CN1937441B - Power control method - Google Patents

Power control method Download PDF

Info

Publication number
CN1937441B
CN1937441B CN2006101418104A CN200610141810A CN1937441B CN 1937441 B CN1937441 B CN 1937441B CN 2006101418104 A CN2006101418104 A CN 2006101418104A CN 200610141810 A CN200610141810 A CN 200610141810A CN 1937441 B CN1937441 B CN 1937441B
Authority
CN
China
Prior art keywords
mrow
dpdch
msub
mac
power offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101418104A
Other languages
Chinese (zh)
Other versions
CN1937441A (en
Inventor
伏玉笋
吴玉忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN2006101418104A priority Critical patent/CN1937441B/en
Publication of CN1937441A publication Critical patent/CN1937441A/en
Application granted granted Critical
Publication of CN1937441B publication Critical patent/CN1937441B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

This method realizes power control on the up-going link of WCDMA system of using up-going boosting technique. It collects statistic of the error block ratio (EBT) on DPDCH. According to the aim value of EBT preset by the system, it calculates the signal interference ratio of renewed DPCCH, then according to the calculation result, regulates and controls the emitting power on DPCCH. The method collects statistic of real error block ratio and the number of re-transfer of MAC-d flow on E-DPDCH, calculates the power shift parameter of each MAC-d flow, then according to the calculation result, regulates the emitting power on each MAC-d flow. This power control method is applied on up-going link of WCDMA system of using up-going boosting technique. The invention regulates the emitting power of DPDCH and E-DPDCH periodically to ensure service quality and reduces interference inside the system.

Description

Power control method
Technical Field
The invention relates to a power control technology in a wideband code division multiple access system, in particular to a power control method of an uplink adopting an uplink enhancement technology in the wideband code division multiple access system.
Background
Wideband Code Division Multiple Access (WCDMA) is one of three mainstream third-generation mobile communication standards in the world, and its own system is in continuous perfection. In Release5, a High Speed Downlink Packet Access (HSDPA) technology is introduced in WCDMA, thereby greatly improving the throughput of a Downlink. In response, High Speed Uplink packet access technology (HSUPA) has been introduced into Release6 version of WCDMA, and the establishment of the HSUPA standard is currently substantially completed. The core objective of the HSUPA technology is to improve the throughput of uplink packet data by adopting uplink enhancement technologies, such as Node B controlled scheduling, Hybrid Automatic repeat request (HARQ), and the like.
In Release6 version of WCDMA, the uplink Dedicated Physical channels include Dedicated Physical Control Channel (DPCCH), Dedicated Physical Data Channel (DPDCH), high speed Dedicated Physical Control Channel (HS-DPCCH), Enhanced Dedicated Physical Data Channel (E-DPDCH), and Enhanced Dedicated Physical Control Channel (E-DPCCH). A DPDCH generally carries a service with a high requirement on delay, such as a voice service; services with low requirements on time delay, such as data services, are generally carried on the E-DPDCH. Meanwhile, in order to support HARQ and base station (Node B) scheduling, two MAC entities MAC-e and MAC-es are newly added on the basis of an existing Media Access Control (MAC) entity MAC-d at the Universal Terrestrial Radio Access Network (UTRAN) side in Release6 of WCDMA.
Fig. 1 is a schematic diagram of spreading of uplink dedicated physical channels (DPCCH, DPDCH, HS-DPCCH, E-DPDCH) at a UE (User Equipment) side in Release6 version of WCDMA. As shown in fig. 1, after passing through respective spreading modules 101, 102 and 103, data on each physical channel on the UE side is spread and processed into a data stream in complex form, i.e., Sdpch、Shs-dpcchAnd Se-dpch(ii) a The 3 data streams are added by the adding module 104 to synthesize a complex data stream; the scrambled sequence S is then scrambled at the scrambling module 105dpcnAfter scrambling, the signal S is output. The signal S is sent to the UTRAN side through the air interface after a series of other transmission processes.
The following is a brief description of how uplink data of HSUPA users is processed at the UTRAN side after transmission over the air interface. Fig. 2 is a schematic diagram of processing of physical layer data of a UTRAN side HSUPA user in Release6 version of WCDMA, which illustrates how the demodulated data of the physical layer is transmitted to a corresponding logical channel of a higher layer. In fig. 2, the left half represents each function module through which data passes in the process of mapping data to a logical channel after physical layer demodulation, and the right half represents the format of the data after being processed by the left corresponding function module. Through baseband signal processing, HSUPA user DATA carried by P E-DPDCH physical channels in an antenna sampling signal is despread and descrambled, and through deinterleaving, rate de-matching and turbo (turbo) decoding processing on the despread and descrambled DATA, a source DATA MAC-E Protocol DATA Unit (PDU) of an enhanced dedicated Channel (E-DCH), that is, DATA of a layer L1 in fig. 2 is obtained. In the MAC-e layer, in the harq function 201, Cyclic Redundancy Check (CRC) is performed on the MAC-e PDU data block to determine whether the demodulated data is correct: if the data flow is correct, the MAC-e PDU is demultiplexed through the demultiplexing functional module 202, and each MAC-d data flow is demultiplexed; if not, the HSUPA user is required to retransmit the data. Each MAC-d data flow is transmitted through a Frame Protocol (FP) carried by the transmission bearer of the interface Iub/Iur, and is uploaded to the reordering distribution function module 203 of the MAC-es layer. In the reordering distribution function 203, according to the Data Indicator (DDI) of the configured signaling parameter and the MAC-d PDU number N, the MAC-es PDUs in each MAC-d Data stream are respectively input into the queuing buffer of each logical channel. In addition, the reordering function module 204 reorders and combines the MAC-es PDUs according to the Sequence of the Transmission Sequence Number (TSN), and then further uploads the combined data to the splitting function module 205. The splitting functional module is responsible for splitting the MAC-es PDU, deleting the head of the MAC-es PDU, adding a logical channel identifier C/T, and recombining the MAC-d PDU. And uploading the data stream of the MAC-d PDU to a MAC-d entity of the user, wherein the MAC-d entity is responsible for identifying the logical channel of the MAC-d PDU, splitting a Radio Link Control (RLC) PDU and uploading the Radio Link Control PDU to a corresponding logical channel. Finally, the RLC PDUs are further uploaded to a higher layer through respective logical channels.
The above describes the physical channel of the uplink of Release6 Release WCDMA and the transmission and reception process of data. From the above, the uplink in Release6 version has several MAC entities added to the previous version, and the processing of the received data in Release6 version is different from the previous version due to the uplink enhancement technique.
Since in a WCDMA system many users are operating on the same frequency, self-interference of the system is a serious problem. In addition, the WCDMA system is also affected by near-far effect, angle effect and path loss, and therefore, controlling the transmission power of the uplink and downlink is one of the key technologies of WCDMA. The power control of the WCDMA system is used to adjust the uplink and downlink transmission powers to the minimum required under the condition of ensuring the quality of service, thereby reducing interference, increasing system capacity, and improving system coverage. The WCDMA Release6 version adopts the uplink enhancement technology on the uplink, but there is no scheme for the power control of the uplink in the prior art, so the prior art cannot reasonably control the transmission power of the uplink of the WCDMA Release6 system, and it is difficult to ensure the communication quality of the service in the WCDMA Release6 system, thereby further affecting the improvement of the system capacity.
Disclosure of Invention
In view of the above, an object of the present invention is to provide a method for controlling uplink power in a WCDMA system, which implements uplink power control in a WCDMA system using an uplink enhancement technique.
Based on the above purpose, the method for power control provided by the present invention is applied to a dedicated physical data channel DPDCH in an uplink of a wideband code division multiple access WCDMA system adopting an uplink enhancement technology, and comprises the following steps:
a, counting the block error rate on a DPDCH in a preset time period;
b, calculating an SIR (signal to interference ratio) adjustment value on the special physical control channel DPCCH (dedicated physical control channel) according to the block error rate obtained in the step A and a preset target value of the block error rate on the DPDCH; adding the SIR adjustment value to the SIR target value of the last time period to obtain an updated SIR target value;
c, comparing the updated SIR target value obtained in the step B with the SIR estimated value on the DPCCH, and adjusting the transmitting power on the DPCCH in the uplink according to the comparison result; and controlling the power of the DPDCH according to the fixed power offset between the transmitting powers of the DPDCH and the DPCCH.
In the power control method provided by the invention, the SIR adjustment value in the step B is according to <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLET</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub></mrow></math> Calculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,targetIs a preset target value of the block error rate on the DPDCH, UpStepDPDCH,maxIs the maximum step up on DPDCH set by the system, rDPDCHIs a cell-oriented parameter and n represents the current time period.
In the power control method provided by the invention, step A and step B are executed at a radio network controller RNC;
the step B further comprises the following steps: the RNC sends the updated SIR target value to a base station Node B through a data control frame;
further comprising in step C: node B compares the updated SIR target value with the SIR estimated value, and sends a power control command to the UE according to the comparison result; the UE adjusts the magnitude of the transmit power on the DPCCH according to the power control command.
In the power control method provided by the present invention, the statistical block error rate in step a includes: and counting the number of the total data blocks and the number of the error data blocks received on the DPDCH in the time period, and dividing the total data blocks and the error data blocks by the former data blocks to obtain the block error rate.
In the power control method provided by the present invention, the adjusting the transmission power on the DPCCH in step C includes: and increasing the transmission power on the DPCCH according to the ascending step length set by the system, or reducing the transmission power on the DPCCH according to the descending step length set by the system.
Based on the above object, another power control method provided by the present invention is applied to the MAC-d stream of the enhanced dedicated physical control channel E-DPDCH in the uplink of the WCDMA system using the uplink enhancement technology, and includes the following steps:
a, respectively counting the average block error rate of each MAC-d flow in a preset time period, and counting the block error rate on a DPDCH in the time period;
b, calculating SIR adjusting value on DPCCH according to the statistic value of the block error rate on the DPDCH and the preset target value of the block error rate; respectively calculating an adjustment value of a hybrid automatic repeat request (HARQ) power offset parameter of each MAC-d flow according to the average block error rate of each MAC-d flow and a preset target value of the block error rate of each MAC-d flow; adding the HARQ power offset parameter of the previous period to the adjustment value of the HARQ power offset parameter, and subtracting the SIR adjustment value on the DPCCH to obtain the HARQ power offset parameter of each MAC-d flow;
c, calculating the power offset of each MAC-d flow relative to the E-DPDCH according to the HARQ power offset parameter obtained in the step b, and respectively adjusting the transmitting power of the MAC-d flow of each uplink E-DPDCH according to the calculation result.
In the power control method provided by the invention, the adjustment value of the HARQ power offset parameter in the step b is according to <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>k</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math> Calculated, where j represents the corresponding MAC-d flow, BLERj,E-DPDCH(m) represents the current timeAverage block error rate, BLER, of MAC-d flows over a periodj,E-DPDCH,targ etTarget value, UpStep, indicating the block error rate of a MAC-d flowj,E-DPDCH,maxRepresents the maximum step-up on the E-DPDCH, rj,E-DPDCHIs a cell-oriented parameter and m represents the current time period.
In the power control method provided by the invention, the SIR adjustment value on the DPCCH in the step b is according to <math><mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub></mrow></math> Calculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,t arg etIs a preset target value of the block error rate on the DPDCH, UpStepDPDCH,maxIs the maximum up step, r, on the DPDCH allowed by the systemDPDCHAre cell-oriented parameters.
In the power control method provided by the invention, the steps a and b are executed at the RNC side, and the step c is executed at the UE side; and step b, the RNC sends the calculated HARQ power offset parameter of the MAC-d flow to the UE side through signaling.
In the power control method provided by the present invention, the step a of counting the average block error rate of the MAC-d flow includes: and respectively counting the total number of the received MAC-es Protocol Data Units (PDU) of each MAC-d flow in the time period and the number of the MAC-es PDU with errors, and dividing the latter by the former to obtain the average block error rate.
In the method for controlling power provided by the present invention, in step b, the method further comprises the following steps of judging the size of the calculated HARQ power offset parameter: if the HARQ power offset parameter is greater than 6dB, the HARQ power offset parameter is taken as 6 dB; if the HARQ power offset parameter is less than 0dB, the HARQ power offset parameter is taken as 0 dB; if between 0 and 6dB, then take the actual calculated value of the HARQ power offset parameter.
In the method for controlling power provided by the present invention, the step c of calculating the power offset of each MAC-d stream relative to the E-DPDCH according to the HARQ power offset parameter is performed according to <math><mrow><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi><mo>,</mo><mi>harq</mi></mrow></msub><mo>=</mo><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><mi></mi><mo>&times;</mo><msup><mn>10</mn><mrow><mo>(</mo><mfrac><msub><mi>&Delta;</mi><mi>harq</mi></msub><mn>20</mn></mfrac><mo>)</mo></mrow></msup></mrow></math> Calculated wherein beta ised,ref,harqIndicating the Power Offset, HARQ Power Offset, of the MAC-d stream relative to the E-DPDCHj(m +1) represents the HARQ power offset parameter, Δharq=HARQ Power Offsetj(m+1)。
In the power control method provided by the present invention, in step b, the size of the HARQ power offset parameter of the MAC-d flow with the highest priority among all MAC-d flows is further judged: if between 0 and 6dB, performing step c; if the power offset is larger than 6dB or smaller than 0dB, the power offset parameter between the E-DPDCH and the DPCCH is further calculated according to the HARQ power offset parameter of the MAC-d flow, and the parameter is sent to the UE, and in the step c, the UE further adjusts the transmitting power of the E-DPDCH according to the power offset parameter.
In the power control method provided by the present invention, the calculating of the power offset parameter between the E-DPDCH and the DPCCH according to the HARQ power offset parameter is:
if the HARQ power offset parameter is greater than 6dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mi></mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>6</mn></mrow><mn>20</mn></mfrac></msup><mo>;</mo></mrow></math>
if the HARQ power offset parameter is less than 0dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mn>20</mn></mfrac></msup><mo>,</mo></mrow></math>
wherein, HARQ Power Offsetj(m +1) represents the HARQ power offset parameter, βed,refc(m +1) represents a power offset parameter between the E-DPDCH and the DPCCH.
Based on the above object, another power control method provided by the present invention is applied to the MAC-d stream of the E-DPDCH in the uplink of the WCDMA system using the uplink enhancement technology, and includes the following steps:
a', counting the average retransmission times of each MAC-d flow in a preset time period, and counting the block error rate on a DPDCH in the time period;
b', calculating SIR adjusting value on DPCCH according to the statistic value of the block error rate on the DPDCH and the preset target value of the block error rate; calculating to obtain an adjustment value of the HARQ power offset parameter of each MAC-d flow according to the average retransmission times of the MAC-d flows, a preset target value of the retransmission times of the MAC-d flows and the maximum retransmission times; adding the HARQ power offset parameter of the previous period to the adjustment value of the HARQ power offset parameter, and subtracting the SIR adjustment value on the DPCCH to obtain the HARQ power offset parameter of each MAC-d flow;
and c ', calculating the power offset of each MAC-d flow relative to the E-DPDCH according to the HARQ power offset parameter obtained in the step b', and respectively adjusting the transmitting power of the MAC-d flow of each E-DPDCH according to the calculation result.
In the power control method provided by the invention, the adjustment value of the HARQ power offset parameter in the step b' is according to <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>ave</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mfrac><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math> Calculated, wherein j represents the corresponding MAC-d flow; n is a radical ofj,E-DPDCH,targetA target value representing the retransmission times of the MAC-d flow in the current time period, if there are a plurality of MAC-d flows, Nj,E-DPDCH,targetTaking a target value of the retransmission times of the MAC-d flow with the highest priority in all the MAC-d flows; n is a radical ofj,E-DPDCH,maxIndicates the maximum number of retransmissions allowed for the MAC-d flow, N if there are multiple MAC-d flowsj,E-DPDCH,maxTaking the maximum retransmission times in all MAC-d flows; n is a radical ofj,E-DPDCH,aveRepresents an average number of retransmissions for the MAC-d flow; UpStepj,E-DPDCH,maxRepresents the maximum step-up on the E-DPDCH, rj,E-DPDCHIs a cell-oriented parameter and m represents the current time period.
