CN1917309A - 利用可解理激光晶体制造的激光器件 - Google Patents

利用可解理激光晶体制造的激光器件 Download PDF

Info

Publication number
CN1917309A
CN1917309A CN 200510090441 CN200510090441A CN1917309A CN 1917309 A CN1917309 A CN 1917309A CN 200510090441 CN200510090441 CN 200510090441 CN 200510090441 A CN200510090441 A CN 200510090441A CN 1917309 A CN1917309 A CN 1917309A
Authority
CN
China
Prior art keywords
laser
crystal
cleavage
thin slice
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510090441
Other languages
English (en)
Other versions
CN1917309B (zh
Inventor
陈雨金
黄艺东
龚兴红
林炎富
林秀钦
罗遵度
谭奇光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN2005100904416A priority Critical patent/CN1917309B/zh
Publication of CN1917309A publication Critical patent/CN1917309A/zh
Application granted granted Critical
Publication of CN1917309B publication Critical patent/CN1917309B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

利用可解理激光晶体制造的激光器件,涉及激光晶体和器件领域。该激光器件采用具有完全解理能力的激光晶体RxM1-x (BO2) 3或RxM1-xB2O4或RxM1-xF2,作为激光增益介质。将完全解理能力的高光学质量激光晶体,采用常规的解理方法沿其自然解理面进行人工解理,获得3毫米以下厚度要求的激光增益介质。本发明可免去激光介质的切割,减薄和抛光等加工环节,同时避免了晶体切割和抛光过程中带来的缺陷和杂质。

Description

利用可解理激光晶体制造的激光器件
                          技术领域
本发明涉及激光晶体和器件领域。
                          背景技术
阻碍固体激光器向高平均功率发展的最大问题是激光介质在光泵浦过程中产生的热。沉积在激光介质里的废热将导致热透镜、热致双折射和热应力等效应,并由此造成激光输出光束质量的退化,激光输出功率的降低和不稳定,甚至还可能造成激光介质的破裂。如果采用薄片激光器(thin-disk laser)或板条激光器(slablaser)的设计方案(Optics and Lasers in Engineering,34(2000)213-229),将激光介质加工成厚度在3毫米以下的板条或薄片,再对上述激光介质的一个或两个端面进行冷却,不仅能有效地消散激光介质中的热量,而且可以使热流沿厚度方向一维分布,然后通过合理设计泵浦耦合结构,降低介质热效应的影响,从而使得激光介质在高功率运转条件下仍保持较高的工作效率和输出光束质量。
目前,获得薄片或板条激光介质的工艺过程一般是:首先生长出高光学质量的激光晶体;然后根据泵浦光和器件的具体要求,将晶体切成厚度在3毫米以下的晶片;这些晶片经过严格的抛光处理后用于激光实验。在此过程中需要非常高精度的加工工艺,特别是对厚度在几百甚至几十微米的激光介质的抛光处理。抛光后介质的两个通光面必须保持相当高的光洁度、平面度和平行度,否则将严重影响激光器的激光性能。这种加工精度和难度给薄片或板条激光介质的批量化生产带来了很大的麻烦并使生产成本得不到降低,成为激光器研究,制造和商品化生产的一个瓶颈。
某些晶体在外力作用下能够沿着一定方向分裂出光滑平面,这种性质称为解理。由于晶体的解理是由其内部离子之间相互作用的最终结果,因此解理面的光洁度、平面度和平行度可以达到原子尺寸的精度,大大优于机械加工的效果,而且还可根据实际需要轻易获得不同厚度的解理片。
某些激光晶体也存在着解理现象,难以获得大尺寸棒状激光增益介质。因此,长期以来人们竭力采用各种生长措施来避免或者减小激光晶体的解理,甚至于放弃了解理晶体用作激光材料的可能。
然而,由于薄片和板条激光增益介质恰恰需要薄片状的晶体材料,因此可以利用具有完全解理性能的激光晶体,通过改善晶体生长工艺从解理晶体上直接取得具有高光学质量的解理片,省去传统加工过程中需要的切割和高精度抛光工艺要求。采用解理方法获得的薄片和板条激光增益介质不仅其两端面的光洁度、平面度和平行度可以达到原子尺寸的精度,大大优于机械加工的效果;而且还避免了晶体加工过程带来的缺陷和杂质。这对提高薄片和板条激光器的运转效率、输出功率和光束质量均具有重要意义。
                          发明内容
本发明的目的是采用具有完全解理能力的激光晶体,利用其解理特性直接获得满足薄片激光器或板条激光器运转需要的激光增益介质,解理晶体的一对自然解理面即为板条或薄片激光增益介质的一对平行端面。免去激光介质的切割,减薄和抛光等加工环节,同时避免了晶体切割和抛光过程中带来的缺陷和杂质。
实现本发明的目的可采用如下技术方案:选择合适的晶体生长工艺生长出具有完全解理能力的高光学质量激光晶体,采用常规的解理方法沿其自然解理面进行人工解理,获得3毫米以下厚度要求的激光增益介质。这些介质的一个或两个解理端面再按常规薄片激光器或板条激光器的设计工艺要求直接进行镀膜或冷却技术的处理即可符合实际的激光器工作需要。
本技术方案可实施于具有完全解理能力的RxM1-x(BO2)3激光晶体中。其中0<x≤1,M为Ti、Cr、Y、Sc、以及镧系元素中某一元素或若干元素的组合;R3+为激活离子根据泵浦源、激光腔和应用需要等因素确定的,它是部分或完全替代晶体基质中M3+离子位置的某种稀土或过渡金属离子,R一般为Ti、Cr、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb。而且,该技术方案在RxLa1-x(BO2)3(R为稀土离子)解理晶体中具有较佳的实施效果。目前,该技术方案已经在NdxLa1-x(BO2)3解理片中实现了高效的激光运转。
采用其它类型的可解理激光晶体,如RxM1-xB2O4,RxM1-xF2(其中0<x≤1,M为碱土金属元素,R3+是部分或完全替代晶体基质中M3+离子位置的某种稀土或过渡金属离子),也可以实现同样的效果。
实施本发明技术方案具有的有益的效果是能够直接获得满足薄片激光器和板条激光器需要的激光增益介质。一方面省去了激光介质的切割、减薄和抛光等加工环节,克服了薄片和板条激光材料加工难度大、费工费时的不足;另一方面还能保证激光介质端面具有更高的光洁度、平面度和平行度,避免加工过程带来的缺陷和杂质,提高激光介质的端面光学质量,成品率和经济效益,省时高效,便于标准化、大批量制造板条激光器和薄片激光器。
                          具体实施方式
实例1:799nm半导体激光泵浦5.6at%Nd3+激活的可解理La(BO2)3薄片实现1060nm激光输出。
La(BO2)3晶体属于单斜晶系,空间群为C2/c,其单胞参数为a=9.946,b=8.163,c=6.497,α=γ=90°,β=127.06°,Z=4。该晶体可被Nd3+离子激活,并可沿(10 1)面解理。在799nm处,Nd3+离子对垂直该解理面入射的光有一强的吸收峰,吸收截面为5.0×10-20cm2。对Nd0.056La0.944(BO2)3晶体沿(10 1)解理面剥离出200μm厚的薄片,该薄片表面的光洁度为20/10,平面度在633nm波长处小于1/4波长,平行度约为10秒。直接在该薄片的一个解理端面镀上对泵浦光和基波激光均高反的介质膜构成激光腔的一个腔镜,再将这一端面直接或再镀上一层导热材料(如铟,锡等)后贴在散热器上作为冷却面,沿轴向快速消散介质中产生的热量。薄片的另一端面可作为泵光的入射面,也可在此端面镀上对泵光的增透膜。在薄片的非冷却面一端放置输出耦合镜构成激光腔的另一腔镜,该镜在1060nm处的透过率在1%到20%之间(根据泵浦光功率确定)。由于200μm的薄片单程只能吸收41%的入射光,若采用端面泵浦(沿一定角度入射),就必须采用球形反射镜技术使泵浦光连续多次通过介质以充分利用泵浦光。该类器件也可采用侧向泵浦方案,只要薄片的径向长度足够充分吸收80%以上的入射光,也可以实现同样的目的。此时,薄片还必须切割抛光出两个平行的侧面作为入射面。对于侧向泵浦方案,输出腔镜也可直接镀在薄片的非冷却解理端面上。上述方案均可构成一个利用799nm半导体激光泵浦获得1060nm高平均功率固体激光的薄片激光器件。
实例2:799nm半导体激光泵浦5.6at%Nd3+激活的可解理La(BO2)3薄片实现腔内倍频530nm绿色激光输出。
直接将倍频1060nm的非线性光学晶体(如KTP、LBO、β-BBO等)插入实例1中薄片的非冷却端面和输出腔镜之间,在输出腔镜上镀上1060nm处高反,530nm处高透的介质膜。这便是一个799nm半导体激光端面或侧向泵浦输出530nm绿色固体激光的腔内倍频薄片激光器件。也可以将输出腔镜直接镀在非线性光学晶体的输出端面上;或者将薄片与非线性光学晶体粘贴,采用侧向泵浦方案,可以实现同样的目的。
实例3:799nm半导体激光泵浦5.6at%Nd3+激活的可解理La(BO2)3薄片实现1060nm被动调Q脉冲激光输出。
直接将调Q片(如Cr4+:YAG,GaAs等)插入实例1中薄片的非冷却端面和输出腔镜之间,在输出腔镜上镀上1060nm处的透过率在1%到20%之间(根据泵浦光功率确定)的介质膜。这便是一个799nm半导体激光端面或侧向泵浦输出1060nm调Q脉冲激光的被动调Q薄片激光器件。也可以将输出腔镜直接镀在调Q片的输出端面上;或者将薄片与调Q片粘贴,采用侧向泵浦方案,可以实现同样的目的。
实例4:799nm半导体激光泵浦5.6at%Nd3+激活的可解理La(BO2)3薄片实现被动调Q腔内倍频530nm绿色脉冲激光输出。
直接将调Q片(如Cr4+:YAG,GaAs等)和倍频1060nm的非线性光学晶体(如KTP、LBO、β-BBO等)依次插入实例1中薄片的非冷却端面和输出腔镜之间,在输出腔镜上镀上1060nm处高反,530nm处高透的介质膜。这便是一个799nm半导体激光端面或侧向泵浦输出脉冲530nm绿色固体激光的被动调Q腔内倍频薄片激光器件。也可以将输出腔镜直接镀在非线性光学晶体的输出端面上;或者将薄片与调Q片粘贴,再将调Q片的另一端面与倍频1060nm的非线性光学晶体(如KTP、LBO、β-BBO等)粘贴,采用侧向泵浦方案,可以实现同样的目的。
实例5:799nm半导体激光泵浦1.0at%Nd3+激活的可解理La(BO2)3板条实现1060nm激光输出。
在799nm处,Nd3+离子对平行该解理面入射的光也有一强的吸收峰,吸收截面为5.0×10-20cm2。对Nd0.01La0.99(BO2)3晶体沿(10 1)解理面剥离出2毫米厚的晶片。该晶片表面的光洁度为10/5,平面度在633nm波长处小于1/4波长,平行度约为10秒。由于板条激光器通常采用侧向泵浦方案,根据吸收截面值可计算出激光介质单程吸收80%入射泵浦光所需的板条宽度为3.4毫米。将解理获得的晶片切成2×3.4×10mm3的板条。两个3.4×10mm2的自然解理面可直接或镀上一层导热材料(如铟,锡等)后都贴在散热器上作为冷却面,沿轴向快速消散介质产生的热量。板条其余的四个面进行抛光处理。两个2×10mm2的面作为泵浦端面,而两个2×3.4mm2的面镀上输出耦合镜构成激光腔,该输出镜在1060nm处的透过率在1%到20%之间(根据泵浦光功率确定)。输出镜可以不直接镀在板条介质的面上而独立放置,也可实现同样的目的。该解理板条便是一个利用799nm半导体激光泵浦获得1060nm固体激光的板条激光器件。
实例6:将实例5中板条激光器的输出耦合镜独立放置,在板条的输出端面与输出镜间采用实例2至4的相应元件和措施,可以实现类似于实例2到4的效果。

Claims (5)

1.利用可解理激光晶体制造的激光器件,其特征在于:该激光器件采用具有完全解理能力的激光晶体作为激光增益介质。
2.如权利要求1的激光器件,其特征在于:所述的激光晶体为RxM1-x(BO2)3激光晶体中,其中0<x≤1,M为Ti、Cr、Y、Sc、以及镧系元素中某一元素或若干元素的组合;R3+为Ti、Cr、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、或Yb离子。
3.如权利要求2的激光器件,其特征在于:所述的激光晶体为RxLa1-x(BO2)3晶体。
4.如权利要求3的激光器件,其特征在于:所述的激光晶体为NdxLa1-x(BO2)3晶体。
5.如权利要求1的激光器件,其特征在于:所述的激光晶体为RxM1-xB2O4或RxM1-xF2,其中0<x≤1,M为碱土金属元素,R3+是部分或完全替代晶体基质中M3+离子位置的某种稀土或过渡金属离子。
CN2005100904416A 2005-08-15 2005-08-15 利用可解理激光晶体制造的激光器件 Expired - Fee Related CN1917309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005100904416A CN1917309B (zh) 2005-08-15 2005-08-15 利用可解理激光晶体制造的激光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2005100904416A CN1917309B (zh) 2005-08-15 2005-08-15 利用可解理激光晶体制造的激光器件

Publications (2)

Publication Number Publication Date
CN1917309A true CN1917309A (zh) 2007-02-21
CN1917309B CN1917309B (zh) 2010-04-14

Family

ID=37738226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100904416A Expired - Fee Related CN1917309B (zh) 2005-08-15 2005-08-15 利用可解理激光晶体制造的激光器件

Country Status (1)

Country Link
CN (1) CN1917309B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069396A (zh) * 2017-03-29 2017-08-18 中国科学院福建物质结构研究所 基于稀土离子激活拉曼晶体解理片的平板波导激光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225824C (zh) * 2003-07-11 2005-11-02 清华大学 复合外腔电流步进调谐半导体激光器及其调谐方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069396A (zh) * 2017-03-29 2017-08-18 中国科学院福建物质结构研究所 基于稀土离子激活拉曼晶体解理片的平板波导激光器件

Also Published As

Publication number Publication date
CN1917309B (zh) 2010-04-14

Similar Documents

Publication Publication Date Title
Liu et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz
US8929413B2 (en) Laser gain module and method for producing such a module
CN103779772B (zh) 采用复合泵浦耦合的激光器模块及固体激光器
CN112436370B (zh) 一种端泵板条激光放大器
US20200044409A1 (en) Kind of all-solid-state high-power slab laser based on phonon band-edge emission
CN1841133A (zh) 用于高输出激光器的法拉第旋转器
CN105911793B (zh) 一种基于单块磷酸盐晶体的级联光学变频器及其应用
CN1658451A (zh) 多边形热键合复合激光介质及其制备方法
CN105549295A (zh) 一种兼具非临界相位匹配倍频、三倍频性能的紫外激光变频器及其工作方法
CN103490275A (zh) 基于键合晶体的1.5至1.6微米波段及其变频激光器
Soulard et al. Laser operation of highly-doped Tm: LiYF 4 epitaxies: towards thin-disk lasers
US20100177377A1 (en) Use of undoped crystals of the yttrium/aluminum/borate family for creating non-linear effects
CN102074888B (zh) 具有单一束激光输出或线阵激光输出的自倍频激光器
CN1905292A (zh) 反射玻璃实现z形光路的板条激光器
CN1917309B (zh) 利用可解理激光晶体制造的激光器件
CN102299469A (zh) 一种通过控制泵浦光特性实现亚纳秒调q输出的激光器
CN1317796C (zh) 补偿像散的折叠腔腔内倍频板条激光装置
CN101535887A (zh) 光波导基板的制造方法
CN105375253B (zh) 一种高效率多空间角度双z型板条结构激光放大装置
CN103972784A (zh) 一种1.5至1.6微米波段薄盘片激光器
Wang et al. Temperature distribution and the laser performance of LD end-pumped LuYSGG/Er: LuYSGG composite crystal
CN2711771Y (zh) 带有补偿像散系统的板条激光装置
EP2982782A1 (en) Crystal body, optical device having same and crystal body production method
Weichelt Experimental investigations on power scaling of high-brightness cw ytterbium-doped thin-disk lasers
Hai-Feng et al. Experimental 511 W composite Nd: YAG ceramic laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100414

Termination date: 20150815

EXPY Termination of patent right or utility model