CN1929234A - Parallel computation method for large-scale electrical power system network tidal current segmentation - Google Patents

Parallel computation method for large-scale electrical power system network tidal current segmentation Download PDF

Info

Publication number
CN1929234A
CN1929234A CN 200610015718 CN200610015718A CN1929234A CN 1929234 A CN1929234 A CN 1929234A CN 200610015718 CN200610015718 CN 200610015718 CN 200610015718 A CN200610015718 A CN 200610015718A CN 1929234 A CN1929234 A CN 1929234A
Authority
CN
China
Prior art keywords
network
flow
sub
correction amount
boundary
Prior art date
Application number
CN 200610015718
Other languages
Chinese (zh)
Other versions
CN100481668C (en
Inventor
房大中
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to CN 200610015718 priority Critical patent/CN100481668C/en
Publication of CN1929234A publication Critical patent/CN1929234A/en
Application granted granted Critical
Publication of CN100481668C publication Critical patent/CN100481668C/en

Links

Abstract

This invention provides one power system flow computation method, which comprises the following steps: dividing power network into proper sub network to form flow computation tree according to combination type; according to division results, power network each sub net relates to each leaf of computation tree; first layer of network division relates to flow joint; first division selected network line relates to flow computation tree middle point. This invention adopts Newton overlap method to work out above nonlinear equation for variable as inner and outer boundary voltage to compute upper substitution and down computation operation.

Description

大规模电力系统网络分割潮流并行计算方法 POWER SYSTEM split flow parallel computing network

【技术领域】:本发明涉及电力系统运行及在线安全分析技术领域,特别是一种大规模电力系统潮流并行计算方法。 TECHNICAL FIELD: The present invention relates to a power line and the operation of the system analysis of safety technology, particularly for large scale parallel power flow calculation.

【背景技术】:潮流计算是电力系统运行及在线安全分析中最基本的计算任务之一。 BACKGROUND: flow calculation is one of the most basic computing tasks in power system operation and online security analysis. 潮流计算是根据给定电力网络结构及运行条件计算整个网络的潮流分布,计算结果中最基本的电气量是系统各母线的复电压(称作系统状态)的稳态值,其内容属于电力系统稳态(或静态)分析。 The calculated flow calculation is distributed throughout the network of a given network structure and operating conditions of the power flow, the calculation result in the basic amount of the complex electrical voltages of the bus system (referred to as system state) steady state value, the contents of which belonging to the power system analysis of steady-state (or static). 其常规的数学模型和求解方法简要介绍如下:电力系统潮流计算的数学模型通常由式(1)所示非线性代数方程组表示,其中向量X表示非线性代数方程组的解。 Conventional mathematical model and its solution method briefly described as follows: the mathematical model is typically calculated power flow (1) of nonlinear algebraic equations represented by the formula, the solution of nonlinear algebraic wherein X represents a vector. 在数学模型大规模电力系统上潮流计算属于超大规模非线性代数方程求解问题。 On the large scale mathematical model of the power system load flow calculation belongs to the ultra-large-scale nonlinear algebraic equations to solve the problem.

G(X)=0 (1)给定变量X的预测值X0(又称作初值)后,可通过牛顿迭代法线性化后的牛顿迭代方程式(2)和式(3)求解X的数值解,其中上标k表示迭代次数,J(Xk)为第k次迭代中的雅可比矩阵(Jacobian)矩阵。 After G (X) = 0 (1) given the predicted value X0 variable X (also known as the initial value), the value of X can be solved by a Newton iteration equation (2) and (3) the linearized Newton iterative method Solutions, where superscript k represents the number of iterations, J (Xk) is the k th iteration Jacobian matrix (the Jacobian) matrix.

J(Xk)ΔXk=-G(Xk) (2)Xk+1=Xk+ΔXk(3)当修正量ΔXk元素中的最大绝对值小于某一门槛值ε,例如ε<10-5,(3)式所得Xk+1作为X的数值解。 J (Xk) ΔXk = -G (Xk) (2) Xk + 1 = Xk + ΔXk (3) When the maximum absolute value of the correction amount is smaller than a certain element ΔXk threshold ε, e.g. ε <10-5, (3 ) wherein Xk + 1 obtained as a numerical solution of X.

上述电力系统潮流计算需要在计算机上进行,其计算量和电力系统的规模相关,电力系统规模越大,潮流计算中的计算量越大,需要的计算时间越多。 The power flow calculation needs to be performed on a computer, which calculates an amount related to the size and the electric power system, power system, the greater, the greater the amount of calculation in the calculation flow, the more computational time required. 为提高电力系统潮流计算的速度,在技术层面上可采用(在并行或集群计算机上进行的)分布式计算或并行处理技术;在算法层面上则需要研究计算量少、适于并行处理的新算法。 To speed the power flow calculation, at the technical level may be employed in distributed or parallel processing technology (performed on the parallel computer or cluster); less calculation is required at the research level algorithm, suitable for parallel processing of a new algorithm.

式(2)和式(3)所示牛顿法迭代法是一种常用的电力系统潮流计算方法,该方法具有收敛快速和不引入交接误差的优点。 Method Newton iterative method shown in the formula (2) and (3) is a common load flow calculation method, the method has the advantages of fast convergence and does not introduce errors in the transfer. 但是,常规的联立求解法将得到的所有非线性代数方程集中在一起进行整体处理,建立一个整体雅可比矩阵方程并加以求解,由于没有考虑电力系统的网络结构特点,每个局部网络的变化都会影响到整体雅可比矩阵方程修改,因此可扩展性和灵活性不足。 However, all nonlinear algebraic equations conventional method to solve simultaneous obtained together the overall process, the establishment of an integral equation and Jacobian matrix to be solved, since the network does not consider the structural characteristics of the electric power system, each local network changes It will affect the overall modified Jacobi matrix equation, and therefore lack the scalability and flexibility. 而且现有的各种联立求解法在每次迭代中都需要对其整体雅可比矩阵进行代数操作,计算量较大,在计算效率上不能很好地满足大规模互联电力系统实时计算的要求。 And various existing methods for solving simultaneous algebraic operations need to be in each iteration of its Jacobian whole large amount of calculation, can not meet the requirements of large-scale power system is calculated in real time on the computational efficiency . 此外,常规的联立求解法不易实现并行化计算。 Further, the conventional method for solving simultaneous parallel computing easy to achieve.

【发明内容】:本发明的目的是解决现有联立求解算法存在的计算量较大、不能很好地满足大规模互联电力系统实时计算要求等问题,提供一种大规模电力系统网络分割潮流并行计算方法。 SUMMARY OF THE INVENTION: The purpose of the present invention is to solve the existing calculation algorithm for solving the simultaneous presence of large, can not meet the requirements of real-time calculation of large-scale interconnected power system and other issues to provide a large-scale power system network segmentation trend parallel computing.

本发明是一种大规模电力系统潮流并行计算技术,在计算原理上属于经典的基于牛顿法的联立求解法,但在技术实现上,它通过网络划分,将整体电力系统高维方程组分解为低维的多个方程组来处理,有效地减少计算量。 The present invention is a large-scale parallel computing power flow, are based on classical Newton method for solving simultaneous calculation method in principle, but the technology, dividing it by the network, a high dimensional overall power system decomposition equations a plurality of low dimensional equation to process, effectively reducing the amount of calculation. 本发明方法包括以下步骤:步骤101:将大规模或超大规模电力网络按照选定的联络线集合分割为适度规模的一组子网。 The method of the present invention comprises the following steps: Step 101: The large-scale or large-scale electric power network according to the selected contact line set into a set of sub-moderate scale. 考虑大规模电网具有分层互联的特点(例如我国电网由网级电网互连而成,网级电网由省级电网互连而成,省级电网由地级电网互连而成),在选择网络分割联络线时应考虑电网分层互联特点。 Consider large-scale grid interconnection having a layered characteristics (such as China's power grid interconnection grid is made by the network level, network-level grid interconnection is made by the provincial power grid, grid interconnection by the provincial-level grid made), the choice of Contact dividing line should be considered hierarchical network interconnected grid features.

步骤102:根据网络分割结果,构建电网潮流计算树。 Step 102: The network segmentation result, power flow calculation tree constructed. 潮流计算树由最上层的一个“根结点”、“中间根结点”和多个最下层的“叶结点”(末梢结点)构成。 Flow calculated by the uppermost tree a "root", "root node middle" and a plurality lowermost "leaf nodes" (peripheral nodes) configuration. 每一叶结点对应一个电力子网络,根结点和中间根结点对应一种网络分割。 Each leaf node corresponds to a power sub-network, and the root node corresponds to the root node. A network intermediate division.

步骤103:对叶结点对应的电力子网络中的潮流分析中的变量,即待求母线电压变量进行分类。 Step 103: analyze the trend of power sub-network corresponding to the leaf node in the variable, request the bus voltage to be variable for classification. 依据其母线和参与其网络分割的联络线关系,将其中所有待求变量划分为三类:边界输出母线电压变量、边界输入母线电压变量和内部母线电压变量。 According to which the bus line contact relationship and in its division network, in which all the variables required to be divided into three categories: output bus voltage variable boundary, and the boundary of the input bus voltage variable voltage variable internal bus.

步骤104:给定系统母线电压(称作状态变量)的初始值。 Step 104: a given bus voltage (referred to as state variables) of the initial value. 例如,所有母线(包括潮流分析中的参考母线)电压模值初始值为1(标幺值单位),相角初始值为0(弧度单位)。 For example, all the buses (bus including a reference flow analysis) the voltage value of the initial modulus value of 1 (pu units), the phase angle initial value 0 (in radians).

步骤105:列写每个叶结点对应网络的潮流代数方程(即PQ母线的功率平衡方程和PV结点的有功和电压平衡方程),对其进行泰勒(Taylor)级数展开,略去Taylor级数中二阶及以上的高阶项,得到子系统数学上的雅可比矩阵方程。 Step 105: the write column corresponds to each leaf node of the network flow algebraic equations (i.e., the power balance equation PV and PQ bus nodes and active voltage balance equations), subjected to Taylor (Taylor) series expansion, Taylor omitted series in the second-order and higher-order terms above, get Jacobi matrix equation on the subsystem mathematics. 雅可比矩阵方程由雅可比矩阵、母线电压的修正量向量和不平衡向量组成,在每次迭代中,雅可比矩阵和不平衡向量都是确定的实数矩阵和向量,需要求解的是母线电压的修正量向量。 Jacobi matrix equation by the correction amount vector and vector imbalance Jacobi matrix, composed of bus voltage, in each iteration, Jacobi matrices and vectors are determined unbalance real matrices and vectors, needs to be resolved is the bus voltage the amount of correction vectors.

步骤106:计算母线电压的修正量向量。 Step 106: calculating the bus voltage correction amount vector. 具体步骤为:106-1.上行替换对于叶结点:该上行替换从所有叶结点开始。 Specific steps: 106-1 for the uplink Alternatively leaf node: replacing the starting up all leaf nodes. 对于叶结点,通过对雅可比矩阵方程进行初等代数变换(如LU分解和回代计算),将叶结点中的边界输出和内部电压变量的修正量都写成由边界输入电压变量的修正量表示的线性表达式。 For the leaf nodes, by the Jacobian matrix equations elementary algebraic transformation (such as LU decomposition and back-substitution calculation), the leaf node boundary in the output and the correction amount of the internal voltage variables are written from the correction amount boundaries input voltage variable linear representation of expression.

对于中间根结点:(如果有的话):中间根结点要作的上行替换是接受下层结点的边界母线电压修正量线性表达式,消掉该中间根结点对应的网络分割的边界母线电压修正量,获得上一层根结点需要的边界母线电压的修正量线性表达式。 The intermediate root :( if any): Alternatively the intermediate boundary up to the root node for receiving a boundary is a linear expression bus voltage correction amount lower nodes, the root node corresponding to eliminate the intermediate network divided bus voltage correction amount, the correction amount is obtained bus voltages boundary layer of the root linear expression required.

对于根结点,合并其所有下层叶结点的边界输出、输入电压修正量表示的线性方程组。 For the root node, all the lower consolidated boundary and outputs the leaf node, the input voltage correction amount represented by a linear equation. 并求解该方程组,解得边界输出、输入电压修正量。 And solving the system of equations, the solution was boundary output, the input voltage correction amount.

106-2.下行计算该操作由根节点至潮流计算树所有叶结点进行。 106-2 calculates the downlink all tree leaf nodes to the root node operation flow performed by the calculation. 将解得的边界电压修正量带入上行替换所得内部(或下一层边界输入输出电压修正量)和边界输入电压修正量的线性表达式并最后求得各子网络内部电压修正向量。 Voltage correction amount obtained solution into the upstream boundary of replacing the internal obtained (or the boundary layer of the input-output voltage correction amount) input voltage and the boundary correction amount obtained by a linear expression and finally each sub-network internal voltage correction vector.

步骤107:进行收敛判断(判断变量的修正量向量中的最大值或者不平衡向量中的最大值是否小于给定的容许阈值,若是肯定的,判定计算已收敛)。 Step 107: the convergence is determined (correction amount vector is determined in the maximum value or variable imbalance vector is less than the maximum value given tolerance threshold, if yes, determines that calculation has converged). 如果不收敛,使用求出的变量修正量对变量进行修正,并转步骤105迭代计算;步骤108:输出收敛后的电力系统潮流计算结果。 If no convergence correction amount is obtained using a variable correction variables, and transferred iteration step 105; step 108: the output power flow convergence calculation result.

步骤109:结束潮流计算。 Step 109: End flow calculation.

【本发明的优点和积极效果】:本发明方法具有如下优点,a、大幅降低了使用牛顿法对大规模电力系统潮流方程进行联立求解的计算量。 [Advantages and positive effects]: The method of the present invention has the advantage, a, significantly reducing the amount of calculation using Newton's method to large-scale power flow equations for solving simultaneous. 该算法利用网络的分层互联特点将全网的高维稀疏方程组的求解工作分配到各个网络计算结点中,将高维电力系统方程组的整体求解问题分解为多个低维方程组的计算问题。 The algorithm uses a hierarchical interconnection network characteristics will work allotting high dimensional Sparse whole network to the respective computing nodes in the network, the entire set of equations to solve the problem of high dimensional power system is decomposed into a plurality of low dimensional equation computational problems. 阻断了高维稀疏方程组求解不断产生新填元的问题,提高了计算效率。 Blocked sparse high-dimensional problem solving equations continue to produce new fill yuan, improve computational efficiency.

b、由于采用树形计算结构,潮流计算中同层不同结点上的电压修正量计算过程互不依赖,便于采用分布集成式计算机并行进行。 B, since a voltage correction amount is calculated using a tree on the same layer structure different nodes, the load flow calculation does not depend on mutual calculations, easy to use distributed computer integrated parallel.

c、该算法对每个电力系统子网络单独建立数学模型,单独列写雅可比方程,因此比常规的联立求解算法具有更强的模块性、更好的扩展性、更便于编程实现。 c, the algorithm is established independently for each sub-network power system mathematical model, write a separate column Jacobi equation, and therefore simultaneous solution than the conventional algorithm has stronger modularity, better scalability, easier programming.

d、该发明提出的网络分割并行计算技术,可扩展应用于大规模电力系统仿真中求解差分化后的电力系统非线性方程组,实现大规模电力系统的在线超时实仿真。 d, the proposed invention dividing the network parallel computing techniques, can be applied to extend the power-line solving the system of nonlinear equations differencing large scale power system simulation, a large-scale simulation of the real power system timeout.

【附图说明】:图1是本发明的电力系统潮流计算基本算法流程示意图;图2是本发明中目标电力网络的一种分割方式;图3是本发明的电力网络潮流计算树构成示意图;图4是典型新英格兰电力系统结构图;图5是典型新英格兰电力系统第一次网络分割结果;图6是典型新英格兰电力系统第一次网络分割后得到的潮流计算树;图7是典型新英格兰电力系统第二次网络分割后结果;图8是典型新英格兰电力系统第二次网络分割后得到的潮流计算树。 BRIEF DESCRIPTION OF DRAWINGS: FIG. 1 is a schematic view of the power flow system of the invention calculates the basic algorithm flow; FIG. 2 is a division of the present invention the target power network; FIG. 3 is a load flow calculation of the present invention, a schematic view of a tree configuration; FIG 4 is a typical system configuration diagram new England Electric; FIG. 5 is a typical new England Electric systems division result first network; FIG. 6 is a typical new England power system obtained after the first network into a tree flow calculation; FIG. 7 is a typical new England Electric systems second network after segmentation result; FIG. 8 is a rear, new England Electric typical network system obtained by dividing the second flow calculation tree.

【具体实施方式】:实施例1:电力系统由生产、输送、分配和消费电能的各种电气设备组成。 DETAILED DESCRIPTION OF THE INVENTION: Example 1: electric power system by a variety of electrical equipment production, transport, distribution and consumption of electrical energy composition. 电力网络由变压器、不同电压等级的输电线路及其他输电装置组成。 Electricity network by the transformer, the transmission lines of different voltage levels and other power transmission means composed. 电力网络具有较强的地域分区特性,一个电力系统可以视为由多个子网由联络线互联组成。 Has strong regional power network partitioning feature, a power system can be viewed as consisting of multiple subnets interconnected by a tie-line composition.

下面结合附图对本发明作进一步详细描述,然后通过集群机系统介绍其并行实施方式。 DRAWINGS The present invention will be described in further detail, and by way of introduction which is in parallel cluster system. 附图1是本发明的电力系统潮流计算基本算法流程示意图。 1 is a schematic flow diagram of a basic algorithm of power flow computing system of the invention.

本发明的特征是包括以下步骤:步骤101:对电力网络进行划分,基于大规模电网为地区电网经联络线互联而成的特点,本发明提出通过联络线和将电力网络划分为适度规模的多个子网的方法。 Feature of the present invention includes the following steps: Step 101: the power network to be divided, based on large-scale power grid as the regional power grid interconnection via the contact line from the characteristics, the present invention is divided into a moderate scale through the contact line and the electricity network and more methods subnets. 电网划分结果应满足以下条件:(1)划分后的电力子网按其网络联结方式可组织为多层树形结构,最上层只有一个根结点,最下层叶结点对应网络分割后所得的所有子网络。 Power division result should meet the following criteria: (1) dividing the sub power network coupled to its embodiment may be organized as a multi-layer tree structure, a root node is only the uppermost, lowermost leaf node corresponding to the network obtained after division All sub-networks. 根结点和中间根结点对应网络划分的联络线和与其关联的母线,一般其网络图形是不连通的。 Root root node and the intermediate network into the corresponding connecting lines associated therewith bus, which generally is not a graphical communication network.

(2)每个子网通过选定的联络线与一个或多个子网相连接。 (2) each of the subnets selected contact line is connected to one or more subnets.

(3)与选定的联络线相关联的母线称为该子网的边界母线。 (3) contact with the selected bus line associated boundary bus called the subnet.

图2给出了一种电力网络分割方式。 Figure 2 shows a power splitting network mode. 如图2所示,目标电网被分割成共6个电力子网。 As shown in FIG. 2, the target grid is divided into a total of six power subnets. 标号B1~B11表示原始网络中与6条选定的联络线关联的11个边界母线。 Reference numeral 11 denotes B1 ~ B11 boundary generatrices original network associated with the contact line 6 is selected. 该6条联络线(包括其母线)构成潮流计算树的根结点。 The six contact line (including the busbar) constituting flow calculation root of the tree. 其余N1~N5五个子网络构成五个叶结点。 N1 ~ N5 remaining five sub-network of five leaf nodes. 在应用本发明时,在电力网络没有发生改变的情况下,网络分区只需要进行一次即可。 When applying the present invention, in the case where the electricity network is not changed, the network can be partitioned only once. 分区结果在潮流计算中重复使用。 Results partition reused in flow calculations.

步骤102:根据网络划分的结果,构建用潮流计算树。 Step 102: according to the result of dividing the network, construct a tree flow calculation. 对照图2所示分割建立的潮流计算树如图3所示。 The control flow shown in FIG. 2 is divided calculate established tree shown in Fig. 若N1~N5五个子网络依然庞大,各子网可按图1所示方法,选定联络线进行子网络划分,建立子网络潮流计算树,子网络潮流计算树的根结点为中间根结点。 When the sub-network N1 ~ N5 five still large, the sub-networks according to methods shown in FIG. 1, the selected sub-network into line contact, create sub-trees flow calculation, flow calculation sub root of the tree is the root of the intermediate point.

步骤103:对各个结点对应子网络中的待求电压变量进行分类。 Step 103: each node corresponds to the sub-network to be classified variable voltage requirements. 对照图3所示系统潮流计算树,我们将B1~B11母线电压选作边界输入输出变量,其余母线电压为各子网络内部变量。 Flow control system of FIG. 3 shown tree calculation, we will B1 ~ B11 bus voltage input and output variables is selected as the boundary, the remaining bus voltage each sub-network internal variables.

步骤104:给定所有电压变量的初始值。 Step 104: the given initial values ​​of all variable voltages. 即,所有的待求母线电压模值初始值为1.0(标幺值单位),相角初始值为0.0(弧度单位)。 That is, all to be required bus voltage value of the initial modulus value of 1.0 (pu units), the initial phase angle value of 0.0 (in radians).

步骤105:建立各子网的数学模型。 Step 105: a mathematical model of each subnet. 采用直角或极坐标形式(以下叙述按直角坐标形式叙述),每个子网潮流方程可表示为GNi(Vin,Vbi,Vbo)=0 (4)其中Vin表示子网络内部母线电压实部和虚部构成的向量(以下简称母线电压向量),Vbi为网络内部边界母线电压实部和虚部构成的向量(称作子网络潮流计算输出变量),Vbo为网络外部边界母线电压实部和虚部构成的向量(称作子网络潮流计算输入变量)。 Right angle or polar form (described below by rectangular form described below), each sub-flow equation may be expressed as GNi (Vin, Vbi, Vbo) = 0 (4) where Vin denotes an internal bus voltage subnetwork real and imaginary portions configuration vector (hereinafter referred to as bus voltage vector), the vector Vbi inner boundary bus voltage network real and imaginary parts (referred to as sub flow calculation output variables), the outer boundary of the network configured Vbo bus voltage real and imaginary portions vector (referred to as sub input variable flow calculation). 令向量Vin,Vbi和Vbo的维数分别为nin,nbi和nbo,则方程(4)的维数为nin+nbi。 Dimension order vector Vin, Vbi and dimension Vbo were nin, nbi and nbo, the equation (4) is nin + nbi. 对迭代中的值Vink,Vbik和Vbok其线性化后的牛顿迭代增量方程如式(5)所示,其中k表示迭代次数,J(Vink,Vbik,Vbok)为第k次迭代中子网络潮流方程的雅可比矩阵。 Vink iteration values, the equations of Newton iteration increment and vbOK Vbik linearized formula (5), where k represents the number of iterations, J (Vink, Vbik, Vbok) for the first iteration k neutron network Jacobian flow equations.

J(Vink,Vbik,Vbok)&Delta;Vink&Delta;Vbik&Delta;Vbok=-G(Vink,Vbik,Vbok)&CenterDot;&CenterDot;&CenterDot;(5)]]>步骤106:计算修正量。 J (Vink, Vbik, Vbok) & Delta; Vink & Delta; Vbik & Delta; Vbok = -G (Vink, Vbik, Vbok) & CenterDot; & CenterDot; & CenterDot; (5)]]> Step 106: calculation of the correction amount.

106-1.上行替换该操作针对潮流计算树的所有叶结点进行。 106-1. Alternatively up all leaf nodes of the tree for the flow calculation operation. 对照式(5),通过对雅可比矩阵方程进行初等代数变换(如LU分解和回代计算),将叶结点中的边界输出和内部变量的修正量都写成由边界输入修正量表示的如下标准形式。 Control of formula (5), by the Jacobian matrix equations elementary algebraic transformation (such as LU decomposition and back-substitution calculation), the boundary of the output and the correction amount of internal variables of leaf nodes in both written represented by the boundary input correction amount as follows standard form.

&Delta;Vink+Pk&Delta;Vbok=Qk&CenterDot;&CenterDot;&CenterDot;(6)]]>&Delta;Vbik+Rk&Delta;Vbok=Sk&CenterDot;&CenterDot;&CenterDot;(7)]]>式(7)称作上行替换方程,式(6)称作下行回代方程。 & Delta; Vink + Pk & Delta; Vbok = Qk & CenterDot; & CenterDot; & CenterDot; (6)]]> & Delta; Vbik + Rk & Delta; Vbok = Sk & CenterDot; & CenterDot; & CenterDot; (7)]]> of formula (7) referred to as an uplink alternative equation, of formula (6) called back-substitution downlink equation. 在每次迭代中Pk,Rk,Qk和Sk都是确定的实数矩阵和向量,需要求解的是电压变量的修正量向量。 Real matrices and vectors in each iteration Pk, Rk, Qk and Sk are determined to be solved is that the correction amount vector voltage variables.

106-2.边界输出、输入修正量计算对于根结点和中间根结点,合并其所有下层叶结点的标准形式方程(7)得到计算所有边界输出、输入修正量的线性方程组,求解该方程组,可解得所有边界输入、输出修正量ΔVbik和ΔVbok。 106-2. Boundary output, the input to the correction amount calculating root root node and the intermediate, which combined all the lower leaf node standard form equation (7) is calculated to obtain the output boundary of all, the input correction amount set of linear equations, Solving the equation can solve for all the boundary input, and output correction amount ΔVbik ΔVbok.

106-3.下行计算该操作针对潮流计算树的所有叶结点进行。 106-3. The calculated downlink operation for all the leaf nodes of the tree flow calculation is performed. 将解得的边界输入修正量ΔVbok带入上行替换后所得方程(6)得子网络内部修正向量ΔVink。 The resulting solution ΔVbok boundary correction amount input into the resulting equation (6) to give the sub-network internal correction vectors ΔVink up after replacement.

为了加快大规模电力系统计算的速度,人们往往采用由多个计算机组成的集群系统作为计算的硬件设施。 In order to speed up large-scale computing power system, people often use cluster system consisting of a plurality of computers as hardware computing. 近年来集群系统已成为实现并行计算的一种新主流技术。 In recent years, the new cluster system has become a mainstream technology for parallel computing. 集群系统由多个计算处理机(包括一个主机和若干子机)通过高速网络互联而成,各个计算处理机之间采用数据通信机制互相联络。 Calculating a plurality of cluster processors (one master and several slave) formed through high-speed Internet network, using a data communication mechanism between the various computing processors contact each other. 下面介绍本发明在集群计算机系统上的并行实施方式。 The following describes embodiments of the present invention in parallel on a cluster computer system.

可以看出,本发明计算对象的数学模型具有树形的结构,求解各叶结点上行替换的表达式(6)和(7)的过程和下行用式(6)计算子网络内部修正量ΔVink计算过程互不依赖,可并行进行。 As can be seen, the object of the mathematical model of the present invention has a structure tree, solving the expression (6) each leaf node upstream and replaced (7) and the sub-process downstream network-internal correction amount calculated by the formula (6) ΔVink and do not rely on calculation can be performed in parallel.

分布式并行潮流计算描述:对照图3所示潮流计算树,若集群计算机系统的每一台处理机(包括一个主机和子机)承担N1至N5各子网络上行替换和下行计算任务的速度(考虑数据通讯时间)已能满足电力系统在线安全监控需要,则并行计算可用一个主机和5个子机完成。 Description distributed parallel flow calculation: control flow shown in FIG. 3 calculates the tree, if the cluster computer system each processor (including a master and slave) assume the sub-network N1 N5 uplink and downlink Alternatively speed computing tasks to (considered data communication time) has been able to meet the needs of power-line safety monitoring system, a host of available parallel computing and 5 sub-machine to complete. 主机和子机之间通讯上行替换传送的是Rk(nbi×nbo维矩阵),和Sk(nbo维向量),一般维数nbo很小,下行计算传送的是边界母线电压修正量ΔVbik(nbi维向量)和ΔVbok(nbo维向量),总体数据传送量十分有限。 Alternatively uplink transmission communication between the master and slave is Rk (nbi × nbo dimensional matrix), and Sk (nbo dimensional vector), NbO generally small dimension, calculate the downlink transmission is a boundary bus voltage correction amount ΔVbik (nbi dimensional vector ) and ΔVbok (nbo dimensional vector), the overall amount of data transferred is very limited. 另一特点是根结点和中间根结点联立求解各子网络边界母线电压修正量ΔVbik和ΔVbok(见式(7))的计算量十分有限。 Another feature is the root and the root of the simultaneous solution of the intermediate sub-network boundaries and the bus voltage correction amount ΔVbik ΔVbok (see formula (7)) is calculated is very limited.

若集群计算机系统的某一台处理机(包括一个主机和子机)承担某一子网络上行替换和下行计算任务的速度(考虑数据通讯时间)达不到电力系统在线安全监控需要,则要将该子网络按本发明的分割方法进一步分割。 If a station processor cluster computer system (including a master and slave) bear a subnetwork speed uplink and downlink alternative computing tasks (data considering the communication time) of the power system safety monitor not required, will have the subnetwork is further divided by the dividing method of the present invention. 此时原来子网络结点变作中间根结点,分割后的子网络直接作为该中间根结点的叶结点。 At this time, the original sub-network as the intermediate node becomes the root node, the divided sub-network directly as a leaf node of the root node of the intermediate. 上述子网络的分割过程直至集群计算机系统的处理机在潮流计算中达到在线安全分析速度为止。 Of the sub-network processor division process until the cluster reaches online computer system security analysis in flow velocity calculation.

分布式并行潮流计算的子网络描述(拓扑结构和元件参数)在每个处理机上存储。 Distributed Parallel flow calculation described subnetworks (topology and component parameters) stored on each processor.

实施例2:以下以图4所示典型新英格兰系统说明本发明的网络分割和构造潮流计算树的方法。 Example 2: The following typical New England system shown in FIG. 4 illustrates a method according to the present invention and the network configuration divided flow calculation tree. 将联络线“16-17”,“15-16”,“1-39”和“4-14”选作网络分割联络线,所得的网络分割结果如图5所示,对应的潮流计算树如图6所示。 The contact line "16-17", "15-16", "1-39" and "4-14" is selected as the network dividing line contact, the resulting network segmentation results shown in Figure 5, corresponding to the calculated flow such as tree 6 shown in FIG.

采用分布式并行潮流计算,3个子计算机分别承担N1,N2和N3子网络上行替换和下行计算任务。 Parallel distributed computing trend, respectively, assume three sub-computer N1, N2 and N3 alternative uplink and downlink sub-network computing tasks. 对N1~N3子网,建立潮流方程,第k次迭代对雅可比矩阵方程进行LU分解初等代数变换后所得边界输出和内部变量标准修正方程为:N1:下行回代方程:&Delta;Vin,N1k+PN1k&Delta;Vbo,N1k=QN1k;]]>上行替换方程:&Delta;Vbi,N1k+RN1k&Delta;Vbo,N1k=SN1k]]>(三个内部边界母线6个方程)N2:下行回代方程:&Delta;Vin,N2k+PN2k&Delta;Vbo,N2k=QN2k]]>上行替换方程:&Delta;Vbi,N2k+RN2k&Delta;Vbo,N2k=SN2k]]>(一个内部边界母线2个方程)N3:下行回代方程:&Delta;Vin,N3k+PN3k&Delta;Vbo,N3k=QN3k]]>上行替换方程:&Delta;Vbi,N3k+RN3k&Delta;Vbo,N3k=SN3k]]>(三个内部边界母线6个方程)3个上行替换方程的系数矩阵及右端向量都是实数矩阵,通过数据通讯传送到主机。 Of N1 ~ N3 subnet, to establish flow equation, the k-th iteration of the Jacobian matrix equations after LU decomposition elementary algebraic transformation resulting boundary outputs and internal variables standard correction equation is: N1: downlink Press substituting equation: & Delta; Vin, N1k + PN1k & Delta; Vbo, N1k = QN1k;]]> upstream replace equation: & Delta; Vbi, N1k + RN1k & Delta; Vbo, N1k = SN1k]]> (three internal boundary generatrices six equations) N2: downlink Press substituting equation: & Delta ; Vin, N2k + PN2k & Delta; Vbo, N2k = QN2k]]> upstream replace equation: & Delta; Vbi, N2k + RN2k & Delta; Vbo, N2k = SN2k]]> (a internal boundary generatrices two equations) N3: downlink Press substituting equation : & Delta; Vin, N3k + PN3k & Delta; Vbo, N3k = QN3k]]> upstream replace equation: & Delta; Vbi, N3k + RN3k & Delta; Vbo, N3k = SN3k]]> (three internal boundary generatrices six equations) 3 upstream Alternatively coefficient matrix and the right end vector matrix equation are real numbers, to the host via the data communication. 3个上行替换方程的个数是14个,待求边界母线电压修正量也是14个,求解三个上行替换方程得到14个边界母线电压修正量。 Equation 3 is the number of uplink 14 Alternatively, the boundary bus voltage correction amount is required to be 14, equation solving three alternative upstream boundary generatrices 14 a voltage correction amount. 分别将:1,3和17母线电压修正量(6个)通讯返回一号子计算机;16母线电压修正量(2个)通讯返回二号子计算机;39,4,15母线电压修正量(6个)通讯返回三号子计算机;边界母线电压修正量带入三个子计算机就计算出N1,N2和N3三个子网络所有内部母线电压修正量。 Respectively: 1, 3, 17 and the bus voltage correction amount (6) returns One child computer communications; bus voltage correction amount 16 (2) returns the number two sub-computer communications; 39,4,15 bus voltage correction amount (6 a) returns the 3rd sub-computer communications; three sub-boundary generatrices computer calculates voltage correction amount into the N1, all the internal bus voltage correction amount three sub-networks N2 and N3. 如图1所示重复上述过程判断收敛后,潮流计算结束。 After repeating the above-described convergence determination process shown in FIG. 1, the end of the flow calculation.

假定N3子网规模较大,考虑实时安全分析速度的需要继续进行分割,选择线路6-11和4-14作为分割联络线,所得的网络分割结果如图7所示,对应的两种潮流计算树如图8所示。 N3 assumes a larger scale subnets, consider the needs of real-time security analysis speed continues segmentation, select lines 6-11 and 4-14 is calculated as a dividing line contact, the resulting network segmentation results shown in Figure 7, corresponding to two streams tree shown in Fig. 一种以N1,N2,N5和N6作为叶结点,合并N0和N4结点作为根节点;另一种以N1,N2,N5和N6作为叶结点,NO结点作为根节点,N4结点作为中间根结点。 Kind of N1, N2, N5 and N6, as a leaf node, node merging N0 and N4 as the root node; the other to N1, N2, N5 and N6, as a leaf node, the node as the root node NO, N4 junction as an intermediate point of the root.

采用分布式并行潮流计算,由4个子计算机分别承担N1,N2,N5和N6子网络上行替换和下行计算任务。 Using distributed parallel flow calculation, N1 borne by the sub-computer 4, respectively, N2, N5 and N6 alternative uplink and downlink sub-network computing tasks. 对N1,N2,N5和N6子网络建立潮流方程,第k次迭代对雅可比矩阵方程进行LU分解初等代数变换所得边界输出和内部变量标准修正方程为:N1:下行回代方程:&Delta;Vin,N1k+PN1k&Delta;bo,N1k=QN1k;]]>上行替换方程:&Delta;Vbi,N1k+RN1k&Delta;Vbo,N1k=SN1k]]>(三个内部边界母线6个方程)N2:下行回代方程::&Delta;Vin,N2k+PN2k&Delta;Vbo,N2k=QN2k;]]>上行替换方程:&Delta;Vbi,N2k+RN2k&Delta;Vbo,N2k=SN2k]]>(一个内部边界母线2个方程)N5:下行回代方程:&Delta;Vin,N5k+PN5k&Delta;Vbo,N5k=QN5k;]]>上行替换方程:&Delta;Vbi,N5k+RN5k&Delta;Vbo,N5k=SN5k]]>(三个内部边界母线6个方程)N6:下行回代方程:&Delta;Vin,N6k+PN6k&Delta;Vbo,N6k=QN6k;]]>上行替换方程:&Delta;Vbi,N6k+RN6k&Delta;Vbo,N6k=SN6k]]>(三个内部边界母线6个方程) Establishing flow equations for N1, N2, N5 and N6 sub-network, the k-th iteration of the Jacobian matrix equations LU decomposition elementary algebraic transformation resulting boundary outputs and internal variables standard correction equation is: N1: downlink Press substituting equation: & Delta; Vin , N1k + PN1k & Delta; bo, N1k = QN1k;]]> upstream replace equation: & Delta; Vbi, N1k + RN1k & Delta; Vbo, N1k = SN1k]]> (three internal boundary generatrices six equations) N2: downlink Press substituting equation :: & Delta; Vin, N2k + PN2k & Delta; Vbo, N2k = QN2k;]]> upstream replace equation: & Delta; Vbi, N2k + RN2k & Delta; Vbo, N2k = SN2k]]> (a internal boundary generatrices two equations) N5: downstream back-substitution equation: & Delta; Vin, N5k + PN5k & Delta; Vbo, N5k = QN5k;]]> upstream replace equation: & Delta; Vbi, N5k + RN5k & Delta; Vbo, N5k = SN5k]]> (three internal boundary generatrices 6 equation) N6: downlink Press substituting equation: & Delta; Vin, N6k + PN6k & Delta; Vbo, N6k = QN6k;]]> upstream replace equation: & Delta; Vbi, N6k + RN6k & Delta; Vbo, N6k = SN6k]]> (three internal border bus 6 equations)

N1,N2,N5和N6子网络的4个上行替换方程的系数矩阵及右端向量都是实数矩阵,通过数据通讯传送到主机。 N1, 4 uplink alternative equation coefficient matrix and the right vector N2, N5 and N6 are subnetwork real matrix, to the host via the data communication. 4个上行替换方程的个数为20个,待求边界母线电压修正量由原来的14个增加了来自6,11,和14母线的6个电压修正量,待求边界母线电压修正量总数也是20个。 Alternatively equation 4 up to the number 20, the boundary to be required bus voltage correction amount increased from the original 14 6 voltage correction amount from 6,11, and 14 bus, the total number of boundary bus voltage correction amount is required to be 20.

对第一种合并N0和N4结点作为根节点的网络分割,直接求解4个上行替换方程得到20个边界母线电压修正量。 For the first merger nodes N0 and N4 root node as the network division, a direct replacement for Solving equation 4 upstream boundary generatrices 20 a voltage correction amount. 上述计算在主机进行。 The above-described calculation in the host.

对第二种N0结点作为根节点,N4结点作为中间根结点的网络分割,计算过程描述如下:首先联立N5和N6上行替换方程,该方程涉及的边界母线电压修正量共18个,分别为ΔVbi,N3k(6个变量向量),ΔVbo,N3k(6个变量向量)和ΔVN5-N6k(二次分割产生(6,11,和14母线)的6个电压修正量)。 The second node of the root node N0, N4 root node as an intermediate network division, calculation process is described as follows: First, the simultaneous equations N5 and N6 uplink Alternatively, the bus voltage correction amount of the equation relates to the border at 18 , (6 generates divided voltage correction amount of the secondary (6, 11, and bus 14) is) are ΔVbi, N3k (6 variables vectors), ΔVbo, N3k (6 variables vectors) and ΔVN5-N6k. 整理N5和N6上行替换联立方程并进行线性变换可得:N4结点的上行替换方程(该方程即N3子网的上行替换方程):&Delta;Vbi,N3k+RN3k&Delta;Vbo,N3k=SN3k&CenterDot;&CenterDot;&CenterDot;(7)]]>和下行计算方程:&Delta;VN5+N6k+RN3&prime;k&Delta;Vbo,N3k=SN3&prime;k&CenterDot;&CenterDot;&CenterDot;(8)]]>式(7)和N1和N2的上行替换方程联立求得第一次分割所有边界电压修正量,并将其中的ΔVbo,N3k带入式(8)计算ΔVN5+N6k同样可得20个边界母线电压修正量。 Finishing N5 and N6 uplink replacement simultaneous equations and linear transformation can be obtained: an uplink replace equation (the equation i.e. uplink replace Equation N3 subnet) N4 nodes: & Delta; Vbi, N3k + RN3k & Delta; Vbo, N3k = SN3k & CenterDot; & CenterDot; & CenterDot; (7)]]> and downlink calculation equation: & Delta; VN5 + N6k + RN3 & prime; k & Delta; Vbo, N3k = SN3 & prime; k & CenterDot; & CenterDot; & CenterDot; (8)]]> of formula (7), and N1 and Alternatively uplink equation stand with N2 to obtain the first voltage dividing all the boundary correction amount, and wherein the ΔVbo, N3k into formula (8) can likewise be calculated ΔVN5 + N6k boundary 20 available bus voltage correction amount. 上述计算20个边界母线电压修正量的工作皆在主机进行。 Boundary generatrices 20 a voltage correction amount calculated above work are carried out in the host.

分别将:1,3和17母线电压修正量(6个)通讯返回1号子计算机;16母线电压修正量(2个)通讯返回2号子计算机;15,4,11母线电压修正量(6个)通讯返回3号子计算机;39,4,6母线电压修正量(6个)通讯返回4号子计算机;即将边界母线电压修正量带入4个子计算机就计算出N1,N2,N5和N6四个子网络所有内部母线电压修正量。 Respectively: 1, 3, 17 and the bus voltage correction amount (6) returns the number of sub-computer communications; bus voltage correction amount 16 (2) No. 2 returns the child computer communications; 15,4,11 bus voltage correction amount (6 a) 3 returns communications sub-computer; 39,4,6 bus voltage correction amount (6) returns the number of communication sub-computer 4; boundary bus voltage correction amount coming into the computer 4 calculates the sub N1, N2, N5 and N6 All four sub-network internal bus voltage correction amount. 如图1所示重复上述过程判断收敛后,潮流计算结束。 After repeating the above-described convergence determination process shown in FIG. 1, the end of the flow calculation.

Claims (8)

1.一种大规模电力系统网络分割潮流并行计算方法,其特征是该方法包括:1)、将大规模或超大规模电力网络按照选定的联络线集合分割为一组子网;2)、根据网络分割结果,构建电网潮流计算树;潮流计算树由最上层的结点的“根结点”、“中间根结点”和最下层的“叶结点”构成;3)、对分割后的电力子网络潮流分析中的变量进行分类;4)、列写各电力子网络潮流方程;5)、采用牛顿迭代法求解步骤4)得到的各个子网络的潮流方程,求解过程中变量修正量的计算通过“上行替换”和“下行计算”操作完成;6)、上述变量的修正计算直至牛顿迭代收敛为止,输出计算结果,结束潮流计算;7)、上述大规模电力系统潮流计算方法在集群计算机系统上并行计算。 A large-scale power system is divided flow parallel computing network, characterized in that the method comprises: 1), to large-scale or large-scale electric power network according to the selected contact line set into a set of subnets; 2), the network segmentation result, power flow calculation tree constructed; flow is calculated from the uppermost tree nodes "root", "root node middle" and the lowermost "leaf node" configuration; 3), after dividing classifying power variable analysis in sub-network flow; 4), the column write each power sub-network flow equations; 5), using Newton's iterative method step 4) flow equations each subnetwork obtained solution process variable correction amount calculated by "replacing upstream" and "downstream" operational completion; 6), calculates the correction variable until Newton iteration converges, outputs the calculation result, the end of the flow calculation; 7), the above-described method for large-scale computing power flow in the cluster parallel computing on a computer system.
2.根据权利要求1所述的潮流并行计算方法,其特征在于步骤1)中,大规模电力系统网络分割的特点是:a)、按照大规模电网分层互联的特点,分层选择网络分割联络线将电网分割为一组子网络;b)、子网络与子网络间的电气联系通过分层选择的联络线集合描述。 2. The trend of the parallel computing according to claim 1, characterized in that step 1), the large-scale power system network is divided features: a), according to the characteristics of large-scale grid interconnection layered hierarchical network partition selection Contact wire grid divided into a set of sub-networks; b), the electrical contact between the sub-networks and subnetworks through the contact line described in a hierarchical set of selection.
3.根据权利要求1所述的潮流并行计算方法,其特征在于步骤2)中,构建出的电网潮流计算树具有以下特点:a)、每一个“叶结点”对应一个电力子网络;b)、“根结点”对应进行最第一层网络分割的联络线集合;c)、第一层以后的分割选定的联络线对应潮流计算树的“中间根结点”;d)、电网潮流计算树描述了潮流分析的逻辑关系,同层结点之间,除了与其上层结点的计算相关外,彼此相互独立。 The current calculation method according to claim 1 in parallel, wherein the step 2), the power flow computing tree constructed with the following features: a), each "leaf node" corresponds to a power sub-network; B ), "root node" corresponds to the network dividing line for the best contact a first set of layers; C), after the first layer is divided corresponding to the selected contact line flow calculation tree "root node intermediate"; D), the grid flow calculation logic tree describes the trend analysis, with the junction between the layers, in addition to calculating the correlation of their upper layer nodes, each independently of one another.
4.根据权利要求1所述的潮流并行计算方法,其特征在于步骤3)中,子网络潮流分析中的待求变量分类具有如下特点:a)、子网络潮流分析中使用的待求变量是其母线电压变量;b)、依据其母线和参与其网络分割的联络线关系,将其中所有待求变量划分为三类:边界输出母线电压变量、边界输入母线电压变量和内部母线电压变量;c)、内部母线是和网络分割联络线不关联的子网络母线;d)、边界母线是和网络分割关联的联络线母线,其属于该子网络的联络线母线电压称作边界输出母线电压,其不属于该子网络的联络线母线电压称作边界输入母线电压。 The current calculation method according to claim 1 parallel, wherein in step 3), sub-network flow analysis required to be classified variables have the following characteristics: a), to be variable demand flow sub-network is used in the analysis bus voltage which is variable; B), according to which the bus line contact relationship and in its division network, in which all the variables required to be divided into three categories: output bus voltage variable boundary, and the boundary of the input bus voltage variable voltage variable internal bus; C ), and the internal bus is a bus-tie network dividing line is not a sub-network associated; D), dividing the network boundary generatrices and is associated bus line contact, the line contact which belongs to the sub-bus voltage network boundary is referred to the output bus voltage, which orderwire bus voltage does not belong to this sub-network is referred to as the boundary voltage input bus.
5.根据权利要求1所述的潮流并行计算方法,其特征在于步骤4)中,电力子网络潮流方程具有如下特点:a)、列写每个叶结点对应网络的潮流代数方程,即PQ母线的功率平衡方程和PV结点的有功和电压平衡方程;b)、所有子网络潮流方程联立即是:全网潮流的潮流方程;c)、对各子网络潮流方程进行泰勒(Taylor)级数展开,略去泰勒级数中二阶及以上的高阶项,得到子系统的雅可比矩阵方程;雅可比矩阵方程由雅可比矩阵、母线电压的修正量向量和不平衡向量组成,在每次迭代中,雅可比矩阵和不平衡向量都是确定的实数矩阵和向量,需要求解的是母线电压的修正量向量。 The current calculation method according to claim 1 parallel, wherein in step 4), the power flow equations sub-network has the following characteristics: a), the write column corresponding to each leaf node of the network flow algebraic equations, i.e., PQ power balance equation and PV junction bus active and the voltage balance equation; b), with all sub-load flow equation now is: the whole network trend of the flow equation; c), for each sub-network flow equation Taylor (Taylor) level expand the number, omitting the second-order Taylor series and more high-end items, get Jacobi matrix equation subsystem; Jacobi matrix equation by the correction amount vector and vector imbalance Jacobi matrix, composed of bus voltage, in every iteration, Jacobi matrices and vectors are determined unbalance real matrices and vectors, needs to be resolved is the amount of correction vector bus voltage.
6.根据权利要求1所述的潮流并行计算方法,其特征在于步骤5)中,雅可比矩阵方程变量修正量的计算如下:全网母线电压的修正量向量的计算通过电网潮流计算树的“上行替换”和“下行计算”操作完成,其中,a)、上行替换操作:该上行替换操作从所有叶结点开始,对于叶结点,通过对雅可比矩阵方程进行初等代数变换,将叶结点中的边界输出和内部电压变量的修正量都写成由边界输入电压变量的修正量表示的线性表达式;对于中间根结点:中间根结点要作的上行替换是接受下层结点的边界母线电压修正量线性表达式,消去该中间根结点对应的网络分割的边界母线电压修正量,获得上一层根结点需要的边界母线电压的修正量线性表达;对于根结点,联立其所有下层结点的边界输出、输入电压修正量表示的线性方程组,并求解该方程组,所得即:边 The current calculation method according to claim 1 parallel, characterized in that step 5), the Jacobian matrix equation variables correction amount is calculated as follows: calculation of the correction amount vector of the whole network bus voltage calculated by the power flow tree " uplink replace "and" downstream "operational completion, wherein, A), the uplink replace operation: the uplink replacement operation starts from all leaf nodes for the leaf nodes, by performing elementary algebraic transformation Jacobian matrix equation, the leaf nodes boundary point correction amount and the output voltage of the internal variables are written as a linear expression represented by the boundary correction amount of the variable input voltage; the root of the intermediate: Alternatively the intermediate uplink is acceptable for the root node to the lower node boundary linear expression bus voltage correction amount, the correction amount erasing voltage dividing network boundary generatrices corresponding to the root of the intermediate, the amount of correction voltage boundary generatrices linear expression obtained on the root level needs; for the root node, simultaneous the lower boundary of all output nodes of linear equations represented by the input voltage correction amount, and to solve the equations, obtained i.e.: sides 界输出、输入电压修正量;b)、下行计算操作:下行计算操作由根节点至潮流计算树所有叶结点进行,将解得的边界电压修正量带入上行替换所得内部或下一层边界输入、输出电压修正量和边界输入电压修正量的线性表达式,最后求得各子网络内部母线电压修正向量。 Sector output, the input voltage correction amount; B), calculated downlink operation: downlink calculated by the calculating operation flow tree root node to leaf nodes for all voltage correction amount boundaries resulting solution was brought up or replacing the internal boundary of the next layer input and output voltage correction amount and the correction amount of the input voltage boundary linear expression, and finally obtain each sub-network internal bus voltage correction vector.
7.根据权利要求1所述的潮流并行计算方法,其特征在于步骤6)中,牛顿迭代收敛的判据是:所有子网络母线电压修正量的绝对值皆小于某一门槛值ε,ε<10-5。 The current calculation method according to claim 1 parallel, characterized in that step 6), the Newton iteration convergence criterion is: the absolute value of all the sub-networks are bus voltage correction amount is less than a threshold ε, ε < 10-5.
8.根据权利要求1所述的潮流并行计算方法,其特征在于步骤7)中,大规模电力系统潮流计算方法在集群计算机系统上并行计算的方法是:分别在集群计算机系统的子计算机上实现叶结点的上行替代和下行计算,在主机上实现各层根结点的上行替代和下行计算;子计算机上的计算并行同步进行。 The current calculation method according to claim 1 parallel, wherein in step 7), a method of large-scale power flow calculation method in a computer system on a cluster of parallel computing are: a computer are implemented on the sub-cluster computer system Alternatively uplink and downlink computing leaf nodes both the upstream and downstream alternate layers on a host computing the root; calculated on the child computer simultaneously in parallel.
CN 200610015718 2006-09-22 2006-09-22 Parallel computation method for large-scale electrical power system network tidal current segmentation CN100481668C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610015718 CN100481668C (en) 2006-09-22 2006-09-22 Parallel computation method for large-scale electrical power system network tidal current segmentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610015718 CN100481668C (en) 2006-09-22 2006-09-22 Parallel computation method for large-scale electrical power system network tidal current segmentation

Publications (2)

Publication Number Publication Date
CN1929234A true CN1929234A (en) 2007-03-14
CN100481668C CN100481668C (en) 2009-04-22

Family

ID=37859085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610015718 CN100481668C (en) 2006-09-22 2006-09-22 Parallel computation method for large-scale electrical power system network tidal current segmentation

Country Status (1)

Country Link
CN (1) CN100481668C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483887C (en) * 2007-04-27 2009-04-29 清华大学 Distributive analysis method of power system low frequency vibration
CN101141064B (en) 2007-09-14 2010-12-15 清华大学 Method for distributed tidal current analyzing by exchange boundary node state and net damage information
CN101976835A (en) * 2010-10-11 2011-02-16 重庆大学 Parallel computation method for Newton power flow of large-scale electric power system
CN101662148B (en) 2009-09-25 2011-08-10 大连海事大学 Voltage initial value setting method of load flow calculation with rectangular coordinate newton method
CN101621200B (en) * 2009-08-04 2011-09-28 大连海事大学 Rectangular coordinate Newton load flow calculation method
CN102593823A (en) * 2012-02-01 2012-07-18 中国电力科学研究院 Superposition-principle-based on-line power flow calculation method of distribution network
CN103488610A (en) * 2013-09-06 2014-01-01 南方电网科学研究院有限责任公司 Method of solving power grid equations based no non-zero element traversal of sparse storage
CN105022931A (en) * 2015-08-11 2015-11-04 中国航空工业集团公司西安飞机设计研究所 Direct-current electric network calculating method and direct-current electric network calculating device
CN105354422A (en) * 2015-11-12 2016-02-24 南昌大学 Method for rapidly solving power flow of polar coordinate Newton-Raphson algorithm on basis of symmetric sparse matrix technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126050C (en) 1999-11-30 2003-10-29 深圳市中兴通讯股份有限公司 In-line monitor mothod for state of electric distribution network

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483887C (en) * 2007-04-27 2009-04-29 清华大学 Distributive analysis method of power system low frequency vibration
CN101141064B (en) 2007-09-14 2010-12-15 清华大学 Method for distributed tidal current analyzing by exchange boundary node state and net damage information
CN101621200B (en) * 2009-08-04 2011-09-28 大连海事大学 Rectangular coordinate Newton load flow calculation method
CN101662148B (en) 2009-09-25 2011-08-10 大连海事大学 Voltage initial value setting method of load flow calculation with rectangular coordinate newton method
CN101976835A (en) * 2010-10-11 2011-02-16 重庆大学 Parallel computation method for Newton power flow of large-scale electric power system
CN101976835B (en) 2010-10-11 2012-11-14 重庆大学 Parallel computation method for Newton power flow of large-scale electric power system
CN102593823A (en) * 2012-02-01 2012-07-18 中国电力科学研究院 Superposition-principle-based on-line power flow calculation method of distribution network
CN102593823B (en) 2012-02-01 2014-03-12 中国电力科学研究院 Superposition-principle-based on-line power flow calculation method of distribution network
CN103488610A (en) * 2013-09-06 2014-01-01 南方电网科学研究院有限责任公司 Method of solving power grid equations based no non-zero element traversal of sparse storage
CN105022931A (en) * 2015-08-11 2015-11-04 中国航空工业集团公司西安飞机设计研究所 Direct-current electric network calculating method and direct-current electric network calculating device
CN105354422A (en) * 2015-11-12 2016-02-24 南昌大学 Method for rapidly solving power flow of polar coordinate Newton-Raphson algorithm on basis of symmetric sparse matrix technology
CN105354422B (en) * 2015-11-12 2018-07-20 南昌大学 A method of polar coordinates Newton-Raphson approach trend is quickly sought based on symmetrical and sparse technology

Also Published As

Publication number Publication date
CN100481668C (en) 2009-04-22

Similar Documents

Publication Publication Date Title
Chang Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm
Yi et al. Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems
Zhang et al. An optimal and distributed method for voltage regulation in power distribution systems
Lam et al. Distributed algorithms for optimal power flow problem
Xia et al. Calculation of available transfer capability with transient stability constraints
Jiang et al. A reduced-space interior point method for transient stability constrained optimal power flow
CN102012956B (en) Considering wind farm wind farm input method equivalent random fluctuations of wind speed and direction
Xing et al. Distributed bisection method for economic power dispatch in smart grid
Liu et al. An improved approach for AC-DC power flow calculation with multi-infeed DC systems
CN102801790B (en) Microgrid energy management system based on IEC (International Electrotechnical Commission) 61850 and multi-agent method
CN1327587C (en) Voltage control method based on soft partitions in power system
CN102723721A (en) Power system reactive power optimization method based on individual optimal position self-adaptive variation disturbance particle swarm algorithm
CN101141064B (en) Method for distributed tidal current analyzing by exchange boundary node state and net damage information
Mok et al. Tuning the fuzzy damping controller for UPFC through genetic algorithm with comparison to the gradient descent training
CN102832627B (en) An automatic control method for a wind farm voltage power network model
CN100541965C (en) Determined 2-layered planning model based transmission network planning method
Zhang et al. The NS2-based simulation and research on wireless sensor network route protocol
CN102820662A (en) Distributed power source contained power system multi-target reactive-power optimization method
CN101976851B (en) Method for improving wireless internet stability of multiple inverters in microgrid by utilizing virtual impedance
Ara et al. Modelling of Optimal Unified Power Flow Controller (OUPFC) for optimal steady-state performance of power systems
CN101055990A (en) United accident-prevention rehearse method for provincial and city power system
Kim et al. Optimal power system operation using parallel processing system and PSO algorithm
CN103942372A (en) Active power distribution network transient state real-time simulation multi-rate interface method based on FPGA
Rao et al. Optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller
CN104037764B (en) One Cartesian coordinate calculation method of Newton flow Jacobian matrix change

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right