In the power control method provided by the invention, the SIR adjustment value on the DPCCH in the step b' is according to <math><mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub></mrow></math> Calculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,targetIs the purpose of the block error rate on the preset DPDCHValue, UpStepDPDCH,maxIs the maximum up step, r, on the DPDCH allowed by the systemDPDCHAre cell-oriented parameters.
In the method for controlling power provided by the invention, steps a ' and b ' are executed at the RNC side, and step c ' is executed at the UE side; the step b' further includes that the RNC sends the calculated HARQ power offset parameter of the MAC-d flow to the UE side through signaling.
In the method for controlling power provided by the present invention, the step a' of counting the average retransmission times of the MAC-d flow comprises: and respectively counting the retransmission times of the MAC-es PDU of each MAC-d flow received in the time period and the number of the MAC-es PDU of each MAC-d flow received in the time period, and dividing the former by the latter to obtain the average retransmission times.
In the method for controlling power provided by the present invention, step b' further includes determining the calculated HARQ power offset parameter: if the HARQ power offset parameter is greater than 6dB, the HARQ power offset parameter is taken as 6 dB; if the HARQ power offset parameter is less than 0dB, the HARQ power offset parameter is taken as 0 dB; if between 0 and 6dB, then take the actual calculated value of the HARQ power offset parameter.
In the method for controlling power provided by the present invention, the step c' of calculating the power offset of each MAC-d stream relative to the E-DPDCH according to the HARQ power offset parameter is performed according to <math><mrow><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi><mo>,</mo><mi>harq</mi></mrow></msub><mo>=</mo><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><mo>&times;</mo><msup><mn>10</mn><mrow><mo>(</mo><mfrac><msub><mi>&Delta;</mi><mi>harq</mi></msub><mn>20</mn></mfrac><mo>)</mo></mrow></msup></mrow></math> Calculated wherein beta ised,ref,harqIndicating the power Offset, HARQPower Offset, of the MAC-d stream relative to the E-DPDCHj(m +1) represents the HARQ power offset parameter, Δharq=HARQ Power Offsetj(m+1)。
In the method for controlling power provided by the present invention, in step b', the size of the HARQ power offset parameter of the MAC-d flow with the highest priority among all MAC-d flows is further judged: if between 0 and 6dB, performing step c'; if the power offset is larger than 6dB or smaller than 0dB, the power offset parameter between the E-DPDCH and the DPCCH is further calculated according to the HARQ power offset parameter of the MAC-d flow, and the parameter is sent to the UE, and in step c', the UE further adjusts the transmitting power of the E-DPDCH according to the power offset parameter.
In the power control method provided by the present invention, the calculating of the power offset parameter between the E-DPDCH and the DPCCH according to the HARQ power offset parameter is:
if the HARQ power offset parameter is greater than 6dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mi></mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>6</mn></mrow><mn>20</mn></mfrac></msup><mo>;</mo></mrow></math>
if the HARQ power offset parameter is less than 0dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mn>20</mn></mfrac></msup><mo>,</mo></mrow></math>
wherein, HARQPower Offsetj(m +1) represents the HARQ power offset parameter, βed,refc(m +1) represents a power offset parameter between the E-DPDCH and the DPCCH.
It can be seen from the above that, the power control method of the present invention performs power control according to the target value of the block error rate or the retransmission times preset by the system on the DPDCH and the E-DPDCH, so that the block error rate or the retransmission times on the related channel approaches the set target value, thereby ensuring the service quality of the system; meanwhile, the method adjusts the transmitting power according to the target value of the block error rate or the retransmission times preset by the system, so that the transmitting power of the uplink can meet the overall planning design of the system, thereby effectively reducing the interference among users and improving the capacity of the system; for the power control on the E-DPDCH, the influence caused by the power control on the DPDCH is also considered when the power offset parameter is calculated, and the corresponding part is subtracted in the calculation, so that the power control on the DPDCH and the E-DPDCH is organically combined, and the power control on the E-DPDCH is more reasonable; the invention provides the power control of the MAC-d flow under the two conditions of the block error rate and the retransmission times, and can select a proper power control method according to the different requirements of the system on time delay and throughput, thereby meeting the different preferences of operators; in the invention, the power control of the MAC-d flow is respectively adjusted aiming at each MAC-d flow, so that the system can respectively control the transmitting power of each MAC-d flow according to the bit error rate requirement of each MAC-d flow.
Drawings
Fig. 1 is a schematic diagram illustrating spreading of uplink dedicated physical channels on the UE side in Release6 version of WCDMA;
FIG. 2 is a schematic diagram of processing of physical layer data of HSUPA user at UTRAN side in Release6 version of WCDMA;
FIG. 3 is a frame structure diagram of an E-DCH uplink data frame;
fig. 4 is a schematic diagram illustrating a power control procedure on a DPDCH in the present invention;
FIG. 5 is a flow chart illustrating the power control of the MAC-d flow based on the block error rate according to the present invention;
fig. 6 is a flow chart illustrating the power control of the MAC-d flow based on the average retransmission times in the present invention.
Detailed Description
The power control method provided by the invention realizes the WCDMA uplink power control adopting the uplink enhancement technology by controlling the power of the DPDCH and the E-DPDCH in the uplink special physical channel. In addition, the invention organically combines the power control on the DPDCH and the E-DPDCH, thereby reasonably controlling the generation power of the uplink, ensuring the communication quality of the service in the system and improving the capacity of the system.
The power control on the DPDCH according to the present invention will be described first with reference to the accompanying drawings and embodiments. For power control on DPDCH, the invention is based on the actual block error rate BLER of the service on DPDCHDPDCHAnd the target BLER of the block error rate preset by the systemDPDCH,targetPeriodically updating a target SIR value of a Signal to Interference Ratio (SIR) of the DPCCHtarget(n + 1); node B based on actual estimated value and target SIR of SIR on DPCCHt argetAnd (n +1) sending a power control command to the UE to adjust the transmitting power on the DPCCH. Since there is a fixed power offset between the DPDCH and the DPCCH, i.e., the work of transmission on the DPDCH and the DPCCHThe difference of the rates is a fixed value, so that the power control on the DPDCH can be realized by controlling the transmission power of the DPCCH. Fig. 4 is a schematic diagram of a power control process on a DPDCH in the present invention, and the following steps of the process are described in detail with reference to fig. 4:
400, setting a time period for power control of the DPDCH, and a Radio Network Controller (RNC) counting the number of total data blocks and erroneous data blocks received on the DPDCH in the period, and dividing the number by the number to obtain a block error rate BLER on the DPDCH in the periodDPDCH(n), wherein the period can be determined according to the requirements of power control speed and specific application scenarios;
401, the RNC sets the target value BLER of the block error rate of the bearer service on the DPDCH according to the system presetDPDCH,targetUpdating the target SIR of the DPCCH according to the formula (1)target(n +1) and SIR is adjusted by data control frametarget(n +1) sending to Node B;
<math><mrow><msub><mi>SIR</mi><mrow><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><msub><mi>SIR</mi><mrow><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
in the formula (1), the adjustment value of the SIR on the DPCCH is <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub></mrow></math> Adding the SIR target value of the last periodtarget(n) obtaining an updated SIR target SIRtarget(n + 1). Wherein UpStepDPDCH,maxThe maximum ascending step length on the DPDCH allowed by the system is determined according to the specific application scene optimization; r isDPDCHCell-oriented parameters are determined according to system-level simulation and a specific wireless scene; n represents a power control period at the time of SIR update; SIRtarget(n) represents the target value of the signal-to-interference ratio of the previous cycle, i.e. the SIR target value calculated according to the formula (1) in the previous cycle, and the SIR target value is calculated according to the formula (1) for the first timetarget(n) may be determined by simulation of typical traffic carried in a typical channel environment.
402, Node B obtains the actual SIR estimated value on DPCCH by measuring and calculating, and compares the SIR target value SIRtarget(n +1) transmitting a power control command to the UE according to the comparison result with the SIR estimation value; for example, when the SIR estimate is less than the target SIRtarget(n +1), indicating that the SIR value on the DPCCH needs to be increased, the Node B can inform the UE to increase the transmitting power on the DPCCH by sending a power control command to the UE; otherwise, the UE is instructed to reduce the transmitting power on the DPCCH;
the estimation method of the SIR estimation value in step 402 can be estimated by a method in the prior art, for example, the estimation method of the SIR can be obtained by a method in the prior art of channel simulation calculation.
In step 403, after receiving the power control command, the UE increases or decreases the transmit power on the DPCCH according to the power control information therein. Wherein, the magnitude of increasing or decreasing the transmission power on the DPCCH by the UE, i.e. the step size of rising or the step size of falling, is determined by the step size allowed by the system.
Since there is a fixed difference between the transmit power on the DPCCH and DPDCH, when the power on the DPCCH changes, the DPDCH also changes similarly, thereby achieving power control on the DPDCH by adjusting the transmit power on the DPCCH.
For the power control on the E-DPDCH, the invention is realized by respectively carrying out the power control on each MAC-d flow on the E-DPDCH: firstly, counting the initial average block error rate or average retransmission times of each MAC-d flow of the bearer service on the E-DPDCH, and respectively calculating the HARQ Power Offset parameter (HARQ Power Offset) of each MAC-d flow; the UE calculates Power Offset beta between each MAC-d stream and the E-DPDCH according to the HARQ Power Offseted,ref,harqAnd adjusting the transmitting power of the corresponding MAC-d stream on the E-DPDCH according to the power offset.
The following describes the statistical method of the average block error rate and the average retransmission times of the MAC-d flow.
Because each MAC-es PDU is recombined into a MAC-d PDU at the MAC-es layer, the average retransmission times and the average block error rate of a certain MAC-d flow can be obtained by counting the average retransmission times and the average block error rate of the MAC-es PDU of the certain MAC-d flow. Fig. 3 is a schematic diagram of a frame structure of an E-DCH uplink data frame, which carries the retransmission number N of each MAC-es PDU, i.e., "HARQ retransmission number N" shown in fig. 3, according to the specification of the Third Generation Partnership project (3 GPP) protocol 25.427. When N is equal to 0, the MAC-es PDU is indicated to have no error block when being transmitted; and when N is larger than 0, the MAC-es PDU is indicated to have an error block and is retransmitted for N times. Therefore, the average retransmission times and the average block error rate of the MAC-es PDU of a certain MAC-d flow can be counted according to the HARQ retransmission times N. Specifically, the statistical process of the average bit error rate and the average retransmission times of a certain MAC-d flow is as follows:
average retransmission times: and counting the retransmission times of the received MAC-es PDU of the MAC-d flow and the total number of the received MAC-es PDUs of the MAC-d flow in a certain time, and dividing the former by the latter to obtain the average retransmission times of the MAC-d flow in the time. The size of the time period can be configured according to the requirement of power control speed.
Average block error rate: and in a certain period of time, counting the total number of the received MAC-es PDUs of the MAC-d flow and the number of the MAC-es PDUs of the MAC-d flow with errors, and dividing the latter by the former to obtain the average block error rate in the period of time. The size of the time period can be configured according to the requirement of power control speed.
For example, in a time period, a total of 3 MAC-es PDUs numbered a, b, and c of a certain MAC-d stream are received, where a has no error block, i.e., the number of retransmissions N is 0, and b and c are transmitted twice, i.e., each retransmission N is 1, so that the average number of retransmissions for the MAC-d stream is (0+1+ 1)/3. And the data blocks in error are b and c, so its average block error rate is 2/3.
The invention realizes the power control on the E-DPDCH by respectively controlling the power of each MAC-d flow. The power control of the MAC-d flow generally adopts a power control method based on the block error rate, and may also adopt a power control method based on the number of retransmissions. Under the same signal-to-interference ratio condition, increasing the maximum retransmission times is beneficial to improving the system throughput, but at the same time, the user delay is increased and the throughput of the user is influenced. Therefore, if the system does not consider the requirements of single user on time delay and throughput, the power control of the MAC-d flow can also adopt a power control method based on retransmission times so as to maximize the throughput of the cell. The two power control methods are respectively described in detail below by taking the MAC-d flow j as an example and referring to the accompanying drawings, fig. 5 is a schematic flow chart of the power control of the MAC-d flow based on the block error rate in the present invention, as shown in fig. 5, the flow includes the following steps:
step 500, setting a time period for power control of the MAC-d flow, and counting the average block error rate BLER of the MAC-d flow in the period by the RNCj,E-DPDCH(m); counting the block error rate BLER on the DPDCH in the time periodDPDCHThe size of the period can be determined according to the requirements of power control speed and specific application scenarios;
step 501, RNC calculates SIR adjusting value on DPCCH according to the statistic value of error block rate on DPDCH and preset target value of error block rate; RNC according to BLERj,E-DPDCH(m) and BLER target value BLER on MAC-d flow j preset by systemj,E-DPDCH,targetThe HARQ Power Offset parameter, HARQ Power Offset, of the MAC-d flow is updated according to equation (2)j(m +1), and sending the updated HARQ power offset parameter to the UE through signaling;
HARQPowerOffse t j ( m + 1 ) = HARQPowerOffse t j ( m )
<math><mrow><mo>+</mo><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math>
<math><mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
when the power control is performed on the DPDCH, the transmitting power of the DPCCH is adjusted correspondingly according to the SIR target value on the DPCCH, and the E-DPDCH and the DPCCH have power offset with a certain relation, so when the power control is performed on the MAC-d flow on the E-DPDCH, the influence of the power control on the DPDCH needs to be considered. Therefore, the last term is added in formula (2) to remove the effect of DPDCH power control. In the formula (2), the first and second groups, <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>k</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math> an adjustment value representing a HARQ power offset parameter; <math><mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub></mrow></math> is the SIR adjustment value on DPCCH; j represents the corresponding MAC-d flow; UpStepj,E-DPDCH,maxRepresenting the maximum ascending step length on the E-DPDCH allowed by the system, and optimizing and determining according to the actual application scene; r isj,E-DPDCHCell-oriented parameters are determined according to system-level simulation and a specific wireless scene; BLERj,E-DPDCH,targetIs a BLER target value on an MAC-d flow j preset by a system; m denotes a time period of MAC-d flow power control at the adjustment time of the HARQ power offset parameter. HARQ Power Offset (m) represents the Power Offset parameter of the MAC-d flow in the previous period, i.e. the work of the MAC-d flow calculated in the previous period according to the formula (2)The rate Offset parameter, for the first time the Power Offset parameter is calculated according to equation (2), the HARQ Power Offset (m) may be determined by simulating typical traffic carried in a typical channel environment.
Step 502, the UE calculates power offset beta between the MAC-d stream and the E-DPDCH according to the received HARQ power offset parametered,ref,harqAnd according to betaed,ref,harqAdjusting the transmit power of the MAC-d stream, e.g., β can be calculated according to equation (3)ed,ref,harq
<math><mrow><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi><mo>,</mo><mi>harq</mi></mrow></msub><mo>=</mo><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><mo>&times;</mo><msup><mn>10</mn><mrow><mo>(</mo><mfrac><msub><mi>&Delta;</mi><mi>harq</mi></msub><mn>20</mn></mfrac><mo>)</mo></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Wherein Δharq=HARQ Power Offsetj(m+1)
The method for controlling the Power of the MAC-d flow based on the average retransmission times is basically the same as the method for controlling the MAC-d flow based on the block error rate, but is determined by the average retransmission times when calculating the HARQ Power Offset parameter HARQ Power Offset, fig. 6 is a schematic flow diagram of the Power control of the MAC-d flow based on the average retransmission times in the present invention, as shown in fig. 6, the flow includes the following steps:
600, setting a time period for power control of a MAC-d flow, and counting the average retransmission times N of the MAC-d flow in the period by the RNCj,E-DPDCH,aveThe size of the period can be determined according to the requirements of power control speed and specific application scenarios; counting the block error rate BLER on the DPDCH in the time periodDPDCH
601,RNC calculates SIR adjusting value on DPCCH according to the statistic value of error block rate on DPDCH and preset target value of error block rate; RNC is according to Nj,E-DCDCH,aveAnd the maximum retransmission number N on the MAC-d flow j preset by the systemj,E-DPDCH,maxCalculating the updated HARQ Power Offset of the MAC-d stream according to the formula (4)j(m +1), and updating the updated HARQ Power Offsetj(m +1) sending to the UE through signaling;
HARQ Power Offsetj(m+1)=HARQ Power Offsetj(m)
<math><mrow><mo>+</mo><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>ave</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mfrac><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math>
<math><mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mi>DPDCH</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>tatget</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mi>DPDCH</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
similarly, the last term is added to equation (4) to remove the effect of DPDCH power control. In the formula (4), the first and second groups, <math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>ave</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mfrac><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><msub><mi>N</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math> an adjustment value representing a HARQ power offset parameter; n is a radical ofj,E-DPDCH,targetThe target value of the retransmission times expected by the system can be configured according to the service characteristics, such as parameters of time delay, cell throughput and the like; n is a radical ofj,E-DPDCH,maxIs the maximum allowed weight of the MAC-d flow set by the systemThe number of passes; n is a radical ofj,E-DPDCH,aveIs the actual average retransmission times, which is obtained by the system statistics. If there are multiple MAC-d flows, Nj,E-DPDCH,targetTaking the target value of the retransmission times of the MAC-d flow with the highest priority in all the MAC-d flows, Nj,E-DPDCH,maxThe maximum number of retransmissions in all MAC-d flows is taken. In the normal case, Nj,E-DPDCH,targetShould be less than Nj,E-DPDCH,max
602, the UE calculates β according to the received HARQ Power Offset parameter HARQ Power Offset by formula (3)ed,ref,harqAccording to betaed,ref,harqThe transmit power of the MAC-d flow is adjusted.
According to the specification of the protocol 3GPP 25.214, the dynamic range of the HARQ power offset parameter of the MAC-d flow is 0 to 6dB, so in steps b0 and b1, the calculation result of the HARQ power offset parameter is further determined: if the result calculated according to the formula (2) or (4) does not exceed the range, namely less than or equal to 6dB and more than or equal to 0dB, taking the HARQ power offset parameter as an actual calculated value; if the HARQ power offset parameter exceeds the range, the HARQ power offset parameter is taken as 6dB when the HARQ power offset parameter is larger than 6dB, and the HARQ power offset parameter is taken as 0dB when the HARQ power offset parameter is smaller than 0 dB. By the power control method on the MAC-d flow, the power control on the MAC-d flow based on the block error rate and the retransmission times can be realized.
In the power control of the MAC-d flow, in order to ensure that the updated HARQ power offset parameter meets the range of 0-6 dB specified by a protocol as much as possible, the invention further aims at the power offset parameter beta between the E-DPDCH and the DPCCHed,refcUpdating: in step 501 or step 601, further determining the size of the HARQ power offset parameter of the MAC-d stream with the highest priority among all MAC-d streams on the E-DPDCH, and if the size does not exceed the above range, executing step 502 or step 602; if the above range is exceeded, then further processing of β in step 501 or 601ed,refcUpdating is carried out, and the updated beta ised,refcSending to the UE, in step 502 or 602, the UE further updates the beta according to the updated betaed,refcThe transmit power on the E-DPDCH is adjusted. Wherein, betaed,refcIs calculated according to equation (5) or (6): 1) if HARQ Power Offseti(m +1) is greater than 6dB, then betaed,refcUpdating according to formula (5):
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>6</mn></mrow><mn>20</mn></mfrac></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
2) if HARQ Power Offseti(m +1) is less than 0dB, then betaed,refcUpdating according to equation (6):
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPowerOffse</mi><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mn>20</mn></mfrac></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure S061E1810420061013D000163
indicating a power offset parameter between the E-DPDCH and the DPCCH before updating; HARQ Power Offseti(m +1) represents the HARQ power offset parameter of the MAC-d flow with the highest priority.
The above describes the method of the present invention for performing power control on the DPDCH and E-DPDCH channels of the uplink in the WCDMA system. The method of the invention controls the power according to the target value of the block error rate or the retransmission times preset by the system on the DPDCH and the E-DPDCH, thereby leading the block error rate or the retransmission times on the related channel to approach the set target value and ensuring the service quality of the system; meanwhile, the method adjusts the transmitting power according to the target value of the system's pre-set block error rate or retransmission times, so that the transmitting power of the uplink can meet the overall planning design of the system, thereby effectively reducing the interference among users and improving the system capacity; for the power control on the E-DPDCH, the influence caused by the power control on the DPDCH is also considered when the power offset parameter is calculated, and the corresponding part is subtracted in the calculation, so that the power control on the DPDCH and the E-DPDCH is organically combined, and the power control on the E-DPDCH is more reasonable; the invention provides the power control of the MAC-d flow under the two conditions of the block error rate and the retransmission times, and can select a proper power control method according to the different requirements of the system on time delay and throughput, thereby meeting the different preferences of operators; in the invention, the power control of the MAC-d flow is respectively adjusted aiming at each MAC-d flow, so that the system can respectively control the transmitting power of each MAC-d flow according to the bit error rate requirement of each MAC-d flow.

Claims (21)

1. A power control method applied to a Dedicated Physical Data Channel (DPDCH) in an uplink of a Wideband Code Division Multiple Access (WCDMA) system employing an uplink enhancement technique, comprising the steps of:
a, counting the block error rate on a DPDCH in a preset time period;
b, calculating a signal-to-interference ratio (SIR) adjusting value on a special physical control channel (DPCCH) according to the block error rate obtained in the step A and a preset target value of the block error rate on the DPDCH; adding the SIR adjustment value to the SIR target value of the last time period to obtain an updated SIR target value;
c, comparing the updated SIR target value obtained in the step B with the SIR estimated value on the DPCCH, and adjusting the transmitting power on the DPCCH in the uplink according to the comparison result; and controlling the power of the DPDCH according to the fixed power offset between the transmitting powers of the DPDCH and the DPCCH.
2. The method of claim 1 wherein the SIR adjustment value in step B is based onCalculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,targetIs a preset target value of the block error rate on the DPDCH, UpStepDPDCH,maxIs the maximum step up on DPDCH set by the system, rDPDCHIs a cell-oriented parameter and n represents the current time period.
3. The method according to claim 1, characterized in that steps a and B are performed at a Radio Network Controller (RNC);
the step B further comprises the following steps: RNC sends the updated SIR target value to the base station (Node B) through the data control frame;
further comprising in step C: node B compares the updated SIR target value with the SIR estimated value, and sends a power control command to User Equipment (UE) according to the comparison result; the UE adjusts the magnitude of the transmit power on the DPCCH according to the power control command.
4. The method of claim 1, wherein the statistical block error rate in step a comprises: and counting the number of the total data blocks and the number of the error data blocks received on the DPDCH in the time period, and dividing the total data blocks and the error data blocks by the former data blocks to obtain the block error rate.
5. The method of claim 1 wherein the adjusting the transmit power on the DPCCH in step C comprises: and increasing the transmission power on the DPCCH according to the ascending step length set by the system, or reducing the transmission power on the DPCCH according to the descending step length set by the system.
6. A power control method is applied to MAC-d flow of enhanced dedicated physical data channel (E-DPDCH) in uplink of WCDMA system adopting uplink enhancement technology, and is characterized by comprising the following steps:
a, respectively counting the average block error rate of each MAC-d flow in a preset time period, and counting the block error rate on a DPDCH in the time period;
b, calculating SIR adjusting value on DPCCH according to the statistic value of the block error rate on the DPDCH and the preset target value of the block error rate; respectively calculating an adjustment value of a hybrid automatic repeat request (HARQ) power offset parameter of each MAC-d flow according to the average block error rate of each MAC-d flow and a preset target value of the block error rate of each MAC-d flow; adding the HARQ power offset parameter of the previous period to the adjustment value of the HARQ power offset parameter, and subtracting the SIR adjustment value on the DPCCH to obtain the HARQ power offset parameter of each MAC-d flow;
c, calculating the power offset of each MAC-d flow relative to the E-DPDCH according to the HARQ power offset parameter obtained in the step b, and respectively adjusting the transmitting power of the MAC-d flow of each uplink E-DPDCH according to the calculation result;
wherein, the calculating of the power offset of each MAC-d stream relative to the E-DPDCH according to the HARQ power offset parameter in the step c is performed according to
Figure FSB00000519430800021
Calculated wherein beta ised,ref,harqIndicating the Power Offset, HARQ Power Offset, of the MAC-d stream relative to the E-DPDCHj(m +1) represents the HARQ power offset parameter, Δharq=HARQ Power Offsetj(m+1)。
7. The method of claim 6, wherein the adjustment value of the HARQ power offset parameter in step b is determined according to
<math><mrow><mfrac><mrow><mo>(</mo><mfrac><mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mfrac><mn>1</mn><msub><mi>BLER</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>t</mi><mi>arg</mi><mi>et</mi></mrow></msub></mfrac><mo>-</mo><mn>1</mn></mrow></mfrac><mo>&times;</mo><msub><mi>UpStep</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>&times;</mo><msub><mi>r</mi><mrow><mi>j</mi><mo>,</mo><mi>E</mi><mo>-</mo><mi>DPDCH</mi></mrow></msub></mrow></math>
Calculated, where j represents the corresponding MAC-d flow, BLERj,E-DPDCH(m) represents the average block error rate, BLER, of the MAC-d flow over the current time periodj,E-DPDCH,targetTarget value, UpStep, indicating the block error rate of a MAC-d flowj,E-DPDCH,maxRepresents the maximum step-up on the E-DPDCH, rj,E-DPDCHIs a cell-oriented parameter and m represents the current time period.
8. The method of claim 6 wherein the SIR adjustment value on DPCCH in step b is in accordance with
Figure FSB00000519430800031
Calculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,targetIs toThe target value of the block error rate on DPDCH, UpStep, is set firstDPDCH,maxIs the maximum up step, r, on the DPDCH allowed by the systemDPDCHIs a cell-oriented parameter, and m represents the time period of MAC-d flow power control at the adjustment time of the HARQ power offset parameter.
9. The method according to claim 6, wherein steps a and b are performed at the RNC side and step c is performed at the UE side; and step b, the RNC sends the calculated HARQ power offset parameter of the MAC-d flow to the UE side through signaling.
10. The method of claim 6, wherein the step a of counting the average block error rate of the MAC-d flow comprises: and respectively counting the total number of the MAC-es Protocol Data Units (PDUs) of each MAC-d flow received in the time period and the number of the MAC-es PDUs with errors, and dividing the latter by the former to obtain the average block error rate.
11. The method of claim 6, further comprising, in step b, determining the size of the calculated HARQ power offset parameter: if the HARQ power offset parameter is greater than 6dB, the HARQ power offset parameter is taken as 6 dB; if the HARQ power offset parameter is less than 0dB, the HARQ power offset parameter is taken as 0 dB; if between 0 and 6dB, then take the actual calculated value of the HARQ power offset parameter.
12. The method according to any of claims 6 to 11, wherein the size of the HARQ power offset parameter of the MAC-d flow with the highest priority among all MAC-d flows is further determined in step b: if between 0 and 6dB, performing step c; if the power offset is larger than 6dB or smaller than 0dB, the power offset parameter between the E-DPDCH and the DPCCH is further calculated according to the HARQ power offset parameter of the MAC-d flow, and the parameter is sent to the UE, and in the step c, the UE further adjusts the transmitting power of the E-DPDCH according to the power offset parameter.
13. The method of claim 12 wherein the calculating the power offset parameter between the E-DPDCH and the DPCCH according to the HARQ power offset parameter comprises:
if the HARQ power offset parameter is greater than 6dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPower</mi><msub><mi>Offset</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>6</mn></mrow><mn>20</mn></mfrac></msup><mo>;</mo></mrow></math>
if the HARQ power offset parameter is less than 0dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPower</mi><msub><mi>Offset</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mn>20</mn></mfrac></msup><mo>,</mo></mrow></math>
wherein, HARQ Power Offseti(m +1) denotes the HARQ power offset parameter of the MAC-d flow with the highest priority,
Figure FSB00000519430800043
indicating the power offset parameter between E-DPDCH and DPCCH.
14. A power control method is applied to the MAC-d flow of E-DPDCH in the uplink of a WCDMA system adopting an uplink enhancement technology, and is characterized by comprising the following steps:
a', counting the average retransmission times of each MAC-d flow in a preset time period, and counting the block error rate on a DPDCH in the time period;
b', calculating SIR adjusting value on DPCCH according to the statistic value of the block error rate on the DPDCH and the preset target value of the block error rate; calculating to obtain an adjustment value of the HARQ power offset parameter of each MAC-d flow according to the average retransmission times of the MAC-d flows, a preset target value of the retransmission times of the MAC-d flows and the maximum retransmission times; adding the HARQ power offset parameter of the previous period to the adjustment value of the HARQ power offset parameter, and subtracting the SIR adjustment value on the DPCCH to obtain the HARQ power offset parameter of each MAC-d flow;
c ', calculating the power offset of each MAC-d flow relative to the E-DPDCH according to the HARQ power offset parameter obtained in the step b', and respectively adjusting the transmitting power of the MAC-d flow of each E-DPDCH according to the calculation result;
wherein, the step c' of calculating the power offset of each MAC-d stream relative to the E-DPDCH according to the HARQ power offset parameter is performed according to
Figure FSB00000519430800044
Calculated wherein beta ised,ref,harqIndicates the power offset, Δ, of the MAC-d stream relative to the E-DPDCHharq=HARQ Power Offsetj(m +1), wherein HARQ Power Offsetj(m +1) represents the HARQ power offset parameter of the MAC-d stream obtained in step b'.
15. The method as claimed in claim 14, wherein the adjustment value of the HARQ power offset parameter in step b' is according to
Figure FSB00000519430800051
Calculated, wherein j represents the corresponding MAC-d flow; n is a radical ofj,E-DPDCH,targetA target value representing the retransmission times of the MAC-d flow in the current time period, if there are a plurality of MAC-d flows, Nj,E-DPDCH,targetTaking a target value of the retransmission times of the MAC-d flow with the highest priority in all the MAC-d flows; n is a radical ofjE-DPDCH,maxIndicates the maximum number of retransmissions allowed for the MAC-d flow, N if there are multiple MAC-d flowsj,E-DPDCH,maxTaking the maximum retransmission times in all MAC-d flows; n is a radical ofj,E-DPDCH,aveRepresents an average number of retransmissions for the MAC-d flow; UpStepj,E-DPDCH,maxRepresents the maximum step-up on the E-DPDCH, rj,E-DPDCHIs a cell-oriented parameter and m represents the current time period.
16. The method of claim 14 wherein the SIR adjustment value on the DPCCH in step b' is in accordance with
Figure FSB00000519430800052
Calculated, wherein BLERDPDCH(n) is the statistic of the block error rate on the DPDCH in the current time period, BLERDPDCH,targetIs a preset target value of the block error rate on the DPDCH, UpStepDPDCH,maxIs the maximum up step, r, on the DPDCH allowed by the systemDPDCHIs a cell-oriented parameter; m denotes a time period of MAC-d flow power control at the adjustment time of the HARQ power offset parameter.
17. The method according to claim 14, wherein steps a ' and b ' are performed at the RNC side and step c ' is performed at the UE side; the step b' further includes that the RNC sends the calculated HARQ power offset parameter of the MAC-d flow to the UE side through signaling.
18. The method of claim 14, wherein the step a' of counting the average retransmission times of the MAC-d flows comprises: and respectively counting the retransmission times of the MAC-es PDU of each MAC-d flow received in the time period and the number of the received MAC-es PDUs of each MAC-d flow, and dividing the former by the latter to obtain the average retransmission times.
19. The method as claimed in claim 14, wherein the step b' further comprises determining the size of the calculated HARQ power offset parameter: if the HARQ power offset parameter is greater than 6dB, the HARQ power offset parameter is taken as 6 dB; if the HARQ power offset parameter is less than 0dB, the HARQ power offset parameter is taken as 0 dB; if between 0 and 6dB, then take the actual calculated value of the HARQ power offset parameter.
20. The method according to any of claims 14 to 19, wherein the size of the HARQ power offset parameter of the MAC-d flow with the highest priority among all MAC-d flows is further determined in step b': if between 0 and 6dB, performing step c'; if the power offset is larger than 6dB or smaller than 0dB, the power offset parameter between the E-DPDCH and the DPCCH is further calculated according to the HARQ power offset parameter of the MAC-d flow, and the parameter is sent to the UE, and in step c', the UE further adjusts the transmitting power of the E-DPDCH according to the power offset parameter.
21. The method of claim 20 wherein the calculating the power offset parameter between the E-DPDCH and the DPCCH according to the HARQ power offset parameter comprises:
if the HARQ power offset parameter is greater than 6dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPower</mi><msub><mi>Offset</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>6</mn></mrow><mn>20</mn></mfrac></msup><mo>;</mo></mrow></math>
if the HARQ power offset parameter is less than 0dB,
<math><mrow><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mfrac><msub><mi>&beta;</mi><mrow><mi>ed</mi><mo>,</mo><mi>ref</mi></mrow></msub><msub><mi>&beta;</mi><mi>c</mi></msub></mfrac><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>&times;</mo><msup><mn>10</mn><mfrac><mrow><mi>HARQPower</mi><msub><mi>Offset</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mn>20</mn></mfrac></msup><mo>,</mo></mrow></math>
wherein, HARQ Power Offseti(m +1) denotes the HARQ power offset parameter of the MAC-d flow with the highest priority,
Figure FSB00000519430800063
indicating the power offset parameter between E-DPDCH and DPCCH.
CN2006101418104A 2006-09-29 2006-09-29 Power control method Active CN1937441B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006101418104A CN1937441B (en) 2006-09-29 2006-09-29 Power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101418104A CN1937441B (en) 2006-09-29 2006-09-29 Power control method

Publications (2)

Publication Number Publication Date
CN1937441A CN1937441A (en) 2007-03-28
CN1937441B true CN1937441B (en) 2011-08-10

Family

ID=37954757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101418104A Active CN1937441B (en) 2006-09-29 2006-09-29 Power control method

Country Status (1)

Country Link
CN (1) CN1937441B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100912A2 (en) * 2011-04-12 2011-08-25 华为技术有限公司 Method, apparatus and radio network controller for outer loop power control processing
WO2014190481A1 (en) * 2013-05-28 2014-12-04 华为技术有限公司 Data block length determination method, device and user equipment
CN110392419B (en) * 2019-07-25 2023-02-07 维沃移动通信有限公司 Information reporting method and terminal equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311076A1 (en) * 2001-11-12 2003-05-14 Lucent Technologies Inc. Control of the transmission power of a CMDA based system
CN1434593A (en) * 2002-01-24 2003-08-06 华为技术有限公司 Method for controlling external loop power in WCDMA system
CN1514560A (en) * 2002-12-31 2004-07-21 深圳市中兴通讯股份有限公司上海第二 Power control method of broad band CDMA mobile communication system
CN1691533A (en) * 2004-04-21 2005-11-02 华为技术有限公司 A power control method
CN1750428A (en) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 High speed shared control channels and method for realizing high speed shared information channel power
EP1672939A1 (en) * 2004-12-16 2006-06-21 Telefonaktiebolaget LM Ericsson (publ) User controlled transmit power control during handover in a CDMA system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311076A1 (en) * 2001-11-12 2003-05-14 Lucent Technologies Inc. Control of the transmission power of a CMDA based system
CN1434593A (en) * 2002-01-24 2003-08-06 华为技术有限公司 Method for controlling external loop power in WCDMA system
CN1514560A (en) * 2002-12-31 2004-07-21 深圳市中兴通讯股份有限公司上海第二 Power control method of broad band CDMA mobile communication system
CN1691533A (en) * 2004-04-21 2005-11-02 华为技术有限公司 A power control method
EP1672939A1 (en) * 2004-12-16 2006-06-21 Telefonaktiebolaget LM Ericsson (publ) User controlled transmit power control during handover in a CDMA system
CN1750428A (en) * 2005-11-02 2006-03-22 中兴通讯股份有限公司 High speed shared control channels and method for realizing high speed shared information channel power

Also Published As

Publication number Publication date
CN1937441A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
CN1934803B (en) Method and apparatus for channel sensitive scheduling in a communication system
EP1826922B1 (en) Mobile communication system, mobile station, and radio base station
US8359040B2 (en) Transmission rate control method, mobile station, radio base station, and wireless line control station
US7912031B2 (en) Method and apparatus for setting gain factors for dedicated physical channels in a mobile telecommunications system
EP2223560B1 (en) Power-efficient enhanced uplink transmission
JP2005328525A (en) Method and apparatus for selecting optimal scheduling cells for soft handover terminal in uplink packet transmission system
US8396503B2 (en) Updating a signal quality target for uplink power control in a radio communication system responsive to estimated required signal quality for changing transmission formats
KR20090111858A (en) Radio communication system, mobile station, radio communication system control method, and mobile station control method
WO2006104211A1 (en) Transmission power control method and mobile station
WO2006104208A1 (en) Transmission power control method and mobile station
US8233404B2 (en) Uplink transmit power control
EP1790109A1 (en) Method and arrangement in a telecommunication system
US20060034226A1 (en) Radio resource control in HSUPA system
KR20070112405A (en) Transmission rate control method, mobile station and radio channel control station
US8611943B2 (en) Power control in a radio communication system with multiple transport formats
CN1937441B (en) Power control method
WO2006075628A1 (en) Transmission rate control method, mobile station and wireless line control station
CN1933352B (en) Cell load dispatching method
KR20070110913A (en) Transmission rate control method, mobile station and radio network control station
Chiu et al. Comparative downlink shared channel evaluation of WCDMA release 99 and HSDPA
EP2223439B1 (en) Method for selecting reference e-tfci based on requested service
EP2218192A1 (en) Method of uplink power control in a wireless communication system
EP1928105B1 (en) A method for power control in a mobile communication system
WO2010075872A1 (en) Enhanced uplink user entity rate limitation signalling
Mader et al. Performance of internet services over the UMTS enhanced uplink

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant