CN1914791A - 单芯片功率放大器和包络调制器 - Google Patents
单芯片功率放大器和包络调制器 Download PDFInfo
- Publication number
- CN1914791A CN1914791A CNA2004800412006A CN200480041200A CN1914791A CN 1914791 A CN1914791 A CN 1914791A CN A2004800412006 A CNA2004800412006 A CN A2004800412006A CN 200480041200 A CN200480041200 A CN 200480041200A CN 1914791 A CN1914791 A CN 1914791A
- Authority
- CN
- China
- Prior art keywords
- power amplifier
- voltage
- current
- transistor
- envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/504—Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
Landscapes
- Amplifiers (AREA)
Abstract
RF极性调制电路具有自补偿温度稳定包络控制器和自补偿温度稳定功率放大器偏置。该电路具有带预失真补偿能力的自适应电流-电压调制接口。对于包络相关功率放大器晶体管偏置来补偿AM/PM失真。对高于或低于标称负载的RF负载提供自动补偿。本摘要是根据要求摘要使研究人员或其他读者可以快速确定技术公开的主题的规章而提供的。应当理解,提交本摘要并不是要用于解释或限定权利要求的范围或含意。
Description
技术领域
本发明涉及射频(RF)收发信机,具体来说,涉及RF功率放大器和包络调制器。
背景技术
无线通信技术的新发展使诸如蜂窝电话、个人数字助理(PDA)之类的移动终端能够获得更好的信号质量以及更高的数据传输速率。这些发展可部分促成现代无线通信电路中使用复杂的数据调制方案,诸如GSM、EDGE、WCDMA、CDMA、IS-95等。调制方案通常产生经过相位调制以及一般称作非恒定包络调制的幅度调制的复杂RF信号。获得/实现用于这种调制方案的发射机的一种方式是采用极性调制。极性调制电路的一个实例可见于公布的美国申请US20020077066以及公布的PCT申请WO0237666,通过引用将这两个申请结合到本文中。
在例如US20020077066中所述的极性调制方案中,具有恒定幅度的相位调制后的RF信号以可变功率电平发射,从而实现幅度调制。改变RF信号的发射功率电平通过控制移动终端中的功率放大器来执行。为了使效率为最大,功率放大器以其最高可用输出电平或者极接近其最高可用输出电平(即以饱和模式)工作,所述电平通常等于电源电平。电源则被改变以实现幅度调制。
图1说明US20020077066中所述的极性调制电路100的类型。可以看到,极性调制电路100包括用于放大RF信号的功率放大器102。功率放大器102配置成接收RF输入信号104以及输出RF输出信号106。还提供的是偏置电压108以及电源110,用于向功率放大器102提供电力。电源110通过由均如图所示连接的晶体管T1、T2和电阻器Rg、R1、R2组成的包络控制器112连接到功率放大器102。晶体管T1可能是例如双极结型晶体管(BJT),晶体管T2可能是例如金属氧化物半导体场效应晶体管(MOSFET)。幅度调制电压114控制包络控制器112,由此调制电源110提供给功率放大器102的功率。
发明内容
本发明针对用于实现RF极性调制电路的方法及电路。本发明的方法及电路提供自补偿温度稳定包络控制器和自补偿温度稳定功率放大器偏置。还包括的是具有预失真补偿能力的自适应电流-电压调制接口。通过包络相关功率放大器晶体管偏置来补偿AM/PM失真。对高于或低于标称负载的RF负载提供自动补偿。本发明的方法及电路还允许极性调制电路采用低电压MOS晶体管工艺来实现。
一般来说,在一个方面,本发明针对在单芯片上实现具有功率放大器和幅度调制器的温度稳定射频极性调制电路的方法。该方法包括将包络控制电流输入极性调制电路,降低包络控制电流的温度敏感性,把包络控制电流转换为包络调制电压,以及向幅度调制器的输入端提供包络调制电压。
一般来说,在另一个方面,本发明针对具有幅度调制器和功率放大器的单芯片射频极性调制电路。该电路包括电流-电压接口,配置成接收包络控制电流、降低包络控制电流的温度敏感性、把包络控制电流转换为包络调制电压以及向幅度调制器的输入端提供包络调制电压,电流-电压接口实质上是温度不敏感的。该电路还包括电流-电压接口中的电阻元件,配置成在包络控制电流被转换为包络调制电压之前调节包络控制电流以补偿极性调制电路中的失真。
应当强调,在本说明中使用的术语“包括/包含”用来表示存在所述特征、整数、步骤或组件,但不排除存在或附加一个或多个其它特征、整数、步骤、组件或上述各项的组合。
附图说明
通过以下详细说明以及参考附图,本发明的以上及其它优点将变得非常明显,附图包括:
图1说明先有技术的极性调制电路;
图2说明温度稳定极性调制电路;
图3说明具有低环路增益的先有技术的极性调制电路的传递函数曲线图;
图4说明能够补偿因低环路增益引起的失真的极性调制电路;
图5说明具有非标称RF负载的先有技术的极性调制电路的传递函数曲线图;
图6说明能够补偿非标称RF负载的极性调制电路;
图7说明具有低电阻RF负载的先有技术的极性调制电路的传递函数曲线图;
图8说明能够补偿低电阻RF负载的极性调制电路;
图9说明图8所示的极性调制电路的一种具体实现;
图10说明具有偏移补偿的极性调制电路;
图11说明有及没有偏移补偿的极性调制电路的传递函数曲线图;
图12说明包络相关偏置电源;
图13说明带有及没有包络相关偏置电源的调制电路的AM/PM性能;
图14以框图形式说明先有技术的极性调制电路;
图15说明具有给功率放大器晶体管级的独立电压供给的极性调制电路;
图16-17说明具有及没有给功率放大器晶体管级的独立电压供给的极性调制电路的相位/增益特性的曲线图;以及
图18说明具有击穿电压保护的极性调制电路。
具体实施方式
下面是参照附图对本发明的说明性实施例的详细描述,其中相同的参考标号用于相同或相似元件。应当注意,图中所示的晶体管预计是通用性的,不一定表示优先选择具体类型的晶体管。同样,本文提供的等式预计是通用性的,并不表示优先选择具体类型的晶体管。另外,本文所述的所有电阻器也可能是另外某种形式的阻抗,诸如电容的(C)、电阻的(R)、电感的(L)、RC、RL等。一般来说,本发明可通过任何适当类型的晶体管(例如BJT、MOSFET等),采用任何适当的电阻、电容或电感元件来实现。
虽然图1所示的配置在原理上起作用,但在实际上,必须解决几个考虑因素。例如,移动终端的不断减小的尺寸迫使电路设计人员把尽可能多的组件组合到单芯片上以便节省空间。但是,让包络控制器和功率放大器位于同一个芯片上在芯片上产生温度梯度和热变化,情况比包络控制器位于分开的芯片上时明显更差。这些温度梯度和热变化不利地影响包络控制器的工作,并且可能使它变得不稳定。
另一个考虑因素是在其中导电硅衬底上存在极高的电磁场和电容耦合的单芯片环境中如何使包络控制器稳定。又一个考虑因素是如何防止地或衬底漏电使包络控制器传递函数AMout/AMin失真。其它考虑因素包括如何保持功率放大器的最低可能的环路增益,如何保持传递函数的完全受控的起始点,如何偏置功率放大器以便在保持温度稳定偏置的同时得到最高效率而没有产生AM/PM失真(由于AM调制器中的缺陷),以及如何以在BiCMOS工艺中可得到的低电压互补金属氧化物半导体(CMOS)实现包络控制器。
当包络控制器和功率放大器位于单芯片时出现的各种考虑因素通过本发明的实施例的至少一部分来解决。具体来说,在本发明的至少一部分实施例中,实现相对温度变化是稳定的单芯片极性包络控制器电路。
如上所述,本发明的各种实施例提供相对温度变化是稳定的单芯片包络控制器电路。现有调制电路、如图1所示的调制电路100往往随温度而不稳定。理想地,输入到包络控制器112的幅度调制电压114将与从包络控制器112输出的电源电压相同或接近相同。但是,实际上,这在单芯片上难以实现,因为用来调节电源110的场效应晶体管T2散发大量热(例如高达5瓦特)。当晶体管T2在包络控制器112工作期间接通和断开时,热量在芯片上产生温度梯度。温度梯度又可能影响在包络控制器112中用作差分放大器的BJT晶体管T1的工作。具体来说,BJT晶体管T1的基极-发射极电压Vbe可能随温度变化而改变(例如高达2mV/K)。基极-发射极电压Vbe也可能随着双极型晶体管T1中的不同集电极电流而改变。
现在参照图2,根据本发明的各种实施例,通过采用包络调制电流代替幅度调制电压,能够降低或消除调制电路100的温度敏感性。在图2中可以看到,根据本发明的各种实施例的调制电路200与图1中的调制电路100相似,但它还具有幅度电流-电压接口202和包络调制电流204。幅度电流-电压接口202包括由如图所示连接的两个场效应晶体管T3和T4组成的电流镜。晶体管T3和T4的源极相互连接并连接到电源110(参见图1)。晶体管T3的栅极短接到它的漏极,它的漏极又连接到包络调制电流Iam204(或者调制参考值)。晶体管T4的栅极连接到晶体管T3的漏极。晶体管T4的漏极连接到二极管D1和电阻器R3的串联组合,以及还连接到晶体管T1的基极。
在工作中,包络调制电流204从晶体管T3镜像到晶体管T4,以及来自晶体管T4的电流被馈送到二极管D1和电阻器R3。二极管D1和电阻器R3的串联组合把晶体管T4中的电流转换为提供给晶体管T1的基极的包络调制电压。由于电流镜具有极少或者没有温度相关性(本领域的技术人员众所周知的一种特性),因此,二极管D1和电阻器R3上的电压、因而晶体管T1和电阻器R1上的电压也没有温度相关性。因此,调制电路200比现有解决方案更为温度稳定。
注意,在一些实施例中,电阻器R1和R3采用相同或相似的工艺来制作,使得它们具有相似的电气和温度特性。二极管D1是与晶体管T1相同种类和规格的、被连接为二极管的晶体管。
以上配置的结果是,电流-电压接口202具有极低的环路增益。然而,低环路增益引起调制电路200中的失真。这在图3的曲线图A-D中说明,其中垂直轴表示输出RF信号106的幅度,以及水平轴表示包络调制电流204。曲线图A和B分别表示理想和实际情况中的调制电路200的传递函数,而曲线图C和D分别表示理想和实际情况中的调制电路200的增益。在曲线图D中可以看到,实际情况中的调制电路200的增益很不理想,更像平方根函数。这部分由低增益引起,它使RF输出信号不跟踪包络控制电流。它还部分地由功率放大器的性能引起,使得即使环路增益为无限的,也会有些失真。
根据本发明的各种实施例,失真可通过部分地使输入到包络控制器的包络调制电压成矩形来解决。现在参照图4,说明实现这样一种功能的示范调制电路400。调制电路400包括电流-电压接口402,它与图2的电流-电压接口202相似,但它具有连接在晶体管T3和T4的两个漏极之间的电阻器Rpre。电阻器Rpre用于部分地使包络调制电压成矩形,从而使曲线图B中的传递函数看起来更像曲线图A中的传递函数。电阻器Rpre的大小可根据具体应用按照需要来选取。
当RF负载在调制电路的输出端改变时,传递函数也发生变化,这影响电路的VSWR(电压驻波比)。这在图5的曲线图A1-D3中说明,其中垂直和水平轴同样分别表示调制电路400的输出RF信号106的幅度和包络调制电流204。曲线图A1表示当RF负载为标称的时的理想情况中的调制电路400的传递函数,曲线图B2表示RF负载低于标称时的传递函数,而曲线图B3表示RF负载高于标称时的传递函数。曲线图C1、D2和D3分别表示与曲线图A1、B2和B3对应的增益。在曲线图D2和D3中可以看到,当RF负载不是标称负载时,调制电路400的增益很不理想。
根据本发明的各种实施例,可通过检测RF负载(或者增益中的斜率变化)并相应地自适应改变Rpre来为非标称RF负载(因此对于不理想的VSWR)校正调制电路400的增益。现在参照图6,说明实现可调电阻器Rpre的示范调制电路600。调制电路600包括电流-电压接口602,它与图2的电流-电压接口402相似,但具有连接在晶体管T3和T4的漏极之间的可调电阻器Rpre’。调制电路600还包括:Rpre预测器604,配置成预测可调电阻器Rpre’的值;以及包络检波器606,配置成测量RF输出信号106的幅度。然后把这种幅度信息连同包络调制电流204一起提供给Rpre预测器604。Rpre预测器604测量包络调制电流204的值,并将这个值与RF输出信号106的幅度进行比较。根据这个比较,Rpre预测器604调节可调电阻器Rpre’的电阻,以便使从Iam到RF输出信号106的幅度的增益变化中的任何偏差为最小。
在RF负载是高电阻负载(假定没有绝缘体)的情况下,功率放大器102的输出功率将小于标称负载条件下的输出功率。功率放大器102的输出电流也会更小。另一方面,在RF负载是低电阻负载的情况下,功率放大器102可输出它的最大功率输出(即饱和的),由偏置设定来确定。要获得关于这种现象的更多信息,读者可参考美国临时申请序号60/388172和60/400561,通过引用将其结合到本文中。这在图7的曲线图A-D中说明,其中垂直轴同样表示输出RF信号106的幅度,以及水平轴表示用于调制电路600的包络调制电流204。曲线图A和B分别表示标称负载(理想)情况下以及低电阻负载情况下的调制电路600的传递函数。曲线图C和D分别表示标称负载和低电阻负载情况的功率放大器102的功率输出。在曲线图D中可以看到,功率放大器102的功率(以及电流)输出比标称情况中快得多地增加,这可能导致RF输出信号的失真。
根据本发明的各种实施例,调制电路600的功率输出可通过检测RF输出信号的幅度以及相应地限制功率放大器102的输出来校正(即VSWR补偿)。现在参照图8,说明实现功率限制功能的示范调制电路800。调制电路800与图6的调制电路600相似,但包络检波器606还连接到包络限制器802。包络限制器802把幅度信息提供给连接晶体管T4、电阻器R3、二极管D1或者电阻器R1的组件控制器804。晶体管T4、电阻器R3、二极管D1和电阻器R1中的一个或多个则可用来控制包络调制电压的斜率,使得标称负载上的包络调制电压的最大值当存在负载失配时不会产生饱和的调制器。
在一些实施例中,包络限制器802和组件控制器804可实现为与如上所述的功率放大器保护以及具有增加的VSWR处理的功率控制中所述的相似的数字功能(即并联或串联接通或断开)或者模拟自动增益调节控制(即模拟控制环路)。还能够在没有分开的包络限制器802的情况下实现功率限制功能,在这种情况中,包络检波器606可配置成向组件控制器804提供幅度信息。
图9说明图8所示的调制电路的一种示范实现。在图9中可以看到,避免调制失真、高输出功率、高功耗以及高电流的一种方式是在RF输出信号的幅度达到预设值时降低电阻器R3的值。因此,在这些实施例中,组件控制器902连接到电流-电压接口904中的可调电阻器R3’。组件控制器902控制可调电阻器R3’的大小,从而限制功率放大器102的功率输出。
在前面所述的实施例中,(功率放大器内部的)功率放大器晶体管具有它们在其中无法传导电流(饱和)的集电极电压的小区域。这防止调制电路的传递函数以0μA的包络调制电流开始。实例在图3的水平轴上表示(但没有在图7的说明性曲线图中示出)。传递函数而是以对应于功率放大器上的、接近晶体管中的饱和电压的集电极电压的包络调制电流开始。在现有的解决方案中,这种偏移采用分开的外部实现的补偿电路,通过包络调制电流上的偏移电流来校准和补偿。
根据本发明的各种实施例,偏移补偿可实现为调制电路本身的一部分,因为包络控制器和功率放大器电路位于单芯片上。这样一种配置具有要求比与调制电路分开的补偿电路更少的生产调整的优点。在一个实施例中,偏移补偿实现为具有与电流-电压接口中的功率放大器相同的饱和电压的附加晶体管,如图10所示。可以看到,调制电路1000具有电流-电压接口1002,它与电流-电压接口602(参见图6)相似,但包括偏移补偿晶体管T5。偏移补偿晶体管T5可能是双极结型晶体管,其集电极连接到电阻器R3,以及基极连接到偏置电压108。这样一种配置产生使功率放大器晶体管中的饱和电压偏移的偏移电压。优选地,晶体管T5经过选择,以便与功率放大器中的晶体管相似。
图11的曲线图A和B分别说明把偏移补偿晶体管T5插入电流-电压接口1002之前和之后的调制电路1000的传递函数起始点的差异。在曲线图B中可以看到,在插入偏移补偿晶体管T5之后的调制电路1000的传递函数起始点已经有效地移动到接近0μA。
极性调制电路的偏置电路可实现为经由具有0欧姆电阻的电感器连接到功率放大器中的分开的晶体管级的电压源。但是,存在也需要考虑的偏置功率放大器的其它方面,例如温度稳定性、效率以及对称性。在双极功率放大器中,双极结型晶体管单独地不是温度稳定的,与许多场效应功率放大器相反。能够通过增加对地的发射极电阻来使双极结型晶体管为温度稳定的,但是这降低了功率放大器的效率。偏置电压(对晶体管的基极电压)也将根据各级的RF输入功率来改变,这将把AM/PM失真引入功率放大器。
根据本发明的各种实施例,电流驱动的偏置输入可用来代替功率放大器的电压驱动的偏置输入。图12说明调制电路1200的电流驱动的偏置输入的一种示范实现。可以看到,调制电路1200与调制电路1000(参见图10)相似,但偏置电压108由电流驱动的偏置网络1202取代,以及从功率放大器102到包络检波器606的连接成为可选的(虚线),表明不一定要把包络检波器606连接到功率放大器102的输出以及其它变量可与包络相关并用作替代。电流驱动的偏置电流网络1202由全部如图所示连接的晶体管T6-T8和R4-R6组成。电流Ibias则通过晶体管T7、T8以及R6被转换为电压。功率放大器102的偏置输入消耗来自功率放大器的内部晶体管的基极端子上的已整流RF信号的电流,其中T6和T7组成电流镜,以及T7、T8和R6提供电流-电压转换。偏置电流Ibias与RF包络成正比,它接近与提供给功率放大器的集电极电压成正比。
为了温度稳定性原因而确定大小的电阻器R4配置成防止功率放大器102具有恒定的偏置电压。通过增加由包络控制器1002提供给功率放大器102的集电极电压的一部分,能够通过把电阻器R5插入晶体管T8的发射极与电阻器R1之间来补偿R4上的电压降。换言之,在高输出功率电平,功率放大器将通过R4消耗比在较低输出功率更高的电流。这意味着,在更高的输出功率上,将存在R4上的电压降,产生功率放大器中降低的输入电流,以及防止功率放大器保持受压。R5为偏置电路馈送与集电极电压成正比的电压,它补偿R4上的电压降。在各种实施例中,电阻器R4可在功率放大器晶体管为双极结型晶体管时连接到功率放大器的基极端子,或者在功率放大器晶体管为场效应晶体管时连接到栅极端子。
此外,图12的偏置电流电路1202还可用于使功率放大器102的AM-PM性能线性化。例如,能够采用这种电路来减少AM-PM失真(Iam-Pout的相位)的一阶项。回想一下,AM/PM性能取决于功率放大器的偏置。通过控制偏置,可降低AM/PM失真。实际上,这是具有功率放大器102的包络相关偏置电源的优点之一。图13的曲线图A和B分别说明带有及没有功率放大器102的包络相关偏置电源的调制电路1200的AM/PM性能。可以看到,曲线图B中的AM/PM失真已经减小到大约曲线图A中的一半。
AM/PM失真可通过向功率放大器本身内的各个晶体管级提供分开的电源来进一步改善。现在参照图14,说明典型的极性调制电路1400的框图。极性调制电路1400具有控制块1402,它包括数字波形发生器1404、相位调制器1406和数模转换器1408。这些组件的功能是本领域的技术人员熟知的,在此不进行描述。控制块1402向功率放大器1410提供恒定包络的相位调制后的信号SRF,phase(t),以及向包络控制器1412提供包络控制信号r(t)。功率放大器1410的输出是具有相位以及幅度调制的信号Sout(t)。幅度功率控制信号Vapc通常是恒定的,但在此已经作为时间相关信号引入,以便使AM/PM失真为最小。它不仅可用来补偿电阻器R4中的电压降,而且还可用来选择获得功率放大器的最佳性能的点。
作为Iam的一般形式的包络控制信号r(t)使包络控制器1412改变/调制电源VDC(例如手持式移动终端中的电池)。这产生给功率放大器1410的已调制电压电源VCCAM(t)。已调制电压电源可写作包络控制信号r(t)与电源VDC的函数VCCAM(t)=f{r(t),VDC}。由于调制过程,信号SRF,phase(t)从在功率放大器1410的输入端具有恒定包络转到在功率放大器的输出端具有非恒定包络。从以上所述可以看到,实现极性调制发射机的低AM/PM失真要求(1)VCCAM(t)准确跟踪r(t);(2)Sout(t)信号的包络准确跟踪VCCAM(t);以及(3)VCCAM(t)的变化对于通过功率放大器的Sout(t)的相移具有小(可忽略)的影响。
第(1)项可按照以上在图2-17中所述来解决。根据本发明的各种实施例,第(2)和第(3)项可通过为功率放大器1410中的放大器级的每个提供其自己的VCCAM信号来解决。具体来说,VCCAM节点上提供的调制可通过偏置网络进行路由,以便把最佳VCC信号提供给放大器级的每个,如图15所示。可以看到,调制电路1500包括前面所述的功率放大器1410和包络控制器1412(在此省略了控制块1402)。还提供的是与先前针对图12-13所述相似的偏置网络1502,其中VDAC用来设置Ibias。另外还提供了分开的偏置网络1504-1508,每个提供分开的VCC信号(VCC1、VCC2、VCC3),用于偏置功率放大器1410的晶体管级。为偏置网络1504-1508提供来自包络控制器1412的电源电压,VCCAM(t)=f{r(t),VDC}=Vbat-Vdrop(t)。为了找出VCCx信号与特定放大器级之间的最佳关系,可在相位失真(AM/PM)和增益失真(AM/AM)两个方面考虑整体放大器/包络控制器性能。
以上配置允许放大器/包络控制器配置适合于实际通信标准(EDGE、WCDMA、GSM等),并且还帮助AM/AM性能与AM/PM性能之间的折衷。例如,假定希望设计具有大调制深度以及对AM/PM和AM/AM的高线性度要求的电路。这时假定Vapc与输出功率电平(以及VCCAM)无关,并且所有功率放大器级均连接到同一个电压节点。这样一种功率放大器配置将具有与图16所示的曲线图相似的相位或增益特性。
如果反而使Vapc取决于VCCAM和/或分开的VCC电压用于不同的功率放大器级,则将产生与图17所示的曲线图相似的相位或增益特性。在那种情况中,相位斜率(度/dB)远小于图16的,至少在其中预期调制的输出功率范围中。因此,通过采用图15所示的调制电路拓扑,RF信号Sout(t)的包络与参考信号r(t)之间的关系的线性度得到改善。此外,因信号的包络的调制引起的RF信号Sout(t)的相位φ的变化被减小。
注意,仅为了说明目的而提供图15所示的实例,以及本领域的技术人员会知道,变更和修改是可行的。例如,不一定单独调制每个功率放大器级。相反,同一个VCC信号可用于第2级和第3级(VCC2(t)=VCC3(t)),以及分开的VCC线(VCC1)用于第一级。例如,另一种可能性是仅调制一部分级,并把其余级连接到Vbat(直接或者例如经由某种分压器)或者另外某个(某些)恒压源。此外,不同偏置网络1502-1908的复杂度可能不同。例如,网络可由无源或有源电路组成,可能是频率相关或者频率无关的,可能是线性或者非线性的,或者以上各项的任何组合。
为了采用低电压BiCMOS技术来实现极性调制电路,需要防止具有过低的击穿电压。在许多BiCMOS工艺中,短沟道PMOS晶体管具有过低的击穿电压(即低于Vbat)。现在参照图18,说明调制电路1800,根据本发明的各种实施例,它克服了击穿电压问题。调制电路1800包括全部如图所示连接的晶体管T9以及二极管D3、D4和电流源I1。当电源电压在包络控制器处于工作模式的同时超过3个二极管电压降减去T9的夹断电压时,晶体管T9和二极管D3、D4保护调节器晶体管T2。因此,例如,在具有4.4V最大电压的电池中,三个二极管电压降减去T9的夹断电压等于3(0.9V)-(0.5V)=2.2V,使得能够采用例如2.2V PMOS晶体管。
当电流源I1被二极管D4断开时,晶体管T2也受到晶体管T9的保护。当调制电路处于关断状态时,控制电路D3、D4、T9和I1不应当消耗任何电流,但仍然应当使PMOS晶体管T2和T9避免高于各PMOS的击穿电压的电压。
虽然已经参照一个或多个具体实施例描述了本发明,但本领域的技术人员会知道,可对它进行许多变更,而没有背离本发明的精神和范围。这些实施例的每个及其明显的变更被认为落入要求其权益的、以下权利要求中阐述的本发明的精神和范围之内。
Claims (30)
1.一种在单芯片上实现具有自补偿温度稳定功率放大器和自补偿温度稳定幅度调制器的射频极性调制电路的方法,所述方法包括:
向所述极性调制电路提供包络调制电流以补偿温度偏移;
把所述包络调制电流转换为包络调制电压;
向所述幅度调制器提供所述包络调制电压;
采用所述幅度调制器来调制所述功率放大器的电源;以及
把所述功率放大器的最大输出功率限制为小于或等于用于给定包络调制电流的预定值。
2.如权利要求1所述的方法,其特征在于,限制所述功率放大器的最大输出功率的所述步骤采用连接到所述功率放大器的偏置网络来执行,所述功率放大器的所述最大输出功率通过提供给所述偏置网络的偏置电流以及所述偏置网络的输出阻抗来设置。
3.如权利要求2所述的方法,其特征在于,所述功率放大器包括内部双极结型晶体管,所述偏置网络通过连接到所述双极结型晶体管的基极端子的电阻元件连接到所述功率放大器。
4.如权利要求2所述的方法,其特征在于,所述功率放大器包括内部场效应晶体管,所述偏置网络通过连接到所述场效应晶体管的栅极端子的电阻元件连接到所述功率放大器。
5.如权利要求1所述的方法,其特征在于,把所述包络调制电流转换为包络调制电压的所述步骤包括把所述包络调制电流输入电流镜。
6.如权利要求5所述的方法,其特征在于,还包括通过把电阻元件连接在所述电流镜的电源电压端子之间来调节提供到所述幅度调制器的输入的所述包络调制电压,以便补偿因放大器性能引起的失真。
7.如权利要求6所述的方法,其特征在于,所述电阻元件经过选择,以便使所述电流镜的电源电压与所述幅度调制器的所述输入之间的电压降最小。
8.如权利要求7所述的方法,其特征在于,还包括通过根据所述包络调制电流以及所述功率放大器的输出信号幅度自适应地改变连接在所述电流镜的电源电压端子之间的所述电阻元件的值来调节所述幅度调制器的所述包络调制电压,以便补偿因负载变化引起的失真。
9.如权利要求5所述的方法,其特征在于,限制所述功率放大器的最大输出功率的所述步骤包括检测所述功率放大器的输出信号幅度已超过门限电压的时间,以及自适应地改变所述极性调制电路的一个或多个预先选择组件的值,直到所述输出信号幅度不再超过所述门限电压为止。
10.如权利要求9所述的方法,其特征在于,所述一个或多个预先选择组件包括将所述电流镜连接到地的所述电流镜中的电阻元件。
11.如权利要求1所述的方法,其特征在于,还包括通过提供具有与所述功率放大器相同的饱和电压的所述电流镜中的晶体管,来补偿所述包络调制电流中的偏移。
12.如权利要求1所述的方法,其特征在于,还包括通过提供具有取决于所述幅度调制器的输出信号幅度的值的偏置电流并采用偏置网络把所述偏置电流转换为偏置电压来偏置所述功率放大器,以便补偿热偏移。
13.如权利要求1所述的方法,其特征在于,还包括:
向所述功率放大器的各晶体管级提供独立电源电压;以及
其中每个独立电源电压已为其相应晶体管级经过优化。
14.如权利要求13所述的方法,其特征在于,所述功率放大器的两个或两个以上晶体管级共用电源电压。
15.如权利要求1所述的方法,其特征在于,还包括通过在所述幅度调制器的调节器晶体管与所述功率放大器之间提供保护晶体管,在所述调节器晶体管的电源电压超过预定量时对它进行保护,所述保护晶体管通过二极管网络和电流源来偏置,使得所述幅度调制器在处于关断状态时消耗基本上为零的电流,从而允许所述极性调制电路采用低电压晶体管来实现。
16.一种具有自补偿温度稳定幅度调制器和自补偿温度稳定功率放大器的单芯片射频极性调制电路,所述电路包括:
电流-电压接口,配置成接收包络调制电流,把所述包络控制电流转换为包络调制电压以及向所述幅度调制器的输入提供所述包络调制电压,所述电流-电压接口实质上是温度不敏感的;以及
用于把所述功率放大器的最大输出功率限制为小于或等于用于给定包络调制电流的预定值的部件。
17.如权利要求16所述的极性调制电路,其特征在于,用于限制所述功率放大器的最大输出功率的所述部件包括连接到所述功率放大器的偏置网络,所述功率放大器的所述最大输出功率通过提供给所述偏置网络的偏置电流以及所述偏置网络的输出阻抗来设置。
18.如权利要求17所述的极性调制电路,其特征在于,所述功率放大器包括内部双极结型晶体管,所述偏置网络通过连接到所述双极结型晶体管的基极端子的电阻元件连接到所述功率放大器。
19.如权利要求17所述的极性调制电路,其特征在于,所述功率放大器包括内部场效应晶体管,所述偏置网络通过连接到所述场效应晶体管的栅极端子的电阻元件连接到所述功率放大器。
20.如权利要求16所述的极性调制电路,其特征在于,所述电流-电压接口包括电流镜,以及通过把所述包络调制电流输入所述电流镜把所述包络调制电流转换为包络调制电压。
21.如权利要求20所述的极性调制电路,其特征在于,所述电流-电压接口还包括连接在所述电流镜的电源电压端子之间的电阻元件,所述电阻元件配置成调节所述包络调制电压以补偿因放大器性能引起的失真。
22.如权利要求21所述的极性调制电路,其特征在于,所述电阻元件经过选择,以便使所述电流镜的电源电压与所述幅度调制器的输入之间的电压降最小。
23.如权利要求22所述的极性调制电路,其特征在于,还包括:
包络检波器,用于测量所述功率放大器的输出信号幅度;以及
预测器,用于根据所述包络调制电流以及所述功率放大器的输出信号幅度自适应地改变连接在所述电流镜的电源电压端子之间的所述电阻元件的值,以便补偿因负载变化引起的失真。
24.如权利要求23所述的极性调制电路,其特征在于,用于限制所述功率放大器的最大输出功率的所述部件包括:
包络限制器,用于检测所述功率放大器的所述输出信号幅度已超过门限电压的时间;以及
控制器,用于自适应地改变所述极性调制电路的一个或多个预先选择组件的值,直到所述输出信号幅度不再超过所述门限电压为止。
25.如权利要求24所述的极性调制电路,其特征在于,所述一个或多个预先选择组件包括将所述电流镜连接到地的所述电流镜中的电阻元件。
26.如权利要求16所述的极性调制电路,其特征在于,还包括把所述电流镜连接到地、具有与所述功率放大器相同的饱和电压的所述电流镜中的晶体管,用于补偿所述包络调制电流中的偏移。
27.如权利要求16所述的极性调制电路,其特征在于,还包括偏置网络,配置成把具有取决于所述幅度调制器的输出信号幅度的值的偏置电流转换为偏置电压,并把所述偏置电压提供给所述功率放大器,以便补偿热偏移。
28.如权利要求16所述的极性调制电路,其特征在于,还包括:
独立电源电压,向所述功率放大器的各晶体管级提供偏置电压;以及
其中每个独立电源电压已为其相应晶体管级经过优化。
29.如权利要求28所述的极性调制电路,其特征在于,所述功率放大器的两个或两个以上晶体管级共用电源电压。
30.如权利要求16所述的极性调制电路,其特征在于,还包括连接在所述幅度调制器的调节器晶体管与所述功率放大器之间的保护晶体管,用于在所述调节器晶体管的电源电压超过预定量时对它进行保护,所述保护晶体管通过二极管网络和电流源来偏置,使得所述幅度调制器在处于关断状态时消耗基本上为零的电流,从而允许所述极性调制电路采用低电压晶体管来实现。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52732103P | 2003-12-05 | 2003-12-05 | |
US60/527,321 | 2003-12-05 | ||
US10/869,987 | 2004-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1914791A true CN1914791A (zh) | 2007-02-14 |
Family
ID=37722670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004800412006A Pending CN1914791A (zh) | 2003-12-05 | 2004-12-02 | 单芯片功率放大器和包络调制器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1914791A (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101669280B (zh) * | 2007-03-13 | 2013-08-21 | 雅达电子国际有限公司 | 提供输出电压的超快调制的电源 |
CN104011998A (zh) * | 2011-11-04 | 2014-08-27 | 天工方案公司 | 用于功率放大器的装置和方法 |
US9374045B2 (en) | 2011-07-08 | 2016-06-21 | Skyworks Solutions, Inc. | Signal path termination |
US9467940B2 (en) | 2011-11-11 | 2016-10-11 | Skyworks Solutions, Inc. | Flip-chip linear power amplifier with high power added efficiency |
US9692357B2 (en) | 2012-06-14 | 2017-06-27 | Skyworks Solutions, Inc. | Power amplifier modules with bifet and harmonic termination and related systems, devices, and methods |
US9876478B2 (en) | 2011-11-04 | 2018-01-23 | Skyworks Solutions, Inc. | Apparatus and methods for wide local area network power amplifiers |
CN112558676A (zh) * | 2019-09-25 | 2021-03-26 | 半导体元件工业有限责任公司 | 稳压器电路 |
US11984423B2 (en) | 2011-09-02 | 2024-05-14 | Skyworks Solutions, Inc. | Radio frequency transmission line with finish plating on conductive layer |
-
2004
- 2004-12-02 CN CNA2004800412006A patent/CN1914791A/zh active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101669280B (zh) * | 2007-03-13 | 2013-08-21 | 雅达电子国际有限公司 | 提供输出电压的超快调制的电源 |
US9374045B2 (en) | 2011-07-08 | 2016-06-21 | Skyworks Solutions, Inc. | Signal path termination |
US11984423B2 (en) | 2011-09-02 | 2024-05-14 | Skyworks Solutions, Inc. | Radio frequency transmission line with finish plating on conductive layer |
US9876478B2 (en) | 2011-11-04 | 2018-01-23 | Skyworks Solutions, Inc. | Apparatus and methods for wide local area network power amplifiers |
CN104011998A (zh) * | 2011-11-04 | 2014-08-27 | 天工方案公司 | 用于功率放大器的装置和方法 |
CN104011998B (zh) * | 2011-11-04 | 2016-12-14 | 天工方案公司 | 用于功率放大器的装置和方法 |
US9571049B2 (en) | 2011-11-04 | 2017-02-14 | Skyworks Solutions, Inc. | Apparatus and methods for power amplifiers |
US9467940B2 (en) | 2011-11-11 | 2016-10-11 | Skyworks Solutions, Inc. | Flip-chip linear power amplifier with high power added efficiency |
US10141901B2 (en) | 2011-11-11 | 2018-11-27 | Skyworks Solutions, Inc. | Flip-chip amplifier with termination circuit |
US9847755B2 (en) | 2012-06-14 | 2017-12-19 | Skyworks Solutions, Inc. | Power amplifier modules with harmonic termination circuit and related systems, devices, and methods |
US9755592B2 (en) | 2012-06-14 | 2017-09-05 | Skyworks Solutions, Inc. | Power amplifier modules including tantalum nitride terminated through wafer via and related systems, devices, and methods |
US9887668B2 (en) | 2012-06-14 | 2018-02-06 | Skyworks Solutions, Inc. | Power amplifier modules with power amplifier and transmission line and related systems, devices, and methods |
US9692357B2 (en) | 2012-06-14 | 2017-06-27 | Skyworks Solutions, Inc. | Power amplifier modules with bifet and harmonic termination and related systems, devices, and methods |
CN112558676A (zh) * | 2019-09-25 | 2021-03-26 | 半导体元件工业有限责任公司 | 稳压器电路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1702405B1 (en) | Single chip power amplifier and envelope modulator | |
CN110677132B (zh) | 一种射频线性功率放大器电路 | |
KR100930200B1 (ko) | 선형화기를 구비한 전력 증폭기 | |
US8847686B2 (en) | Electronic system, RF power amplifier and temperature compensation method thereof | |
CN1537358A (zh) | 有源偏置电路 | |
KR102178526B1 (ko) | 전력 증폭기 | |
CN113114121B (zh) | 一种用于射频功率放大器的偏置电路 | |
US7839213B2 (en) | Amplifier architecture for polar modulation | |
US6819180B2 (en) | Radio frequency power amplifier adaptive bias control circuit | |
US10516370B2 (en) | Predistorter for compensating linearity of an amplifier | |
CN107395130A (zh) | 具有高线性度和功率附加效率的射频功放模块及实现方法 | |
CN114679140B (zh) | 高线性度射频功率放大器 | |
US20050218991A1 (en) | Bias circuit for a bipolar transistor | |
WO2014203439A1 (ja) | 電力増幅器 | |
CN1914791A (zh) | 单芯片功率放大器和包络调制器 | |
CN1233090C (zh) | 可编程射频前置补偿线性电路及其方法 | |
US20040095192A1 (en) | Radio frequency power amplifier adaptive bias control circuit | |
US11431306B2 (en) | Compensation circuit for amplitude modulation-amplitude modulation of radio frequency power amplifier | |
JPS62277806A (ja) | 高周波増幅器 | |
KR101890579B1 (ko) | 위상변조 왜곡의 감소가 가능한 전력 증폭기 | |
US8665019B2 (en) | Power amplifier | |
TWI729785B (zh) | 包絡跟蹤電源調製器及相關的方法和系統 | |
CN207218642U (zh) | 一种低损耗自适应偏置电路及无线发射系统 | |
CN110768630A (zh) | 一种射频功率放大器幅度调制对幅度调制的补偿电路 | |
KR100471386B1 (ko) | 전기적 튜닝이 가능한 전치왜곡기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |