CN1919722A - Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff - Google Patents

Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff Download PDF

Info

Publication number
CN1919722A
CN1919722A CN 200610116159 CN200610116159A CN1919722A CN 1919722 A CN1919722 A CN 1919722A CN 200610116159 CN200610116159 CN 200610116159 CN 200610116159 A CN200610116159 A CN 200610116159A CN 1919722 A CN1919722 A CN 1919722A
Authority
CN
China
Prior art keywords
gas
hydrogen
gasification
residue
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610116159
Other languages
Chinese (zh)
Other versions
CN100363249C (en
Inventor
李文志
颜涌捷
任铮伟
黄秒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CNB2006101161595A priority Critical patent/CN100363249C/en
Publication of CN1919722A publication Critical patent/CN1919722A/en
Application granted granted Critical
Publication of CN100363249C publication Critical patent/CN100363249C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The invention discloses a hydrogen preparing method of hydrolytic slag catalyzing gasification of cellulose waste, which is characterized by the following: adopting biological acid hydrolytic or enzyme hydrolytic waste as raw material; using catalyzing gasification method; preparing hydrogen-rich synthetic gas under fitful reacting temperature, pressure and time.

Description

The method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff
Technical field
The present invention relates to a kind of preparation method of hydrogen, relate to a kind of method of utilizing the cellulose castoff hydrolytic residue to prepare hydrogen for the catalytic material gasification specifically.
Background technology
Along with human living standard's raising, people are more and more higher to the degree of dependence of the energy, but because the finiteness of non-renewable and its reserves of fossil oil, fossil energy is exhausted day by day, and ecocrisis is obvious day by day.Now, seek the renewable energy source little, caused showing great attention to of the whole world with the development of new energy, particularly environmental pollution.
Biomass typically refer to terrestrial plant (timber, yule logs, stalk etc.) and waterplant, are a kind of stable renewable energy source resources, and the source is abundant.China is large agricultural country, and large number of biological matter generation of waste materials is arranged every year.Only China's agricultural crop straw output is about 700,000,000 tons every year, and the stock number that can be used as the energy is hundred million tons of 2.8-3.5; The year rational exploitation amount of yule logs is about 1.58 hundred million tons, also has a large amount of waterplant in addition.But these resources are not fully utilized so far, and often because of the on-site incineration contaminate environment, this has become nationwide problem.Biomass are a kind of environmentally friendly resources, and research, the development and utilization of biomass energy caused domestic and international common concern.China's Oil resource-constrained on the other hand, the demand of oil product but in continuous increase, is produced liquid fuel with the cellulose castoff hydrolysed ferment---ethanol is one of method of effectively utilizing biomass energy, and China is had bigger realistic meaning.Produce at biomass by hydrolyzation and to have a large amount of residue in the alcohol fuel process and generate, its major ingredient is an xylogen, and hydrolytic residue is fully utilized the economy that helps to improve this process, promotes the development of this industry.
Hydrogen Energy is a kind of perfect energy sources, will occupy extremely important status in the human following energy system.The source of hydrogen has diversity, can pass through various primary energy source, can be fossil oil as coal, oil, Sweet natural gas etc., also can be renewable energy source as sun power, biomass energy, wind energy, sea energy, Geothermal energy etc., perhaps utilize secondary energy as electric power, produce hydrogen.Various mineral fuel hydrogen manufacturing are the topmost methods of present hydrogen manufacturing, but it is non-renewable energy source, and reserves are limited, and can damage ecotope in the hydrogen production process.Separately water electrolysis hydrogen production process environmental pollution is less, but the hydrogen manufacturing cost is higher, if electricity is to produce then by thermal power generation that power generation process can pollute environment.Biomass have aboundresources, renewable, eco-friendly characteristics, and can realize clean CO 2Zero release.The development and use biomass hydrogen preparation solves human energy dilemma and the ecocrisis that is faced to setting up continuable energy resource system, and promoting national economic development and preserving the ecological environment has great importance.
Summary of the invention
The technical issues that need to address of the present invention are the methods that disclose a kind of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff, to solve the energy and the environmental problem that now highlights day by day.
Design of the present invention:
Different types of biomass, the content difference of its Mierocrystalline cellulose, hemicellulose, xylogen, in the organic composition as xylophytas such as wood chips, general, hemicellulose accounts for 20-35%, cellulose comprises 40-55%, xylogen accounts for 20-30%; And in the herbal organic composition such as agricultural crop straw, general, hemicellulose level is 19-25%, cellulose comprises 38-43%, and xylogen accounts for 16-21%.Biomass are through hydrolysis, and Mierocrystalline cellulose and hydrolysis of hemicellulose can get reductive monosaccharide, furfural, hydroxymethylfurfural and levulinic acid etc., and xylogen does not react substantially in hydrolytic process, then mainly consists of xylogen in the hydrolytic residue.Compare with hemicellulose with Mierocrystalline cellulose, oxygen level is low in the xylogen, and energy density (27MJ/kg) is than Mierocrystalline cellulose (17MJ/kg) height.With adopting wood chip to compare to adopt hydrolytic residue is that raw material is produced hydrogen following principal feature is arranged: oxygen level is low, CO in the thick gas 2Low with the content of CO, hydrogen content is higher, helps subsequent disposal, and is favourable to hydrogen manufacturing; Because in hydrolytic process, the colloidal type material major part in the biomass all is dissolved in the hydrolyzed solution, so the increase of residue fragility, charging is easy; Good with the quartz sand fluid effect, conduct heat better in the gasification.
Method of the present invention comprises the steps:
(1) the cellulose castoff hydrolytic residue is contacted gasification with water vapour in fluidized-bed reactor, gasification temperature is 650-1000 ℃, and vapor pressure is 10-100mmH 2O (gauge pressure), the residence time of cellulose castoff hydrolytic residue in fluidized-bed reactor is 0.5-10 second, the residence time of water vapour in fluidized-bed reactor is 0.1-4.0 second, based on the weight of cellulose castoff hydrolytic residue, the mass ratio (S/B) of the quality of water vapour and cellulose castoff hydrolytic residue is 0.1~3.0;
Said cellulose castoff comprises agricultural wastes, as: stalk, shell, fruit stone, the waste of agricultural byproducts such as corn cob; Forestry waste, as: fuel wood, fallen leaves, bark, tree root and forestry processing waste; Waterplant, as: algae, duckweed, Herba Eichhorniae, jacinthe etc.; Energy crop is as: oil crops be rich in the plant of hydrocarbon polymer and other growth remaining residue after acid hydrolysis or enzymic hydrolysis of biomass;
Its method for hydrolysis is referring to Yan Yongjie, Ren Zhengwei. the research of Mierocrystalline cellulose continuous catalysis hydrolysis. and solar energy journal .1999,20 (1): 55-58.
The cellulose castoff hydrolytic residue preferably is crushed to the particle less than 5mm;
(2) the gasification gas of discharging from fluidized-bed reactor enters the atmospheric fixed bed catalyticreactor that is filled with catalyzer, in catalyticreactor, the reforming reaction of the water vapour generation tar of said gasification gas and feeding and the catalytic pyrolysis of low molecular hydrocarbon and reforming reaction, methane etc., obtain the unsaturated hydrocarbons mixed gas of hydrogen, carbon monoxide, methane, carbonic acid gas and trace, the catalyzed reaction temperature is 650-1000 ℃, and catalysis pressure is 10-100mmH 2O (gauge pressure), the residence time of gas in beds is 0.5-3.0 second, based on the amount of substance of gasification gas, the mole number of the adding of water vapour is 1~10 with the ratio of the mole number of gasification gas;
The component of said catalyzer and quality proportioning are as follows:
Ferric oxide 1~5%, rhombspar 85~95%, nickel 4~10%;
Preferably: ferric oxide 3%, rhombspar 90%, nickel 7%.
Said catalyzer adopts following method to be prepared:
To grind to form 80~120 purpose powder at 900 ℃ of rhombspars of calcining 10 hours down, be made into suspension liquid, iron nitrate and nickelous nitrate will be added dropwise to suspension liquid, stirring was soaked the pool 4 hours, in 105 ℃ baking oven, dried by the fire 8 hours, after calcining 10 hours in 900 ℃ the muffle furnace again, compound stalk forming gets final product.
(3) gas cooling to 400 of coming out from catalyticreactor~500 ℃ through becoming reactor and the low reactor that becomes in entering behind the filtration unit, become hydrogen with carbon monodixe conversion, collect hydrogen then;
The transformationreation of carbon monoxide is a kind of prior art, and its method is referring to Fang Dingye, Leqing China, Li Fuqing. the Chemical Engineering and Technology experiment. and Beijing: Chemical Industry Press, 2000.12:211-216.
Utilization of the present invention has reproducible waste residue and produces hydrogen as raw material; protected environment; reduced product hydrogen cost; improved the economy that the alcohol fuel process is produced in the cellulose castoff hydrolysis; promoted the industrialized development that alcohol fuel is produced in the cellulose castoff hydrolysis, had great importance setting up continuable energy resource system and preserving the ecological environment.
Description of drawings
Fig. 1 is to be catalytic material gasification preparation hydrogen flow path synoptic diagram with the cellulose castoff hydrolytic residue.
Embodiment
Referring to Fig. 1, method of the present invention comprises the steps:
(1) the cellulose castoff hydrolytic residue is contacted gasification with fluidized gas in fluidized-bed reactor 1, gasification gas and solid particulate are discharged by fluidized-bed reactor 1 top;
Said fluidized-bed reactor 1, its principle of design and structure are referring to Li Qiang, Qiu Kuanrong, fourth jade. fluidization principle and application thereof. and Jiangsu: press of China Mining University, 1994.12;
(2) the gasification gas of discharging from fluidized-bed reactor 1 top, enter atmospheric fixed bed catalyticreactor 3 catalyzed reactions that are filled with catalyzer after removing the solid granule of gasification in the gas through cyclonic separator 2, with the reforming reaction of the catalytic pyrolysis of water vapour generation tar that feeds and low molecular hydrocarbon and reforming reaction, methane etc., obtain the unsaturated hydrocarbons mixed gas of hydrogen, carbon monoxide, methane, carbonic acid gas and trace;
(3) gas cooling to 400 of coming out from catalyticreactor 3~500 ℃ through becoming reactor 4 and the low reactor 5 that becomes in entering behind the filtration unit, become hydrogen with carbon monodixe conversion, collect hydrogen then;
The invention will be further described below by embodiment, but do not influence protection scope of the present invention:
Embodiment 1
Raw materials usedly be: wood chip hydrolytic residue and rice husk hydrolytic residue respectively account for 50% (weight).
Particle diameter is entered into fluidized-bed gasifier 1 less than the cellulose castoff hydrolytic residue of 3mm, carry out gasification reaction with the water vapour that enters fluidized-bed gasifier 1, the gasification reaction temperature is 750 ℃, gasification reaction pressure (gauge pressure) 30mmH 2O, cellulose castoff hydrolytic residue add-on is 2.0kg/h; The mass ratio of the quality of water vapour and cellulose castoff hydrolytic residue (S/B) is 1.5;
The residence time of water vapour in fluidized-bed is 3.0 seconds, and the residence time of cellulose castoff hydrolytic residue in fluidized-bed reactor is 6.0 seconds;
The gasification gas of discharging from fluidized-bed reactor 1 top enters the atmospheric fixed bed catalyticreactor 3 that is filled with catalyzer, the water vapour of gasification gas and feeding reacts, obtain the unsaturated hydrocarbons mixed gas of hydrogen, carbon monoxide, methane, carbonic acid gas and trace, wherein, major ingredient is hydrogen and carbon monoxide, both volume contents are respectively 63~65% and 18~20%, and the catalyzed reaction temperature is 850 ℃, and catalysis pressure is 30mmH 2O (gauge pressure), the residence time of gas in beds is 1.0 seconds;
The volume ratio of water vapour/gasification gas is 1.6;
The component of said catalyzer and quality proportioning are as follows:
Ferric oxide 3%, rhombspar 90%, nickel 7%.
The gas cooling to 400 of coming out from catalyticreactor ℃ becomes reactor 9 and the low reactor 10 that becomes in entering, the carbon monoxide component is transformed into hydrogen, collects hydrogen then, and wherein, the content of hydrogen (volume percent) reaches 81.3%.
The temperature of reaction of middle temperature transformation is 350 ℃, and the temperature of reaction of low temperature shift is 300 ℃;
Embodiment 2
Outer other processing condition of degassifying temperature of reaction are identical with embodiment 1,850 ℃ of gasification reaction temperature, and the content (volume percent) of hydrogen reaches 85.6% in the gas of reaction back.
Embodiment 3
Other processing condition are identical with embodiment 2 except that the catalyzed reaction temperature, 750 ℃ of catalyzed reaction temperature, and the content (volume percent) of hydrogen reaches 82.5% in the thick gas in reaction back.
Above result is a kind of preparation method of hydrogen preferably with preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff as can be seen.

Claims (6)

1. the method for a preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff, it is characterized in that described raw material comprises other growth remaining residue after acid hydrolysis or enzymic hydrolysis of agricultural wastes, forestry waste, forestry processing waste, waterplant, energy crop or biomass.。
2. method according to claim 1 is characterized in that, (1) contacts gasification with water vapour with the cellulose castoff hydrolytic residue in fluidized-bed reactor, and gasification temperature is 650-1000 ℃, and vapor pressure is 10-100mmH 2O (gauge pressure), the residence time of cellulose castoff hydrolytic residue in fluidized-bed reactor is 0.5-10 second, the residence time of water vapour in fluidized-bed reactor is 0.1-4.0 second;
(2) the gasification gas of discharging from fluidized-bed reactor enters the atmospheric fixed bed catalyticreactor that is filled with catalyzer, in catalyticreactor, tar and low molecular hydrocarbon generation cracking and reforming reaction in the gasification gas, become permanent gases such as hydrogen, carbon monoxide, carbonic acid gas, the catalyzed reaction temperature is 650-1000 ℃, and catalysis pressure is 10-100mmH 2O (gauge pressure), the residence time of gas in beds is 0.5-3.0 second;
(3) become reactor and the low reactor that becomes during the gas that comes out enters from catalyticreactor, carbon monodixe conversion is become hydrogen, collect hydrogen then.
3. method according to claim 2 is characterized in that, based on the quality of cellulose castoff hydrolytic residue, the mass ratio of the quality of water vapour and cellulose castoff hydrolytic residue is 0.1~3.0.
4. method according to claim 2 is characterized in that, based on the amount of substance of gasification gas, the mole number of the adding of water vapour is 1~10 with the ratio of the mole number of gasification gas.
5. method according to claim 2 is characterized in that the cellulose castoff hydrolytic residue preferably is crushed to the particle less than 5mm.
6. method according to claim 2 is characterized in that, the component of said catalyzer and quality proportioning are as follows: ferric oxide 1~5%, rhombspar 85~95%, nickel 4~10%.
CNB2006101161595A 2006-09-18 2006-09-18 Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff Expired - Fee Related CN100363249C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101161595A CN100363249C (en) 2006-09-18 2006-09-18 Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101161595A CN100363249C (en) 2006-09-18 2006-09-18 Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff

Publications (2)

Publication Number Publication Date
CN1919722A true CN1919722A (en) 2007-02-28
CN100363249C CN100363249C (en) 2008-01-23

Family

ID=37777603

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101161595A Expired - Fee Related CN100363249C (en) 2006-09-18 2006-09-18 Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff

Country Status (1)

Country Link
CN (1) CN100363249C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475143B (en) * 2009-01-20 2011-01-05 中国科学技术大学 Biomass hydrogen production in water vapour atmosphere and series fluidized bed apparatus system thereof
CN101581451B (en) * 2008-05-12 2011-11-09 华北电力大学 Heat processing technology and heat processing device for realizing near-zero discharge of domestic garbage
CN102286538A (en) * 2011-08-30 2011-12-21 哈尔滨工业大学 Method for producing hydrogen utilizing cellulose
CN103025651A (en) * 2010-03-16 2013-04-03 国际壳牌研究有限公司 A process for producing hydrogen
CN102101647B (en) * 2009-12-16 2014-01-29 中国科学院大连化学物理研究所 Method for preparing hydrogen from cellulose
CN110127608A (en) * 2012-09-18 2019-08-16 质子电力公司 For producing the C-O-H chemical combination substance treating method of hydrogen or liquid fuel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4403391A1 (en) * 1994-02-04 1995-08-10 Thyssen Still Otto Gmbh Process for the production of hydrogen and carboxylic acids from biomass hydrolyzate
DE4428931A1 (en) * 1994-08-16 1996-02-22 Epple Albrecht Recovering hydrogen from carbonaceous biomass
CN1234803C (en) * 2003-07-02 2006-01-04 山东省科学院能源研究所 Method and device for producing hydrogen-rich gas from biomass
CN1277740C (en) * 2003-07-25 2006-10-04 大连理工大学 Process of catalyzing and gasifying fresh substance by solid thermophore for preparing hydrogen-rich gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581451B (en) * 2008-05-12 2011-11-09 华北电力大学 Heat processing technology and heat processing device for realizing near-zero discharge of domestic garbage
CN101475143B (en) * 2009-01-20 2011-01-05 中国科学技术大学 Biomass hydrogen production in water vapour atmosphere and series fluidized bed apparatus system thereof
CN102101647B (en) * 2009-12-16 2014-01-29 中国科学院大连化学物理研究所 Method for preparing hydrogen from cellulose
CN103025651A (en) * 2010-03-16 2013-04-03 国际壳牌研究有限公司 A process for producing hydrogen
CN102286538A (en) * 2011-08-30 2011-12-21 哈尔滨工业大学 Method for producing hydrogen utilizing cellulose
CN110127608A (en) * 2012-09-18 2019-08-16 质子电力公司 For producing the C-O-H chemical combination substance treating method of hydrogen or liquid fuel

Also Published As

Publication number Publication date
CN100363249C (en) 2008-01-23

Similar Documents

Publication Publication Date Title
Cao et al. Biorenewable hydrogen production through biomass gasification: A review and future prospects
Lee et al. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels
Jung et al. Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks–a review
Li et al. Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification–a review
Chandra et al. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production
Karimi-Maleh et al. Advanced integrated nanocatalytic routes for converting biomass to biofuels: A comprehensive review
Mishra et al. Saccharification of kans grass biomass by a novel fractional hydrolysis method followed by co-culture fermentation for bioethanol production
Antunes et al. Bioenergy and biofuels: nanotechnological solutions for sustainable production
CN100363249C (en) Method of preparing hydrogen gas by catalytic gasifying hydrolysis residue of cellulose castoff
Chieng et al. Harnessing bioenergy and high value–added products from rice residues: a review
Mohanty et al. A critical review on prospects and challenges in production of biomethanol from lignocellulose biomass
Ibrahim Bio-energy production from rice straw: A review
John et al. Biomass-based hydrothermal carbons for catalysis and environmental cleanup: A review
Bakala et al. Utilization of wheat and maize waste as biofuel source
Guo The global scenario of biofuel production and development
CN103484163A (en) Biomass double-mode reforming gasifying preparation method for pure synthesis gas
Ingle et al. Nanotechnology-based developments in biofuel production: current trends and applications
Görgens et al. Biomass conversion to bioenergy products
Rehman et al. Role of Catalysis in Biofuels Production Process–A Review
Rozina et al. Biomass as Sustainable Material for Bioethanol Production
Bhatia et al. A Systematic Review on Photocatalytic Biohydrogen Production from Waste Biomass
Doddapaneni et al. Integrated thermochemical and biochemical processes for the production of biofuels and biochemicals
Cotana et al. Biomass-based systems
Pathak et al. Crop residues as a potential substrate for bioenergy production: An overview
Prasad et al. Production and Use of Biofuel from Agricultural Resources: Transition Towards Low Carbon Economy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080123

Termination date: 20110918