和给出,即,由以下公式给出:More specifically, the data received at the central station can be represented by R(x) and take the values R1, R2, R3, ..., Rx-1, Rx, Rx+1, etc. at the various bit positions , Rx is the target bit to be compensated. Wherein, the mark "x" indicates the position of the bit in the stream of bit slots. The "compensated" data/"output" E(x) is given by the sum of the sampled bits weighted by a coefficient, i.e., by:
因此,对于“3抽头”滤波器(其中n=3),由下式给出经补偿数据:Thus, for a "3-tap" filter (where n=3), the compensated data is given by:
E(x)=c0Rx+c1Rx-1+c2Rx-2使用矢量符号E=C.R也是有用的,其中C包含系数(c0,c1,c2,...,cn-1),而R是抽样数据
图7示出了对补偿算法的主要步骤进行概述的表。系数c0、c1和c2(在本示例中它们是静态的)分别对应于存储器位置M1、M2和M3。被标记为M1、M2和M3的行示出了对于每一步骤,哪个数据比特R1-Rx被载入相应的存储器位置M1-M3中。最后(右手侧)一列示出了针对均衡化数据而获得的补偿值:例如在阶段3c处给出了针对R3比特时隙位置的均衡化数据。Figure 7 shows a table summarizing the main steps of the compensation algorithm. Coefficients c0, c1 and c2 (which are static in this example) correspond to memory locations M1, M2 and M3, respectively. The rows labeled M1, M2 and M3 show for each step which data bits R1-Rx are loaded into the corresponding memory location M1-M3. The last (right-hand side) column shows the compensation values obtained for the equalized data: eg the equalized data for the R3 bit slot position is given at stage 3c.
以下给出了一种可能的补偿算法的描述,该补偿算法是自适应的,使得该算法可以执行优化或训练程序,以对用于对来自给定分站的信号失真进行补偿的系数的值进行改进。仍然由以上给出的公式来描述“经补偿”数据/“输出”E(x),尽管现在允许系数变化并且对系数进行调节以提供改进的滤波器来“滤除”或减小失真。对公式进行修改以反映系数的时间依赖特性,给出了:The following gives a description of a possible compensation algorithm that is adaptive such that the algorithm can perform an optimization or training procedure to adjust the values of the coefficients used to compensate for the distortion of the signal from a given substation Make improvements. The "compensated" data/"output" E(x) is still described by the formula given above, although the coefficients are now allowed to vary and adjusted to provide an improved filter to "filter out" or reduce distortion. Modifying the formula to reflect the time-dependent nature of the coefficients gives:
因此,对于“3抽头”滤波器(其中n=3),由下式给出经补偿数据:Thus, for a "3-tap" filter (where n=3), the compensated data is given by:
E(x)=c0(x).Rx+c1(x).Rx-1+c2(x).Rx-2 E(x)=c 0 (x).R x +c 1 (x).R x-1 +c 2 (x).R x-2
初始时,将所有存储器位置都设为零。将系数设置为它们的初始值(这通常是它们的“期望”/平均值,以有助于缩短收敛时间)。对这些系数进行调节将涉及对信号质量的某种表示进行响应的算法。如果某些数据是已知的,则该算法可以是仅对“经补偿”数据与该已知数据之间的差异进行测量的误差函数。在这种情况下,该优化设法减小该误差。这里,使用已知的训练序列以便能直接测量该误差。(然而,可以通过使用诸如“眼开(eye opening)”的另一信号质量量度(metric)来尝试对“盲(blind)”进行优化)。Initially, all memory locations are set to zero. Set the coefficients to their initial values (this is usually their "expected"/average value to help reduce convergence time). Adjusting these coefficients will involve an algorithm that responds to some indication of signal quality. If some data is known, the algorithm may be an error function that measures only the difference between the "compensated" data and the known data. In this case, the optimization seeks to reduce the error. Here, a known training sequence is used so that the error can be measured directly. (Optimization for "blind" can however be attempted by using another signal quality metric such as "eye opening").
设想由K(x)给出已知的、已发送数据。可以将它写成K1,K2,K3,...,Kx-1,Kx,Kx+1...等。所接收的数据仍然由R(x)给出,并取值R1,R2,R3,...,Rx-1,Rx,Rx+1...等。经补偿的数据E(x)取值E1,E2,E3,...,Ex-1,Ex,Ex+1。经补偿数据与已知数据之间的误差e(x)就是K(x)-E(x)。该自适应算法将按照使该误差最小化的方式对系数进行调节。Suppose the known, sent data is given by K(x). It can be written as K1, K2, K3, ..., Kx-1, Kx, Kx+1...etc. The received data is still given by R(x) and takes values R1, R2, R3, . . . , Rx-1, Rx, Rx+1 . . . and so on. The compensated data E(x) takes values E1, E2, E3, . . . , Ex-1, Ex, Ex+1. The error e(x) between the compensated data and the known data is simply K(x)-E(x). The adaptive algorithm will adjust the coefficients in such a way as to minimize this error.
可以使用各种不同的优化技术:一个示例是通过对系数进行细微的改变并选择使该(均方)误差减小的增量来减小该误差(如果已知该函数的形式,则可以使用该函数的导数进行更有意义(informed)的估计,以修订这些系数)。使用矢量符号,如果E=C.R,则可以将修订后的估计写成E′=(C+δC).R,使得e′(=K-E′)<e(=K-E)。新系数由C′=C+δC给出。Various optimization techniques can be used: one example is to reduce the (mean squared) error by making small changes to the coefficients and choosing increments that reduce the (mean squared) error (if the form of the function is known, one can use The derivatives of this function make more informed estimates to revise these coefficients). Using vector notation, if E=C.R, then the revised estimate can be written as E'=(C+δC).R such that e'(=K-E')<e(=K-E). The new coefficients are given by C'=C+δC.
作为对(使用已知数据的)所述处理的总结,执行以下步骤(在头几次循环中如果数据不完全则可以略去步骤VI和VII):As a summary of the described processing (using known data), the following steps are performed (steps VI and VII can be omitted if the data are incomplete in the first few cycles):
I.初始时,将所有数据存储器位置都设为零,并且系数取初始值I. Initially, all data memory locations are set to zero, and the coefficients take initial values
II.对数据进行移位II. Shift the data
III.对位置x处的信号进行抽样,将其保存到第一数据位置III. Sample the signal at location x, save it to the first data location
IV.计算经补偿的数据EIV. Computing Compensated Data E
V.回调已知数据并计算误差eV. Call back the known data and calculate the error e
VI.计算“梯度”,即,确定系数的改变以使误差减小或最小化VI. Calculate the "gradient", that is, determine the change in the coefficients to reduce or minimize the error
VII.将系数调节为如VI中所确定的新值VII. Adjust coefficients to new values as determined in VI
VIII.转到步骤IIVIII. Go to Step II
可以作为中央控制器针对各分站已计算出的偏移延迟值的函数来计算初始值,或者可以使用表示从分站到中心站的转接时间的另一延迟关联参数,因为该转接时间通常与光纤路径长度相关联,光纤路径长度进而表示了可能的失真程度。图8a和8b示出了表示自适应补偿算法中所涉及的步骤的表。图8a和8b示出了该表的相同行但是不同列。The initial value can be calculated as a function of the offset delay value already calculated by the central controller for each substation, or another delay-related parameter representing the transit time from the substation to the central station can be used, since the transit time Usually associated with the fiber path length, which in turn represents the possible degree of distortion. Figures 8a and 8b show tables representing the steps involved in the adaptive compensation algorithm. Figures 8a and 8b show the same rows but different columns of the table.
以下是对显式地允许来自不同分站的数据要求不同的滤波系数c1、c2、c3等的算法的描述。由以上给出的自适应示例的公式来描述“经补偿”数据/“输出”E(x),尽管现在针对每个ONU都存在单独的系数组。滤波器按相同的方式起作用,但是使用来自该调度算法的发送顺序的知识在不同ONU的数据组之间跳跃。写成逐个步骤的处理:The following is a description of an algorithm that explicitly allows data from different substations to require different filter coefficients c1, c2, c3, etc. The "compensated" data/"output" E(x) is described by the formula for the adaptation example given above, although now there is a separate set of coefficients for each ONU. Filters function in the same way, but use knowledge of the order of transmission from the scheduling algorithm to jump between data groups of different ONUs. Written as a step-by-step process:
I.初始时,将所有数据存储器位置都设为零,并且系数取初始值正常操作I. Initially, all data memory locations are set to zero, and the coefficients take their initial values for normal operation
II.新信元一使用来自调度算法的知识确定哪个ONU在进行发送II. New Cell One uses knowledge from the scheduling algorithm to determine which ONU is transmitting
III.检索ONU的系数III. Retrieve the coefficients of the ONU
对数据进行均衡化Equalize the data
IV.对数据进行移位IV. Shift data
V.对信号进行抽样,将其保存到第一数据位置V. Sample the signal, save it to the first data location
VI.计算经补偿的数据EVI. Calculation of Compensated Data E
如果数据是已知的,则对系数进行优化(否则转到步骤X)If the data is known, optimize the coefficients (otherwise go to step X)
VII.回调已知数据并计算误差eVII. Call back known data and calculate error e
VIII.计算“梯度”,即,确定系数的改变以使误差最小化VIII. Computing "gradients", i.e. determining changes in coefficients to minimize error
IX.将系数调节为如VIII中所确定的新值IX. Adjust the coefficients to new values as determined in VIII
循环结束end of loop
X.如果到达信元末尾,则存储系数并转到步骤II,否则转到步骤IVX. If end of cell is reached, store coefficients and go to step II, otherwise go to step IV
图9a、9b和9c例示了在数据已知并且对系数进行调节的情况下的表(9a、9b和9c示出了该表的相同行但是不同列)。如果数据不是已知的,则跳过步骤VII到IX并且保持系数固定。Figures 9a, 9b and 9c illustrate the table when the data are known and the coefficients are adjusted (9a, 9b and 9c show the same rows but different columns of the table). If the data are not known, skip steps VII to IX and keep the coefficients fixed.
建模过程已经表明在所讨论的10-3到10-4的BER下实现PON初始化的可行性。下表1示出了在该BER下接收用于进行起动(启动、测距等)的数据的良好概率,尽管对于客户流量来说性能是不可接受的。The modeling process has shown the feasibility of PON initialization at the discussed BER of 10 -3 to 10 -4 . Table 1 below shows a good probability of receiving data for priming (booting, ranging, etc.) at this BER, although the performance is not acceptable for customer traffic.
表1 Table 1
上表表明,在执行均衡化处理之前从在初始激活阶段进行通信所需的有限数量字节接收数据具有良好的概率。如果出现故障,则ONU可以简单地进行再发送。下表(表2)示出了5次尝试之后增大的成功概率。The above table shows that there is a good probability of receiving data from the limited number of bytes required to communicate during the initial activation phase before equalization is performed. If a failure occurs, the ONU can simply resend. The following table (Table 2) shows the increasing probability of success after 5 attempts.
表2 Table 2
图11例示了图9a、9b和9c的自适应算法中的主要步骤。图11示出了自适应补偿算法的另选表示。其中,初始时,对来自中心站的输入级40的数据进行“抽样”以提取比特时隙值,并使用系数c0对其进行加权。在加权级902处对下一比特时隙进行抽样并且以系数c1对其进行加权之前,由变换级901应用具有一个比特延迟的函数(这里是变换Z-1)。在对数据进行抽样之前应用具有进一步的一个比特延迟的延迟的另一变换级,然后由另一系数对其进行加权,对于另外的一个比特延迟,依此类推。然后在求和单元903处对经加权的抽样进行求和。这里,变换级901、加权级902和求和单元903是实现在(例如位于中心站的处理器装置50和存储器装置52中的)处理器和存储器中的软件单元。于是可以将系数组从一个ONU改变成下一个。Figure 11 illustrates the main steps in the adaptive algorithm of Figures 9a, 9b and 9c. Figure 11 shows an alternative representation of the adaptive compensation algorithm. Therein, initially, the data from the
可以使用其他均衡化(补偿)算法族,例如:线性均衡化;判决反馈均衡化(和前馈);非线性均衡化;最大似然序列检测(MLSD),也被称为最大似然检测(MLD);可能的“盲”技术;以及恒模算法(CMA)。Other families of equalization (compensation) algorithms can be used, such as: linear equalization; decision feedback equalization (and feed-forward); nonlinear equalization; maximum likelihood sequence detection (MLSD), also known as maximum likelihood detection ( MLD); a possible "blind" technique; and the constant modulus algorithm (CMA).
参照以下步骤(其中将中心站称为OLT,将分站称为ONU),以示例的方式可以更好地理解本发明的实施例。Embodiments of the present invention can be better understood by way of example with reference to the following steps (where the central station is referred to as an OLT and the outstations are referred to as ONUs).
1.OLT对所有ONU进行广播。在ONU上电之后,ONU对来自OLT的下游流量进行侦听,ONU可以根据该操作获得比特和帧同步(它可以根据分帧的数据获得位和帧同步)1. The OLT broadcasts to all ONUs. After the ONU is powered on, the ONU listens to the downstream traffic from the OLT, and the ONU can obtain bit and frame synchronization according to this operation (it can obtain bit and frame synchronization according to the framed data)
2.OLT对所有ONU进行广播。(多个)新ONU对来自OLT的所有广播信元进行侦听和接收。ONU提取网络参数(初始发送功率级别和测距相关延迟、帧的格式、待上游使用的前同步码等、何时发送注册和测距请求的详情等)。OLT在已定义字节中定期向下游广播这些参数,使得ONU要做的只是侦听足够长时间以提取相关信息。例如,OLT可以在头部的已定义字节中发送字节,以表示在该帧内的字节XXX到YYY之间出现了测距窗口。(另选地,这些字节可以表示帧ZZZ的末尾之后的TTT时段,或者在OLT发送了给定字节序列之后的TTT时段)。2. The OLT broadcasts to all ONUs. The new ONU(s) listen and receive all broadcast cells from the OLT. The ONU extracts network parameters (initial transmit power level and ranging related delays, format of frames, preambles to be used upstream, etc., details of when to send registration and ranging requests, etc.). The OLT periodically broadcasts these parameters downstream in defined bytes, so that all the ONU has to do is listen long enough to extract the relevant information. For example, the OLT may send bytes in the defined bytes in the header to indicate that a ranging window occurs between bytes XXX to YYY within the frame. (Alternatively, these bytes may represent a TTT period after the end of frame ZZZ, or a TTT period after the OLT has sent a given sequence of bytes).
3.可以理解,在任何单个ONU处,对于其TDMA时隙,来自OLT的信号可能已经历了相同的失真(ISI)。每个帧或信元都具有可用作对补偿算法的输入数据的已知序列字节。另选地,可以按照规则的间隔(例如每128帧)发送专用于补偿的已知数据的信元。无论哪种方式,(多个)ONU都可以使用该入局数据对它/它们的补偿算法进行训练,并对它们的系数进行优化。首端(head end)包括更高标准的激光器,因此它可以不必在下游方向上使用ISI补偿。然而,如果需要,也可以保留使用ISI补偿的选择。该步骤还便于执行步骤7,步骤7有助于加速该补偿算法针对上游方向的收敛。3. It will be appreciated that at any single ONU, for its TDMA time slot, the signal from the OLT may have experienced the same distortion (ISI). Each frame or cell has a known sequence of bytes that can be used as input data to the compensation algorithm. Alternatively, cells dedicated to known data for compensation may be sent at regular intervals (eg, every 128 frames). Either way, the ONU(s) can use this incoming data to train its/their compensation algorithms and optimize their coefficients. The head end includes a higher standard laser, so it does not have to use ISI compensation in the downstream direction. However, the option to use ISI compensation can also be retained if desired. This step also facilitates the execution of
4.ONU将它的设置调节为从OLT接收到的那些设置,并且[在(1)中使它自己与OLT同步之后],确定其中它可以尝试进行注册和测距等的可用窗口(某些PON协议不要求进行测距和注册,但是这是更一般的要求)。4. The ONU adjusts its settings to those received from the OLT, and [after synchronizing itself with the OLT in (1)], determines an available window (some Ranging and registration are not required by the PON protocol, but are more general requirements).
5.在注册窗口中,ONU将向OLT发送请求以使用预定系数组中的一个或更多个来进行注册。可以有不同的方法:(A)ONU将各系数组同时并行地应用于数据。某些结果会被ISI完全破坏,但是某些结果将给出良好的数据。ONU选择给出最佳性能的组。然后可以接受并固定所选择的系数,或者将其用作初始输入参数,以通过自适应均衡化算法进行进一步优化;(B)ONU可以在同一起动/测距周期中将各系数组顺序地应用于数据。同样,某些结果可能被破坏,但是ONU仅选择给出最佳性能的组。然后可以接受并固定这些系数,或者将其用作初始输入参数,以便由自适应均衡化算法进行进一步优化;(C)如果测距窗口太短,则ONU可以另选地在连续的测距窗口上发送多个请求。OLT将在各注册窗口中应用不同的系数组,直到它找到给出性能足够在OLT与ONU之间发起通信的组为止。OLT可以进行等待,直到它已使用了每个系数组为止,以选择最佳的系数组,或者在建立了通信之后,可以应用更“智能”的方法来确定待使用的最佳组。5. In the registration window, the ONU will send a request to the OLT to register using one or more of the predetermined set of coefficients. Different approaches are possible: (A) The ONU applies the sets of coefficients to the data simultaneously and in parallel. Some results will be completely corrupted by ISI, but some results will give good data. The ONU selects the group that gives the best performance. The selected coefficients can then be accepted and fixed, or used as initial input parameters for further optimization by an adaptive equalization algorithm; (B) the ONU can apply each coefficient group sequentially in the same start-up/ranging cycle on data. Also, some results may be corrupted, but the ONU only selects the group that gives the best performance. These coefficients can then be accepted and fixed, or used as initial input parameters for further optimization by an adaptive equalization algorithm; (C) if the ranging window is too short, the ONU can alternatively use Send multiple requests on . The OLT will apply different sets of coefficients in each registration window until it finds a set that gives sufficient performance to initiate communication between the OLT and the ONU. The OLT can either wait until it has used each set of coefficients to select the best set of coefficients, or after communication has been established, can apply a more "smart" approach to determine the best set to use.
作为可选的改进,如果在步骤1到3中对来自OLT的下游数据进行侦听时,ONU确定了对链路上的ISI的量度或均衡化算法所需的系数,则可以将该信息向上游发送给OLT。一旦上述多种方法中的一个找到了足以提取该数据的一组系数,则可以将该信息用于根据ONU所预测的系数来选择最佳系数组。As an optional improvement, if the ONU determines a measure of ISI on the link or coefficients required for an equalization algorithm when listening to downstream data from the OLT in
在选择了用于均衡化算法的合适系数之后,OLT能够从入局数据中提取信息。该数据包含了来自ONU的请求。OLT对该请求进行处理(如果需要的话使用合适的安全性措施),并广播合适的响应。所述(多个)ONU对合适的下游字节中的响应进行侦听。如果注册失败,则ONU可以在稍后的注册窗口中重复进行尝试。After selecting the appropriate coefficients for the equalization algorithm, the OLT is able to extract information from the incoming data. This data contains requests from ONUs. The OLT processes the request (using appropriate security measures if necessary) and broadcasts an appropriate response. The ONU(s) listen for the response in the appropriate downstream bytes. If the registration fails, the ONU can repeat the attempt at a later registration window.
6.测距。建立测距窗口,使得其他ONU不进行发送,因此不相干扰,并且不被测距/激活所中断。在诸如GPON的某些协议中,在逐个ONU执行的测距处理过程中停止正在工作的ONU。对于另选协议,可以不必使正在工作的ONU停止。在“测距”窗口中,ONU在相对于测距窗口的启动的已知时间发送消息。OLT接收该消息,并确定其到达时间,根据该到达时间,利用对ONU处的延迟的知识(即,当相对于测距窗口的启动而发送响应时)可以计算往返延迟,并因此可以计算传输延迟。然后使用该传输延迟来确定在ONU处需要增加多大的附加延迟以确保其上游数据是同步的。然后将该信息向下游发送给ONU。(对于其他下游数据,连同使得ONU能够确定它自己的数据的适当标识符来对其进行广播)。6. Ranging. The ranging window is established such that other ONUs do not transmit and therefore do not interfere with each other and are not interrupted by ranging/activation. In some protocols such as GPON, a working ONU is stopped during the ranging process performed on an ONU-by-ONU basis. For alternative protocols, it may not be necessary to stop a working ONU. During the "ranging" window, the ONU sends messages at known times relative to the start of the ranging window. The OLT receives this message, and determines its time of arrival, from which the round-trip delay, and thus the transmission Delay. This transmission delay is then used to determine how much additional delay needs to be added at the ONU to ensure its upstream data is in sync. This information is then sent downstream to the ONU. (For other downstream data, it is broadcast along with an appropriate identifier enabling the ONU to determine its own data).
7.对均衡化系数的优化。假设在步骤5中确定了对补偿(均衡化)系数的良好起始估计。在简单的实现中这可能是足够的,因此不需要对这些系数进行任何进一步的调节,在这种情况下,可以执行下一步骤。然而,如果需要,也可以对均衡化系数执行进一步的优化。同样存在许多选择。7. Optimization of the equalization coefficient. Assume that in step 5 a good starting estimate for the compensation (equalization) coefficients was determined. In simple implementations this may be sufficient so that no further adjustments to these coefficients are required, in which case the next step can be performed. However, further optimization can also be performed on the equalization coefficients if desired. There are also many options.
一种方法是广播一消息,以使所有其他ONU停止,并使得新ONU能够向OLT发送足够长的已知字节的训练序列。一旦OLT针对该新ONU对补偿系数进行了优化,或者达到了最大时段,则为该ONU存储这些补偿系数。OLT接着可以广播表示补偿结束的另一下游消息,使得能够对另一ONU进行注册、测距或补偿,或者使得能够返回到正常操作。One method is to broadcast a message to stop all other ONUs and enable new ONUs to send a sufficiently long training sequence of known bytes to the OLT. Once the OLT optimizes the compensation coefficients for this new ONU, or the maximum time period is reached, these compensation coefficients are stored for this ONU. The OLT may then broadcast another downstream message indicating the end of backoff, enabling registration, ranging or backoff of another ONU, or enabling a return to normal operation.
一种另选方法是作为测距消息的一部分或者在独立的“补偿”窗口中定义可以发送的固定长度的训练序列。An alternative is to define a fixed-length training sequence that can be sent as part of the ranging message or in a separate "backoff" window.
另一种方法是在测距窗口中使用扩展消息,因为这避免了由于附加窗口而使协议更加复杂。这是可能的,因为相对来说,在测距窗口中存在很多可用时间。必须正确指定窗口的大小,以处理这些较长的消息,但是所需的额外开销应当非常小。如果需要,可以使用冲突检测来帮助处理不同ONU使用同一测距窗口的情况:即,可以使用冲突检测多址(CDMA)来确保一次只有一个ONU尝试进行均衡化。在发生冲突的情况下,ONU后退(back off)随机量,并对测距窗口进行监测,使得一次只有一个ONU尝试进行测距和均衡化。由于此时已对该ONU进行了注册和测距,所以可以通过PON调度算法对它进行控制,因此现在可以对它进行调度,从而可以为该ONU保存补偿常数,并且如果需要,可以使补偿优化扩展到多个测距/优化窗口。Another approach is to use extended messages in the ranging window, as this avoids making the protocol more complex due to additional windows. This is possible because, relatively speaking, there is a lot of time available in the ranging window. The window must be correctly sized to handle these longer messages, but the overhead required should be minimal. If desired, collision detection can be used to help handle situations where different ONUs use the same ranging window: i.e., collision detection multiple access (CDMA) can be used to ensure that only one ONU at a time tries to equalize. In the event of a collision, the ONU backs off a random amount and monitors the ranging window so that only one ONU attempts ranging and equalization at a time. Since this ONU is registered and ranging at this point, it can be controlled by the PON scheduling algorithm, so it can now be scheduled, so that compensation constants can be saved for this ONU, and the compensation can be optimized if required Scale to multiple odometry/optimization windows.
在设定数量的优化序列之后,一旦误差下降到特定大小以下,或者一旦系数的增量或误差的变化下降到特定大小以下,就可以认为完成了初始优化。在正常操作过程中可以实现进一步的优化,参见以下步骤9。After a set number of optimization sequences, the initial optimization is considered complete once the error falls below a certain magnitude, or once the increment of the coefficients or the change in the error falls below a certain magnitude. Further optimization can be achieved during normal operation, see
8.一旦OLT对ONU的补偿进行了优化并且完成了注册和测距,它就可以向其他ONU广播表示它能够对另一ONU进行注册/测距和均衡化的更新。(该步骤是可选的,尤其是当训练序列具有固定长度并位于相对于下游帧的确定(define)位置处时)。如果不存在“冲突”(其中一个以上的ONU同时进行发送),则可以一次处理一个以上的优化。8. Once the OLT has optimized the compensation of the ONU and completed the registration and ranging, it can broadcast an update to other ONUs indicating that it can register/rang and equalize another ONU. (This step is optional, especially when the training sequence has a fixed length and is located at a defined position relative to the downstream frame). If there are no "collisions" (where more than one ONU is transmitting at the same time), more than one optimization can be processed at a time.
9.正常操作。对网络进行测距,使得所有上游消息都一起同步,从而它们可以分别到达它们在帧内的正确位置。也对ONU进行补偿。对于随后的操作,存在多种选择。在选择了预定系数的最佳组,并且(如上所述)还可选地在发起阶段对它们进行了进一步的优化之后,对于“正常操作”存在许多选择:9. Normal operation. Ranging the network such that all upstream messages are synchronized together so that they each arrive at their correct position within the frame. The ONU is also compensated. For subsequent operations, various options exist. After selecting the best set of predetermined coefficients, and (as above) also optionally further optimizing them at the initiation phase, there are a number of options for "normal operation":
A)系数可以对于该ONU保持固定,使得每当ONU进行发送时,OLT都使用相同的系数组。A) The coefficients can be kept fixed for the ONU so that the OLT uses the same set of coefficients whenever the ONU transmits.
B)OLT可以通过偶尔对来自多个预定组(它们中的全部,或者仅是在ISI补偿方面最接近当前预定组的那些预定组)的信号质量进行比较,来偶尔尝试对它使用的预定系数组进行重新优化。B) The OLT may occasionally attempt to evaluate the predetermined coefficients it uses by occasionally comparing signal quality from multiple predetermined groups (all of them, or only those predetermined groups that are closest to the current predetermined group in terms of ISI compensation) The group is re-optimized.
C)OLT可以按照先前的实现来偶尔尝试对系数本身进行重新优化。C) The OLT may occasionally try to re-optimize the coefficients themselves as in previous implementations.
对于B)和C),OLT可以使用标准数据信元、PLOAM信元或其他专用的已知“训练”信元的头部中的已知字节来进行该优化。B)和C)中的重新优化可以定期执行,例如每x分钟、每天等,或者它可以是当信号质量的度量下降到低于特定阈值的情况下被唤起(prompt)的处理。(该阈值可以是绝对值,或者是优化之后相对于初始性能的值)。For B) and C), the OLT can use known bytes in the header of standard data cells, PLOAM cells, or other dedicated known "training" cells for this optimization. The re-optimization in B) and C) can be performed periodically, eg every x minutes, daily, etc., or it can be a process that is prompted when the measure of signal quality drops below a certain threshold. (The threshold can be an absolute value, or a value relative to the initial performance after optimization).
当前这一代PON通常以622Mbit/s进行工作,通常具有32个分路(即,每OLT32个ONU)和20km的最大范围。然而,未来一代的PON可能需要以更高的比特率并且在更长的距离上进行工作,以绕过外部核心传输(outer core transmission)设备。这可能涉及(但是不限于)在~100km的光纤距离上的10Gbit/s的比特率。即使在当前系统中,也认为失真或其他码元间干扰(ISI)(其可能是由于诸如沿光纤的色散(CD)或偏振模式色散(PMD)的因素而导致的)是不希望的,并且在更高比特率下或对于其中分站具有更宽线宽的光源(即,“较低规格”光源)的系统,这种失真或ISI可能是更不希望的。The current generation of PONs typically operates at 622Mbit/s, typically has 32 branches (ie 32 ONUs per OLT) and a maximum range of 20km. However, future generations of PONs may need to operate at higher bit rates and over longer distances to bypass outer core transmission equipment. This may involve (but is not limited to) a bit rate of 10 Gbit/s over a fiber distance of ~100 km. Even in current systems, distortion or other intersymbol interference (ISI) (which may be due to factors such as chromatic dispersion (CD) or polarization mode dispersion (PMD) along the fiber) is considered undesirable, and This distortion or ISI may be less desirable at higher bit rates or for systems where substations have wider linewidth light sources (ie "lower gauge" light sources).
可以看到,以上实施例中的至少某些利用了TDMA时隙的各OLT的顺序发送的PON多址协议的知识。作为调度处理的一部分,OLT预先知道了待接收的下一信元源自哪个ONU。均衡器(补偿过程)可以利用该知识在合适的加权系数之间快速切换到下一ONU的加权系数,以补偿下一信元的ISI。这意味着相邻信元可能具有非常不同的ISI量,因为该算法不必对于每个信元从头开始优化处理,而是可以快速地回调最后一组系数并因此可以在均衡化算法中保持合适的值。由此,OLT将具有表示不同ISI量的多个(例如10个)固定均衡化系数组,而不是必须对自适应均衡化算法进行完全“训练”,以在发起阶段对该算法的系数进行优化。(这例如可以对应于不同的光纤长度)。在发起阶段,该装置仅将这些不同参数组中的每一个参数组(顺序地或并行地)应用于入局数据,而不是从它们的缺省值开始对该算法的系数进行“训练”。由于数据序列是已知的,于是该装置只需选择给出最佳性能/最小误差的系数组。它随后可以使用该固定系数组作为用于固定(非自适应)均衡化的系数组,或者作为在使用自适应算法时待改进的初始系数组。It can be seen that at least some of the above embodiments make use of the knowledge of the PON multiple access protocol for the sequential transmission of OLTs of TDMA time slots. As part of the scheduling process, the OLT knows in advance from which ONU the next cell to be received originates. The equalizer (compensation process) can use this knowledge to quickly switch between suitable weighting coefficients to the weighting coefficients of the next ONU to compensate for the ISI of the next cell. This means that adjacent cells may have very different amounts of ISI, since the algorithm does not have to optimize the process from scratch for each cell, but can quickly recall the last set of coefficients and thus maintain a suitable value in the equalization algorithm value. Thus, the OLT will have multiple (e.g. 10) fixed sets of equalization coefficients representing different amounts of ISI, rather than having to fully "train" the adaptive equalization algorithm to optimize its coefficients during the initiation phase . (This can eg correspond to different fiber lengths). During the initiation phase, the device simply applies each of these different parameter sets (sequentially or in parallel) to the incoming data, rather than "training" the coefficients of the algorithm starting from their default values. Since the data sequence is known, then the device need only select the set of coefficients that give the best performance/minimum error. It can then use this fixed set of coefficients as the set of coefficients for fixed (non-adaptive) equalization, or as the initial set of coefficients to be improved when using an adaptive algorithm.
采用电子均衡化的有用结果是存储器中存在由该均衡化算法使用的参数或系数,并且可以容易地将这些参数或系数复制到输出,在该输出处,它们可以提供对来自多种ONU的信号质量的监测功能。这在帮助提供对PON的监测方面对于网络运营商将是有用的工具。可以将该数据馈送到了解PON拓扑结构(它可以使来自不同ONU的数据相关联)的二次应用中,以帮助对PON中的故障和劣化进行定位。A useful consequence of employing electronic equalization is that the parameters or coefficients used by the equalization algorithm exist in memory and can be easily copied to the output where they can provide input to signals from a variety of ONUs Quality monitoring function. This would be a useful tool for network operators in helping to provide monitoring of the PON. This data can be fed into a secondary application that understands the PON topology (which can correlate data from different ONUs) to help locate faults and degradations in the PON.
上述实施例中的一个或更多个将便于对现有PON(例如,根据诸如ITU G983标准的标准进行工作(至少在本发明之前)的PON,和/或以高比特率进行工作的PON)进行操作。这是通过允许将补偿程序应用于其中失真特性在短时间尺度上变化的数据(例如由于该数据的路径在这种短时间尺度上发生了变化)来实现的。当前一代的PON趋于利用高质量光学组件(例如外部调制和分布式反馈(“DFB”)激光器)来帮助克服由于ISI而导致的信号劣化的影响。如上所述,期望使用诸如法布里-珀罗(Fabry Perot)激光器的更廉价的组件,但是它们相对差的性能往往阻碍了它们的应用。上述实施例使得能够使用较低规格的组件,使得设法配置接入网络的运营商可以节省相当多的成本。潜在的节省是显著的,并且可以转变PON配置的经济性,使得它成为接入网络的可行方案。该优点可能具有比所讨论的高比特率、长距离应用更大的潜在应用。One or more of the above-described embodiments would be convenient for existing PONs (e.g., PONs operating (at least prior to the present invention) according to standards such as the ITU G983 standard, and/or PONs operating at high bit rates) to operate. This is achieved by allowing the compensation procedure to be applied to data where the distortion characteristics vary over short timescales (eg due to the path of the data changing over such short timescales). Current generation PONs tend to utilize high quality optical components such as external modulation and distributed feedback ("DFB") lasers to help overcome the effects of signal degradation due to ISI. As mentioned above, it is desirable to use cheaper components such as Fabry-Perot lasers, but their relatively poor performance often hinders their application. The above-described embodiments enable the use of lower specification components, resulting in considerable cost savings for operators seeking to deploy access networks. The potential savings are significant and could transform the economics of PON deployment, making it a viable option for access networks. This advantage may have larger potential applications than the high bit rate, long distance applications discussed.
进一步的考虑包括:Further considerations include:
·优选地,接收器和均衡化算法将能够处理突发模式流量。• Preferably, the receiver and equalization algorithm will be able to handle burst mode traffic.
·可以使用其他均衡化(补偿)算法族,例如:线性均衡化;· Other equalization (compensation) algorithm families can be used, for example: linear equalization;
判决反馈均衡化(和前向反馈);非线性均衡化;最大似然序列检测(MLSD),也被称为最大似然检测(MLD);可能的“盲”技术;以及恒模算法(CMA)。Decision feedback equalization (and feedforward); nonlinear equalization; maximum likelihood sequence detection (MLSD), also known as maximum likelihood detection (MLD); possible "blind" techniques; and constant modulus algorithm (CMA ).
·可以将以上实施例用于其他ISI源:较差的发射机消光比;(时变)PMD;与色散组合的模态分割波动(mode partitionfluctuation)。• The above embodiments can be used for other ISI sources: poor transmitter extinction ratio; (time-varying) PMD; mode partition fluctuation combined with dispersion.
·使用RAM的可能另选方案将是在并行处理器中使用多线程。• A possible alternative to using RAM would be to use multithreading in parallel processors.
·在另一实施例中,可以对系数(参数)进行监测,以监测一条或更多条传输路径的性能。• In another embodiment, coefficients (parameters) may be monitored to monitor the performance of one or more transmission paths.
Claims (23)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0407341A GB0407341D0 (en) | 2004-03-31 | 2004-03-31 | A communication system |
GB0407341.7 | 2004-03-31 | ||
GB0502257A GB0502257D0 (en) | 2005-02-03 | 2005-02-03 | A communication system |
GB0502257.9 | 2005-02-03 | ||
PCT/GB2005/001252 WO2005096574A1 (en) | 2004-03-31 | 2005-03-30 | A communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1939020A true CN1939020A (en) | 2007-03-28 |
CN1939020B CN1939020B (en) | 2012-07-04 |
Family
ID=32247623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800108034A Active CN1939020B (en) | 2004-03-31 | 2005-03-30 | Communication system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1939020B (en) |
GB (1) | GB0407341D0 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989879A (en) * | 2009-08-05 | 2011-03-23 | 华为技术有限公司 | Electronic dispersion compensation method, device and system in burst mode |
CN102064928A (en) * | 2010-12-10 | 2011-05-18 | 福建星网锐捷网络有限公司 | Method and device for obtaining signal compensating parameters and network equipment |
CN109075861A (en) * | 2016-06-14 | 2018-12-21 | 华为技术有限公司 | Upstream data equalization methods, device and system |
US20230155676A1 (en) * | 2020-04-21 | 2023-05-18 | Zte Corporation | Optical module and parameter transmission method, detection method, control method thereof, and fronthaul system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW282601B (en) * | 1995-01-24 | 1996-08-01 | Ibm | |
US6658242B1 (en) * | 1997-12-12 | 2003-12-02 | Thomson Licensing S.A. | TDMA wireless telephone system with independently tracked demodulation parameters |
DE69921374T2 (en) * | 1999-08-23 | 2006-03-09 | Fujitsu Ltd., Kawasaki | COMMUNICATION SYSTEM, METHOD FOR FIELD STRENGTH COMPENSATION IN A COMMUNICATION SYSTEM AND BASE STATION AND DEVICE FOR A RADIO COMMUNICATION SYSTEM |
-
2004
- 2004-03-31 GB GB0407341A patent/GB0407341D0/en not_active Ceased
-
2005
- 2005-03-30 CN CN2005800108034A patent/CN1939020B/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989879A (en) * | 2009-08-05 | 2011-03-23 | 华为技术有限公司 | Electronic dispersion compensation method, device and system in burst mode |
CN101989879B (en) * | 2009-08-05 | 2013-09-11 | 华为技术有限公司 | Electronic dispersion compensation method, device and system in burst mode |
CN102064928A (en) * | 2010-12-10 | 2011-05-18 | 福建星网锐捷网络有限公司 | Method and device for obtaining signal compensating parameters and network equipment |
CN109075861A (en) * | 2016-06-14 | 2018-12-21 | 华为技术有限公司 | Upstream data equalization methods, device and system |
US10506313B2 (en) | 2016-06-14 | 2019-12-10 | Huawei Technologies Co., Ltd. | Upstream data equalization method, apparatus, and system cross-reference to related applications |
CN109075861B (en) * | 2016-06-14 | 2020-04-28 | 华为技术有限公司 | Uplink data balancing method, device and system |
US20230155676A1 (en) * | 2020-04-21 | 2023-05-18 | Zte Corporation | Optical module and parameter transmission method, detection method, control method thereof, and fronthaul system |
Also Published As
Publication number | Publication date |
---|---|
GB0407341D0 (en) | 2004-05-05 |
CN1939020B (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7457542B2 (en) | Optical access network system | |
CN101411099B (en) | Method of introducing an outstation into an optical network and outstation therefor | |
US11909446B2 (en) | Data transmission method, related apparatus, and system | |
US20190089463A1 (en) | Using multi-level modulated signals in passive optical networks | |
EP2997677B1 (en) | Optical network unit self-calibration in multi-wavelength passive optical network | |
US20080166124A1 (en) | System and method for performing high-speed communications over fiber optical networks | |
KR20190094430A (en) | Reduction of synchronization errors in common air radio interface (CPRI) passive optical networks (PONS) | |
CN101836379A (en) | Optical communication | |
EP1730913B1 (en) | Apparatus and method for compensating for data degradation | |
JP2002271271A (en) | Playback relay method and playback relay device | |
WO2011072575A1 (en) | Registration window adjustment method, system and device for passive optical network (pon) | |
CN111901047A (en) | Method and device for rapidly equalizing high-speed burst signals | |
US20210258075A1 (en) | Signal processing apparatus and optical receiving apparatus | |
CN1939020B (en) | Communication system | |
CN106664234A (en) | Wdm/tdm-pon system, and transmission start time correction method therefor | |
CN101459472A (en) | Method, system and apparatus realizing remote data transmission in passive optical network | |
White et al. | Design of a control-channel-based media-access-control protocol for HORNET | |
Caballero et al. | Performance monitoring techniques supporting cognitive optical networking | |
US20230403076A1 (en) | Method for equalization in an access network of passive optical network type, computer program product, optical line termination and optical network unit corresponding thereto | |
White et al. | Demonstration and system analysis of the HORNET architecture | |
CN117278125A (en) | Method, apparatus, device and computer readable medium for optical communication | |
CN111988127B (en) | Information synchronization method and device | |
WO2024140929A1 (en) | Pon system, data processing method, and related device | |
US8630547B2 (en) | Enhanced polarization mode dispersion of optical channels | |
JP2009141620A (en) | Compensating dispersion amount setting method, compensating dispersion amount setting program, center device and optical communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |