CN1906291A - Process for the preparation of l-amino acids with amplification of the zwf gene - Google Patents

Process for the preparation of l-amino acids with amplification of the zwf gene Download PDF

Info

Publication number
CN1906291A
CN1906291A CNA200480041034XA CN200480041034A CN1906291A CN 1906291 A CN1906291 A CN 1906291A CN A200480041034X A CNA200480041034X A CN A200480041034XA CN 200480041034 A CN200480041034 A CN 200480041034A CN 1906291 A CN1906291 A CN 1906291A
Authority
CN
China
Prior art keywords
ala
leu
glu
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200480041034XA
Other languages
Chinese (zh)
Inventor
斯特凡·汉斯
布里吉特·巴斯
亚历山大·雷特
格奥尔格·蒂尔巴赫
卡罗琳·克罗伊策
贝蒂娜·黑德里希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of CN1906291A publication Critical patent/CN1906291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/345Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Brevibacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a process for the preparation of L-amino acids by fermentation of coryneform bacteria, which comprises carrying out the following steps: a) fermenting the L-amino acid-producing bacteria in which at least the zwf gene is amplified, b) concentrating the L-amino acid in the medium or in the cells of the bacteria and c) isolating the L-amino acid produced.

Description

Prepare the amino acid whose method of L-with amplification zwf gene
Invention field
The present invention relates to use excellent bacillus to prepare L-amino acid, the method for L-Methionin, L-Threonine and L-tryptophane particularly, wherein the glucose-6-phosphate dehydrogenase of zwf genes encoding (Zwischenferment) albumen is amplified at least.
Prior art
L-amino acid is used for Animal nutrition, is used for human medicine and pharmaceutical industry.
Known amino acid is by the bar shaped bacteria bacterial strain, and especially the fermentation of Corynebacterium glutamicum (Corynebacterium glutamicum) is produced.Because it is of crucial importance, continues carrying out the trial of improved production method.The improvement of described method can relate to the fermentation measure.As stirring and oxygen supply, or the sugared concentration between the component of nutritional medium such as yeast phase, or the purification process of product form, for example by ion exchange chromatography, or the intrinsic nature of production of microorganism itself.
For improveing the nature of production of these microorganisms, can use methods such as mutagenesis, selection and mutant selection.Can obtain in this way to metabolic antagonist for example Threonine analogue pantonine-hydroxypentanoic acid (AHV), lysine analogues S-(2-amino-ethyl)-L-halfcystine (AEC) bacterial strain of resistance is arranged, perhaps for to regulate the importance metabolite be auxotrophic and produce for example bacterial strain of Threonine or Methionin of L-amino acid.
For a period of time, the method for recombinant DNA technology also has been used to produce the improvement of the amino acid whose Corynebacterium glutamicum strain of L-.
Goal of the invention
The purpose of this invention is to provide and use rod-shaped bacteria through fermentation to prepare the amino acid whose new modification method of L-.
Summary of the invention
L-amino acid is used for human medicine and pharmaceutical industry, grocery trade, is used in particular for Animal nutrition.Therefore need provide preparation amino acid whose new modification method.
The invention provides and use bar shaped bacteria to prepare L-amino acid, the method of L-Methionin, L-Threonine, L-Isoleucine and L-tryptophane particularly, be amplified by zymoprotein (Zwf albumen) between zwf gene nucleotide sequence coded in the used bar shaped bacteria, especially cross and express.
Abbreviation " zwf " is the code name (Jeffrey H.Miller:A Short Course InBacterial Genetics, Cold Spring Harbor Laboratory Press, USA, 1992) of glucose-6-phosphate dehydrogenase, is also referred to as glucose-6-phosphate dehydrogenase (G6PD).
Glucose-6-phosphate dehydrogenase (G6PD) catalysis G-6-P is oxidized to-the 6-phosphogluconolactone, follows NADP to be reduced to NADPH.Its activity is suppressed (Sugimoto and Shiio, Agricultural and Biological Chemistry 51 (1), pp.101-108 (1987)) by NADPH and multiple other metabolite.
Detailed Description Of The Invention
The bacterial strain of advantageous applications is to have produced the amino acid whose bacterial strain of L-before zwf gene amplification.
Embodiment preferred see claim book.
Term in the literary composition " amplification " has been described in the microorganism by active increase in one or more enzyme of corresponding D NA coding or the proteinic born of the same parents, for example have highly active corresponding enzyme or proteinic gene or allelotrope and carry out these measures of optional combination by copy number, the powerful promotor of use or the use coding that increases described one or more gene.
By the amplification measure, particularly cross expression, corresponding enzyme or activity of proteins are based on enzyme described in wild-type enzyme or protein or the initial microorganism or activity of proteins or the general increase at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500% of concentration, until maximum 1000% or 2000%.
Microorganism provided by the invention can be from glucose, sucrose, lactose, fructose, maltose, molasses, starch, Mierocrystalline cellulose or preparation L-amino acid from glycerine and ethanol.Described microorganism is that the representative of bar shaped bacteria, particularly coryneform bacteria (Corynebacterium) belong to.For corynebacterium, what can mention especially is Corynebacterium glutamicum, and known its of those skilled in the art produced the amino acid whose ability of L-.
Suitable corynebacterium sp. strain, particularly Corynebacterium glutamicum are for example known wild type strains:
Corynebacterium glutamicum ATCC 13032
Vinegar paddy rod bacillus (Corynebacterium acetoglutamicum) ATCC 15806
Corynebacterium acctoacidophlum (Corynebacterium acetoacidophilum) ATCC13870Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum (Brevibacterium flavum) ATCC 14067
Brevibacterium lactofermentum (Brevibacterium lactofermentum) ATCC 13869
Fork tyrothricin (Brevibacterium divaricatum) ATCC 14020,
Reach the therefrom amino acid whose mutant of production L-of preparation, for example produce the bacterial strain of L-Threonine:
Corynebacterium glutamicum ATCC21649
Brevibacterium flavum BB69
Brevibacterium flavum DSM5399
Brevibacterium lactofermentum FERM-BP 269
Brevibacterium lactofermentum TBB-10,
Reach the bacterial strain of for example producing the L-Isoleucine:
Corynebacterium glutamicum ATCC 14309
Corynebacterium glutamicum ATCC 14310
Corynebacterium glutamicum ATCC 14311
Corynebacterium glutamicum ATCC 15168
Produce ammonia rod bacillus (Corynebacterium ammoniagenes) ATCC 6871,
Reach the bacterial strain of for example producing the L-tryptophane:
Corynebacterium glutamicum ATCC21850
Corynebacterium glutamicum KY9218 (pKW9901),
Reach the bacterial strain of for example producing L-Methionin:
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum ATCC 13032
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DSM12866.
Have been found that bar shaped bacteria produces L-amino acid in the mode of improvement, particularly L-Methionin, L-Threonine and L-tryptophane after the zwf gene overexpression of Zwf albumen or Zwf polypeptide of encoding respectively.
JP-A-09224661 has disclosed the nucleotide sequence of the zwf gene of brevibacterium flavum MJ-223 (FERM BP-1497), and points out that the protein by the zwf genes encoding is glucose-6-phosphate dehydrogenase (G6PD).The sequence information that JP-A-09224661 discloses is shown in SEQ ID NO:7 and 8.The N-terminal aminoacid sequence that JP-A-09224661 has described the Zwf polypeptide is Met Val Ile PheGly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu (SEQ ID NO:8).
Yet, can't confirm really so.Have been found that following N-terminal aminoacid sequence on the contrary: Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp (SEQ ID NO:10).The nucleotides sequence that comprises the corresponding zwf gene of encoding sequence is shown in SEQ ID NO:9.The methionine residues of N position can be divided in posttranslational modification, obtains the N-terminal aminoacid sequence of Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp.
Therefore, the invention provides the nucleotide sequence of the new zwf gene of the bar shaped bacteria shown in the 538-2079 position Nucleotide of SEQ ID NO:9.
Can choose wantonly and use for example intestinal bacteria (Escherichiacoli) or other gram positive bacterium proteic gene of Zwf of streptomyces or bacillus for example of coding gram negative bacterium.
Can use the allelotrope of the zwf gene that the justice sudden change is arranged that derives from genetic code degeneracy or neutral function in addition.
The preferred native gene that uses is particularly from the native gene of bar shaped bacteria." native gene " or " endogenous nucleotide sequence " is meant obtainable gene and nucleotide sequence in a population.
In order to realize amplification (for example cross and express), can improve the copy number of corresponding gene, promotor and the regulatory region or the ribosome bind site that perhaps can suddenly change and be positioned at the structure gene upstream.The expression cassette that mixes the structure gene upstream works with the same manner.But also can pass through inducible promoter, during the L-amino acid production by ferment method, strengthen and express.The measure that prolongs the mRNA life-span also can improve expression.In addition, also can improve enzymic activity by the degraded that prevents zymoprotein.Gene or gene construct can be present in the plasmid by different copy numbers, or can integrate in karyomit(e) and amplification.Perhaps, by changing the component and the cultivation program of substratum, also crossing of the gene that can obtain to be studied expressed.
Those skilled in the art can find the description to this from following document, (Bio/Technology 5 for Martin etal., 137-146 (1987)), (Gene 138 for Guerrero et al., 35-41 (1994)), (Bio/Technology 6 for Tsuchiya and Morinaga, 428-430 (1988)), (Gene 102 for Eikmanns et al., 93-98 (1991)), European patent specification EPS 0 472 869, United States Patent (USP) 4,601,893, (Bio/Technology 9 for Schwarzer and Puehler, 84-87 (1991), Reinscheid et al. (Applied andEnvironmental Microbiology 60,126-132 (1994)), LaBarre et al. (Journal of Bacteriology 175,1001-1007 (1993)), patent application WO96/15246, Malumbres et al. (Gene 134,15-24 (1993)), Japan special permission prospectus JP-A-10-229891, Jensen and Hammer (Biotechnology andBioengineering 58,191-195 (1998)), and known genetics and molecular biology textbook.
For example, Zwf albumen is crossed expression by means of plasmid.Use intestinal bacteria shown in Figure 1-Corynebacterium glutamicum shuttle vectors pEC-T18mob2 for this reason.After the zwf gene is mixed the KpnI/SalI cleavage site of pEC-T18mob2, form plasmid pEC-T18mob2zwf shown in Figure 2.
Other plasmid vector that can duplicate in Corynebacterium glutamicum for example pEKEx1 (Eikmannset al., Gene 102:93-98 (1991)) or pZ8-1 (EP-B-0 375 889) can use in the same manner.
In another aspect of this invention, find between the 369th and 373 and/or the 241st and 246 of aminoacid sequence of the zwf gene product shown in the SEQ ID NO:10 its glucose-6-phosphate dehydrogenase (G6PD) activity that can increase of the amino-acid substitution in the fragment, particularly it is to NADPH (Triphosphopyridine nucleotide, reduced, the reduction form) resistance of Yi Zhiing, and improvement comprises the especially production of Methionin of amino acid of the proteic bar shaped bacteria of Zwf of corresponding zwf gene or zwf allelotrope or its coding respectively.The methionine residues of N-terminal position can be removed by the methionine aminopeptidase by the host during posttranslational modification.
Therefore, the invention provides the Zwf albumen that comprises SEQ ID NO:10 aminoacid sequence, wherein replace by other gal4 amino acid (proteinogenic aminoacid) at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least.
Therefore, the present invention further provides encodes comprises the proteinic isolating polynucleotide of SEQ ID NO:10 aminoacid sequence, is wherein replaced by other gal4 amino acid at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least.
Especially, displacement in the proteic aminoacid sequence of Zwf comprises one or more amino-acid substitution at least that is selected from as next group: at the L-arginine of the 370th of SEQ ID NO:10 by for example L-methionine(Met) displacement of any other gal4 amino acid, at the L-Xie Ansuan of the 372nd of SEQ ID NO:10 by for example L-L-Ala displacement of any other gal4 amino acid, at the L-methionine(Met) of the 242nd of SEQID NO:10 by for example L-leucine or the displacement of L-Serine of any other gal4 amino acid, at the L-L-Ala of the 243rd of SEQ ID NO:10 by for example L-Threonine displacement of any other gal4 amino acid, at the L-L-glutamic acid of the 244th of SEQ ID NO:10 by any other gal4 amino acid displacement, and at the L-aspartic acid of the 245th of SEQ ID NO:10 by for example L-Serine displacement of any other gal4 amino acid.
The utmost point especially, the L-L-Ala that (SEQ ID NO:10) is the 243rd is by L-Threonine displacement, shown in SEQ ID NO:22.This protein is also referred to as Zwf (A243T) albumen, and the allelotrope of code for said proteins is called zwf (A243T).See SEQ ID NO:21.
In addition, the L-arginine that (SEQ ID NO:10) is the 370th can be by the displacement of L-methionine(Met), shown in SEQ ID NO:29.This protein is also referred to as Zwf (R370M) albumen, and the allelotrope of code for said proteins is called zwf (R370M).See SEQ ID NO:28.
In addition, the L-Xie Ansuan that (SEQ ID NO:10) is the 372nd can be by the displacement of L-L-Ala, shown in SEQ ID NO:31.This protein is also referred to as Zwf (V372A) albumen, and the allelotrope of code for said proteins is called zwf (V372A).See SEQ ID NO:30.
In addition, the L-methionine(Met) that (SEQ ID NO:10) is the 242nd can be by the displacement of L-leucine, shown in SEQ ID NO:33.This protein is also referred to as Zwf (M242L) albumen, and the allelotrope of code for said proteins is called zwf (M242L).See SEQ ID NO:32.
In addition, the L-methionine(Met) that (SEQ ID NO:10) is the 242nd can be by the displacement of L-Serine, shown in SEQ ID NO:35.This protein is also referred to as Zwf (M242S) albumen, and the allelotrope of code for said proteins is called zwf (M242S).See SEQ ID NO:34.
In addition, the L-aspartic acid that (SEQ ID NO:10) is the 245th can be by the displacement of L-Serine, shown in SEQ ID NO:37.This protein is also referred to as Zwf (D245S) albumen, and the allelotrope of code for said proteins is called zwf (D245S).See SEQ ID NO:36.
Zwf albumen of the present invention can further contain one or more amino acid whose replacement, disappearance or insertion, and it does not change the zymologic property of described Zwf protein variant substantially.
Known in the art to protein function have neutrality or almost the aminoacid replacement of neutralism be conservative amino acid replacement.In the situation of die aromatischen Aminosaeuren, phenylalanine, tryptophane and tyrosine can be replaced each other.In the situation of hydrophobic amino acid, leucine, Isoleucine and Xie Ansuan can be replaced each other.In the situation of polare Aminosaeren, glutamine and l-asparagine can be replaced each other.In the situation of basic aminoacids, arginine, Methionin and Histidine can be replaced each other.In the situation of acidic amino acid, aspartic acid and L-glutamic acid can be replaced each other.In containing the amino acid whose situation of oh group, Serine and Threonine can be replaced each other.
For example, when having inhibitor NADPH, enzyme activity change is less than approximately 2.5-3.5% or 2.5-4.5% can think essentially no difference.In other parameter situation, Michaelis constant (K for example M) or maximum rate (V Max) or other binding constant difference as less than about 5,10,25,50,100,150 or 200% or even more big-difference can think essentially no difference as 300 or 400%.
Therefore, Zwf (A243T) albumen comprises and is selected from least one following aminoacid sequence: corresponding to the Thr Met Thr Glu Asp Ile sequence of the 241-246 amino acids of SEQ ID NO:22, preferably corresponding to the aminoacid sequence of the 230-250 amino acids of SEQ ID NO:22, more preferably corresponding to the aminoacid sequence of the 225-260 amino acids of SEQ ID NO:22, more preferably corresponding to the aminoacid sequence of the 210-270 amino acids of SEQ ID NO:22.
Similarly, Zwf protein variant Zwf (M242L), Zwf (M242S) and Zwf (D245) comprise and are selected from least one following aminoacid sequence: the aminoacid sequence of SEQ ID No:33,35 and 37 237-250 amino acids, the aminoacid sequence of preferred SEQ ID No:33,35 and 37 227-260 amino acids, the more preferably aminoacid sequence of SEQ ID No:33,35 and 37 217-270 amino acids, the more preferably aminoacid sequence of SEQ ID No:33,35 and 37 202-285 amino acids.
Similarly, Zwf protein variant Zwf (R370M) and Zwf (V372A) comprise and are selected from least one following aminoacid sequence: the aminoacid sequence of SEQ ID No:29 and 31 365-377 amino acids, the aminoacid sequence of SEQ ID No:29 and 31 355-387 amino acids, the aminoacid sequence of SEQ ID No:29 and 31 345-397 amino acids, and the aminoacid sequence of the 325-417 amino acids of SEQ ID No:29 and 31.
In addition, the Zwf protein variant can comprise the N-terminal aminoacid sequence that is selected from following aminoacid sequence: corresponding to the aminoacid sequence of the 1-10 amino acids of SEQ ID NO:10, aminoacid sequence corresponding to the 1-16 amino acids of SEQ ID NO:10, corresponding to the aminoacid sequence of SEQID NO:10 1-20 amino acids, reach aminoacid sequence corresponding to the 1-30 amino acids of SEQ ID NO:10.
In addition, find to cause the enzymic activity forfeiture respectively by disappearance and expression analysis corresponding to the disappearance of proteic 30 the amino acid whose nucleotide sequences of N-terminal of one or more glucose-6-phosphate dehydrogenase (G6PD).These 30 N-terminal amino acid are corresponding to for example SEQ ID NO:10 or SEQ IDNO:22,29,31,33,35 or 37 1-30 position.
Term protein amino acid is meant those amino acid of finding in the protein of microorganism, plant, the natural generation of animal and human's body.These amino acid comprise L-glycine, L-L-Ala, L-Xie Ansuan, L-leucine, L-Isoleucine, L-Serine, L-Threonine, L-halfcystine, L-methionine(Met), L-proline(Pro), L-phenylalanine, L-tyrosine, L-tryptophane, altheine, L-glutaminate, L-aspartic acid, L-L-glutamic acid, L-arginine, L-Methionin, L-Histidine and L-seleno-cysteine.
The 243rd L-L-Ala is replaced preferably to be replaced by VITAMIN B4 by the nuclear base guanine with the 1264th of SEQ ID NO:9 by the L-Threonine to be realized.This guanine VITAMIN B4 conversion also is shown in the 1034th of SEQ ID NO:21.The 1264th of SEQ ID NO:9 and SEQ ID NO:21 the 1034th all corresponding to the 727th (first G of initiator codon GTG is at the 1st in this case) of zwf gene and zwf (A243T) allelotrope encoding sequence.
The allelic interior segments of zwf (A243T) is shown in SEQ ID NO:23.It is corresponding to the 898-1653 position of SEQ ID NO:21.
Compare with wild-type protein, this proteic glucose-6-phosphate dehydrogenase (G6PD) activity of Zwf on the one hand of the present invention is to NADPH restraining effect susceptible to or resistance is arranged more not.Compare with the activity when not adding NADPH in comprising the bacterial strain of described mutain, residual activity is at least 30% or 35% when being exposed to the NADPH of about 260 μ M (μ represents little) concentration, preferably at least 40%, 45% or 50%.Compare with the activity when not adding NADPH, residual activity is at least 20% when being exposed to the NADPH of about 400 μ M concentration, preferably at least 25%.
Induce described sudden change or allelic mutagenesis to be undertaken by the conventional mutafacient system of directed toward bacteria cell, use for example N-methyl-N '-nitro-N-nitrosoguanidine or UV-light of mutagenic compound, as Manual of Methods for General Bacteriology (Gerhard et al. (Eds.), American Society for Microbiology, Washington, DC, USA, 1981) described.Separate suitable mutant then and differentiate by for example sequence measurement or by measuring the glucose-6-phosphate dehydrogenase (G6PD) activity.
Therefore, the invention provides the isolating bar shaped bacteria or the mutant that comprise polynucleotide, described polynucleotide encoding comprises the Zwf albumen of the aminoacid sequence of SEQ ID NO:10, is wherein replaced by other gal4 amino acid at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least.
Corynebacterium glutamicum DM658 is the example of this bar shaped bacteria.It is carrying out repeatedly mutagenesis, selection and screening circulation back acquisition, the zwf allelotrope (zwf (A243T)) of the Zwf albumen (Zwf (A243T)) of the aminoacid sequence that containing in its karyomit(e) encodes has SEQID NO:10, wherein replace by the L-Threonine, shown in SEQID NO:22 at the 243rd L-L-Ala.
Mutagenesis also can be undertaken by using the in vitro method at polynucleotide, for example handle (Molecular and General Genetics 145 with azanol, 101 pp. (1978)), perhaps handle (T.A.Brown:Gentechnologie fuer Einsteiger with mutagenic oligonucleotide, SpektrumAkademischer Verlag, Heidelberg, 1993), perhaps use polymerase chain reaction (PCR) to handle, as Newton and Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994) institute's leadoff volume or by Papworth etc. (Strategies 9 (3), 3-4 (1996)) described method is used Stratagene (La Jolla, California, QuikChange directed mutagenesis test kit USA) carries out, and perhaps uses similarity method known in the art to carry out.
To corresponding allelotrope or sudden change is checked order and import in the karyomit(e) of suitable bacterial strain by reorganization by the gene substitution technique, as Schwarzer and Puehler (Bio/Technology9,84-87 (1991) carries out for the described method of pyc gene of Corynebacterium glutamicum for (Microbiology 144,915-927 (1998)) such as described method of Corynebacterium glutamicum lysA gene or Peters-Wendisch.
Therefore, the invention provides the recombinant coryneform bacteria that comprises the proteic polynucleotide of code book invention Zwf, described protein for example comprises the aminoacid sequence of SEQ ID NO:10, is wherein replaced by other gal4 amino acid at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least.
Corynebacterium glutamicum DSM5715zwf2_A243T is the example of this bacterial strain.The zwf allelic mutation that comprises bacterial strain DM658 in its karyomit(e), i.e. zwf (A243T).
Corynebacterium glutamicum strain DM1697_zwfD245S is another example of this bacterial strain.Comprise zwf allelotrope zwf (D245S) sudden change that obtains by vitro mutagenesis in its karyomit(e).
Corresponding allelotrope also can import in the karyomit(e) of suitable bacterial strain by the gene redundancy method, (Applied and Environmental Microbiology60 (1) such as Reinscheid for example, 126-132 (1994)) for the described method of hom-thrB operon, perhaps carry out for the described method of ask gene by (Applied Microbiology and Biotechnology 43,76-82 (1995)) such as Jetten.
Therefore, the present invention further provides the bar shaped bacteria that comprises isolating polynucleotide, described polynucleotide encoding comprises the Zwf albumen of the aminoacid sequence of SEQ ID NO:10, is wherein replaced by other gal4 amino acid at one or more amino acid of 369-373 position and/or one or more amino acid of 241-246 position at least.
Corynebacterium glutamicum DSM5715 ∷ pK18mobsacB_zwf (A243T) is the example of this bacterial strain.Comprise in its karyomit(e) and contain the allelic separated DNA of zwf (A243T).
Allelotrope also can be crossed expression by above-mentioned any method, but for example uses plasmid inducible promoter or any other method known in the art.
Thus obtained bacterial strain is used for fermentative production amino acid.Therefore, the present invention also provides and has used bar shaped bacteria of the present invention to produce the amino acid whose method of L-.
In addition, except increase zwf gene of the present invention or allelotrope, one or more enzyme of the special biosynthetic pathway that increases, glycolysis-, anaplerotic reaction, phosphopentose pathway, Sugar intake or amino acid output is useful for producing L-amino acid.
Therefore, for example especially for preparation L-Threonine, being selected from one or more following gene can be amplified simultaneously, is particularly crossed and is expressed:
● hom gene, its encode homoserine dehydrogenase (Peoples et al., MolecularMicrobiology 2,63-72 (1988)), perhaps hom DrAllelotrope, its coding " feedback resistance " homoserine dehydrogenase (Archer et al., Gene 107,53-59 (1991),
● the gap gene, its encoding glycerol aldehyde 3-phosphate dehydrogenase (Eikmanns et al., Journal of Bacteriology 174:6076-6086 (1992)),
● the pyc gene, its pyruvate carboxylase (Peters-Wendisch et al., Microbiology 144:915-927 (1998)) of encoding,
● the mqo gene, its oxysuccinic acid of encoding: quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254,395-403 (1998)),
● the tkt gene, its coding transketolase (European Molecular Bioglogy Laboratory's database (European Molecular Biologies Laboratories databank) (EMBL, Heidelberg, Germany) accession number AB023377),
● the gnd gene, its coding-6-Phosphogluconic dehydrogenase (JP-A-9-224662),
● the thrE gene, (DE 199 41 478.5 for its coding Threonine output albumen; DSM12840),
● (DE 199 59 328.0 for the zwa1 gene; DSM 13115),
● eno gene, its Hydratase, phosphoenolpyruvate (DE:199 41 478.5) of encoding.
Therefore, for example especially for preparation L-Methionin, being selected from one or more following gene can be increased simultaneously, is particularly crossed and is expressed:
● the dapA gene, its dihydrodipicolinate synthase (EP-B 0 197 335) that encodes,
● the lysC gene, its encoder feedback resistance E.C. 2.7.2.4. (Kalinowski et al. (1990), Molecular and General Genetics 224:317-324),
● the gap gene, its encoding glycerol aldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
● the pyc gene, its pyruvate carboxylase (DE-A-198 31 609) of encoding,
● the tkt gene, its coding transketolase (European Molecular Bioglogy Laboratory's database (EMBL, Heidelberg, Germany) accession number AB023377),
● the gnd gene, its coding-6-Phosphogluconic dehydrogenase (JP-A-9-224662),
● the lysE gene, its coding Methionin output albumen (DE-A-195 48 222),
● (DE 199 59 328.0 for the zwa1 gene; DSM 13115),
● eno gene, its Hydratase, phosphoenolpyruvate (DE 199 47 791.4) of encoding.
The preferred native gene that uses.
Except amplification, particularly cross and to express zwf gene of the present invention or the allelotrope, reduction simultaneously particularly disappearance is selected from one or more following gene amino acid whose production also is useful for L-:
● the pck gene, (DE 199 50 409.1 for its coding phosphoenolpyruvate carboxykinase; DSM 13047),
● the pgi gene, its coding G-6-P isomerase (US 09/396,478, DSM12969),
● the poxB gene, (DE 199 51 975.7 for its coding pyruvic oxidase; DSM13114),
● (DE:199 59 327.2 for the zwa2 gene; DSM 13113).
Term in the literary composition " reduction " is meant reduction or suppresses one or more enzyme or interior activity of proteinic born of the same parents or concentration in the microorganism, described enzyme or protein is by corresponding D NA coding, for example uses weak promoter or coding to have SA corresponding enzyme or proteinic gene or allelotrope or makes corresponding enzyme or protein inactivation and these measures of optional combination are carried out.
By the reduction measure, corresponding enzyme or activity of proteins or concentration and wild-type enzyme or protein or compare with enzyme described in the initial microorganism or activity of proteins or concentration and generally to be reduced to 0-75%, 0-50%, 0-25%, 0-10% or 0-5%.
Except the proteic amplification of Zwf, particularly mistake expression, amino acid whose production also is useful (Nakayama: " Breeding of Amino AcidProducing Micro-organisms " for L-to eliminate non-required side reaction, in:Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
The microorganism that produces according to the present invention can be continuous or discontinuous by batch process (batch culture), and fed-batch method (feed supplement method) or repeated fed-batch method (repeating the feed supplement method) are cultivated, to produce L-amino acid.Known cultural method is by Chmiel (Bioprozesstechnik 1.Einfuehrung in die Bioverfahrenstechnik[Bioprocess Technology 1.Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)] described or by Storhas (Bioreaktoren und periphereEinrichtungen[Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) show described in the teaching material.
Used substratum must meet the requirement of specified microorganisms in a suitable manner.See the handbook " Manual of Methods forGeneral Bacteriology " (Washington D.C., USA, 1981) of U.S.'s bacteriology meeting about the elaboration of multiple microbiological culture media.Spendable carbon source is sugar and carbohydrate, glucose for example, sucrose, lactose, fructose, maltose, molasses, starch and Mierocrystalline cellulose, oil ﹠ fat such as soya-bean oil, Trisun Oil R 80, Peanut oil and Oleum Cocois, lipid acid such as palmitinic acid, stearic acid and linolic acid, alcohol is as glycerine and ethanol, and organic acid such as acetate.These materials can be used alone or as a mixture.Spendable nitrogenous source is a nitrogen-containing organic compound, as peptone, and yeast extract, meat extract, malt extract, corn immersion liquid, soyflour and urea, or inorganicization thing such as ammonium sulfate, ammonium chloride, ammonium phosphate, volatile salt and ammonium nitrate.
Nitrogenous source can be used alone or as a mixture.Spendable phosphorus source comprises potassium primary phosphate or dipotassium hydrogen phosphate, or contains sodium salt accordingly.Substratum also must contain in addition and is required metal-salt such as sal epsom or the ferric sulfate of growing.At last, except above-mentioned substance, can use the essential material of growth such as amino acid and VITAMIN.In addition, suitable precursor can be added in the substratum.Above-mentioned initial substance can singly be criticized form or join in the culture with appropriate form in the training period.
Using basic compound such as sodium hydroxide in a suitable manner, potassium hydroxide, ammonia, or acidic cpd such as phosphoric acid or sulfuric acid control pH.Foam reducing composition for example fatty acid polyglycol ester can be used for the control foam generation.Suitable material with selectively acting is microbiotic for example, can add in the substratum to keep the stability of plasmid.Oxygen or contain oxygen gas mixture, for example air can charge in the culture to maintain oxygen condition.Culture temperature is usually at 20 ℃~45 ℃, preferred 25 ℃-40 ℃.Continue to cultivate and form maximum until L-amino acid.This purpose reached in the scope at 10~160 hours usually.
Therefore, the present invention further provides by fermentation of coryneform bacteria and prepare amino acid whose method, described method comprises the steps:
A) the amino acid whose bacterium of fermentative production, the proteic zwf gene of glucose-6-phosphate dehydrogenase of wherein encoding at least was expression, and
B) amino acid in enrichment medium or the bacterial cell, wherein said zymoprotein comprises at least the aminoacid sequence corresponding to SEQ ID NO:22 241-246 amino acids, and the N-terminal sequence of the 2-10 amino acids of the 1-10 amino acids of optional SEQ ID NO:10 or SEQ ID NO:10.
The present invention further provides by the isolating bar shaped bacteria that ferments and prepare amino acid whose method, described method comprises the steps:
A) the amino acid whose bacterium of fermentative production, described bacterium comprises the proteic polynucleotide of Zwf that coding has the aminoacid sequence of SEQ ID NO:10, wherein one or more amino acid of one or more amino acid of at least the 369-373 position and/or 241-246 position is reached by other gal4 amino acid displacement
B) amino acid in enrichment medium or the bacterial cell.
The present invention further provides by fermentation of coryneform bacteria and prepare amino acid whose method, described method comprises the steps:
A) fermentation comprise a kind of isolating or recombination of polynucleotide, produce amino acid whose bacterium, described polynucleotide encoding comprises the Zwf albumen of the aminoacid sequence of SEQ ID NO:10, wherein replace by other gal4 amino acid at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least, and
B) amino acid in enrichment medium or the bacterial cell.
From substratum or bacterial cell, separate described amino acid then.
Use measure of the present invention, the performance of described bacterium or fermentation process forms in (product/volume of formation and time) or other processing parameter and the combination thereof at production concentration (product/volume), product output (carbon source of the product/consumption of formation), product all can improve at least 0.5%, at least 1% or at least 2%.
The amino acid whose analysis of L-can by anion-exchange chromatography subsequently the triketohydrindene hydrate derivatization carry out, as (Analytical Chemistry such as Spackman, 30, (1958), 1190) described, perhaps can be undertaken, as described in (AnalyticalChemistry (1979) 51:.1167-1174) such as Lindroth by reversed-phase HPLC.
Following microorganism as pure growth be deposited in German microbial preservation center (DSMZ, Braunschweig, Germany):
● e. coli k-12 DH5 α/pEC-T18mob2 according to budapest treaty in preservation on January 20 in 2000, preserving number DSM 13244.
● Corynebacterium glutamicum DM658 is in long-term preservation on January 27th, 1993, preserving number DSM 7431; This preservation thing transfers preservation thing according to budapest treaty on October 17th, 2002.
● in preservation on October 11 in 2002, preserving number was DSM 15237 to Corynebacterium glutamicum DSM5715zwf2_A243T according to budapest treaty.
● in preservation on May 23 in 2003, preserving number was DSM 15632 to Corynebacterium glutamicum DM1697_zwfD245S according to budapest treaty.
The accompanying drawing summary
Fig. 1: plasmid pEC-T18mob2 collection of illustrative plates
Fig. 2: plasmid pEC-T18mob2zwf collection of illustrative plates
Fig. 3: plasmid pAMC1 collection of illustrative plates
Fig. 4: plasmid pMC1 collection of illustrative plates
Fig. 5: plasmid pCR2.1poxBint collection of illustrative plates
Fig. 6: plasmid pK18mobsacB_zwf (A243T) collection of illustrative plates
Fig. 7: plasmid pK18mobsacB_zwf collection of illustrative plates
Fig. 8: plasmid pK18mobsacB_zwf (D245S) collection of illustrative plates
Fig. 9: plasmid pCRBluntII_AB1CD1 collection of illustrative plates
Figure 10: plasmid pK18mobsacB_zwfdelta90bp collection of illustrative plates
Figure 11: plasmid pCRBluntII_zwfL collection of illustrative plates
Figure 12: plasmid pCRBluntII_zwfS collection of illustrative plates
Figure 13: plasmid pZ8-1zwfL collection of illustrative plates
Figure 14: plasmid pZ8-1zwfS collection of illustrative plates
The base pair number is the about value that obtains according to reproducibility.
Fig. 1 and 2:
Used abbreviation has following implication:
Tet: tetracycline resistance gene
OriV: colibacillary plasmid-encoded replication orgin
RP4mob: the mob zone of mobile plasmid
Rep: the plasmid-encoded replication orgin of Corynebacterium glutamicum plasmid pGA1
Per: the gene of control pGA1 copy number
LacZ-alpha: the lacZ alpha gene fragment of beta-galactosidase gene (N-end)
LacZalpha ': 5 ' end of lacZ alpha gene fragment
3 ' end of ' lacZalpha:lacZ alpha gene fragment
Fig. 3 and 4:
Used abbreviation has following implication:
Neor: Xin Meisu/kalamycin resistance
ColE1 ori: the replication orgin of plasmid ColE1
CMV: cytomegalovirus promoter
LacP: lactose promotor
Pgi: glucose phosphate isomerase gene
LacZ: the part of beta-galactosidase gene
SV403 ' splice: 3 ' splice site of simian virus 40
SV40polyA: the polyadenylation site of simian virus 40
F1 (-) ori: the replication orgin of filobactivirus f1
SV40 ori: the replication orgin of simian virus 40
Kan r: kalamycin resistance
The interior segments of pgi insert:pgi gene
Ori: the replication orgin of plasmid pBGS8
Fig. 5:
Used abbreviation has following implication:
ColE1 ori: the replication orgin of plasmid ColE1
Clone's resistates of lacZ:lacZ alpha gene fragment
Fl ori: the replication orgin of phage f1
KmR: kalamycin resistance
ApR: amicillin resistance
The interior segments of PoxBint:poxB gene
Fig. 6:
Used abbreviation has following implication:
RP4mob: mob zone with the replication orgin (oriT) that is used to shift
KanR: kalamycin resistance gene
OriV: replication orgin V
Zwf (A243T): zwf (A243T) allelotrope
The sacB:sacB gene
Fig. 7 and 8:
Used abbreviation has following implication:
The zwf:zwf gene
Zwf (D245S): zwf (D245S) allelotrope
OriV: replication orgin V
RP4mob: mob zone with the replication orgin (oriT) that is used to shift
KanR: kalamycin resistance gene
The sacB:sacB gene
XbaI: the cleavage site of restriction enzyme XbaI
PstI: the cleavage site of restriction enzyme PstI
Fig. 9 and 10:
Used abbreviation has following implication:
Deltazwf90: the dna fragmentation that contains the clone of zwf allelotrope 90bp disappearance
Kan: kalamycin resistance gene
PUC ori: replication orgin
The sacB:sacB gene
RP4mob: mob zone with the replication orgin (oriT) that is used to shift
OriV: replication orgin V
XbaI: the cleavage site of restriction enzyme XbaI
Figure 11 and 12:
Used abbreviation has following implication:
The allelic clone's of zwfL:zwf dna fragmentation
ZwfS: the dna fragmentation that contains the clone of zwf allelotrope 90bp disappearance
Km: kalamycin resistance gene
PUC origin: replication orgin
SalI: the cleavage site of restriction enzyme SalI
Figure 13 and 14:
Used abbreviation has following implication:
The allelic clone's of zwfL:zwf dna fragmentation
ZwfS: the dna fragmentation that contains the clone of zwf allelotrope 90bp disappearance
Km: kalamycin resistance gene
rrnB-
Terminator: Transcription Termination
Ptac: promotor
Rep: replication orgin
SalI: the cleavage site of restriction enzyme SalI.
The implication of the abbreviation of multiple restriction enzyme known in the art (BamHI for example, EcoRI or the like), for example summarized by Kessler and (Nucleic Acids Research 27,312-313 (1999)) such as Hoeltke (Gene 47,1-153 (1986)) or Roberts.
The further illustration of following embodiment the present invention.The for example plasmid DNA separation of Protocols in Molecular Biology that the present invention uses, restriction enzyme treatment, connection, colibacillary standard conversion etc., (unless stated otherwise) (Molecular Cloning.A LaboratoryManual (1989) Cold Spring Harbor Laboratories USA) describes by Sambrook etc.
Embodiment 1:
The proteic expression of Zwf
1.1 the preparation of plasmid pEC-T18mob2
Make up intestinal bacteria-Corynebacterium glutamicum shuttle vectors pEC-T18mob2 according to prior art.This carrier contains the duplicate field rep of plasmid pGA1, comprises the sub-per of print effect (US-A-5,175,108; Nesvera et al., Journal of Bacteriology 179,1525-1532 (1997)), the tetA that authorizes tetracyclin resistance (Z) gene (US-A-5,158,891 of plasmid pAG1; Gene library entry at the National Center for BiotechnologyInformation (NCBI, Bethesda, MD, USA), accession number AF121000), duplicate field oriV (the Sutcliffe of plasmid pMB1, Cold Spring Harbor Symposium onQuantitative Biology 43,77-90 (1979)), the lacZ alpha gene fragment, it comprises a lac promotor and a multiple clone site (mcs) (Norrander et al.Gene 26,101-106 (1983)), and the mob district (Simon et al., (1983) Bio/Technology1:784-791) of plasmid RP4.With the carrier transformed into escherichia coli bacterial strain DH5 α (Brown (ed.) Molecular Biology Labfax, BIOS Scientific Publishers, Oxford, UK, 1991) that makes up.By transforming batch thing bed board at the LB agar of having added the 5mg/l tsiklomitsin (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) on, select to carry the cell of plasmid.By means of QIAprep Spin Miniprep test kit isolated plasmid dna from transformant of Qiagen, and detect by carrying out agarose gel electrophoresis (0.8%) subsequently with limiting enzyme EcoRI and HindIII restriction.
Described plasmid is called pEC-T18mob2, as shown in Figure 1.It is deposited in DSMZ with e. coli k-12 bacterial strain DH5 α pEC-T18mob2 form, and (Germany), preserving number is DSM 13244 for German microbial preservation center, Braunschweig.
1.2 the preparation of plasmid pEC-T18mob2zwf
At first will utilize following Oligonucleolide primers at first to increase by polymerase chain reaction (PCR) from the gene of Corynebacterium glutamicum ATCC13032:
Zwf-forward (SEQ ID NO:11):
5′-TCG ACG CGG TTC TGG AGC AG-3′
Zwf-is (SEQ ID NO:12) oppositely:
5′-CTA AAT TAT GGC CTG CGC CAG-3′
Described PCR is reflected at and has 200 μ M deoxynucleotide triphosphoric acid (dATP, dCTP, dGTP, dTTP) carry out 30 circulations under the situation, at every turn in thermal cycler (Thermocycler, PTC-100, MJ Research, Inc., watertown, USA) the middle corresponding oligonucleotide of 1 μ M, 100 nanograms (ng) the Corynebacterium glutamicum ATCC13032 chromosomal DNA of using, the 10 times of reaction buffers of 1/10 volume and thermally-stabilised Taq-/Pwo-DNA polysaccharase mixture (the Expand High Fidelity PCR System of 2.6 units, RocheDiagnostics, Mannheim, Germany), react under the following conditions: 94 ℃ 30 seconds, 64 ℃ of 1 minute and 68 3 minutes.
(Amersham Pharmacia Biotech, Uppsala Sweden), instruct the amplified fragments with about 1.8kb to connect the into SmaI cleavage site of carrier pUC18 according to manufacturer to connect test kit by means of SureClone subsequently.Coli strain DH5 α mcr (Grant etal., Proceedings of the National Academy of Sciences of the United Statesof America USA (1990) 87:4645-4649) is transformed with whole connections batch thing.On the LB agar plate that contains 50 μ g/mL Pyocianils, differentiate transformant by means of its Pyocianil resistance.From 7 transformant, prepare plasmid, and detect as the segmental situation that exists of 1.8kb PCR of inserting body by restriction analysis.The recombinant plasmid of Xing Chenging is called pUC18zwf hereinafter by this way.
In order to make up pEC-T18mob2zwf, pUC18zwf is digested with KpnI and SalI, and by means of Macherey-Nagel (Dueren, Germany) NucleoSpin extracts test kit and instructs separated product according to manufacturer, and dephosphorylized carrier pEC-T18mob2 is connected with cutting also with KpnI and SalI with it then.Coli strain DH5 α mcr (Grantet al., Proceedings of the National Academy of Sciences of the UnitedStates of America USA (1990) 87:4645-4649) is transformed with whole connections batch thing.Tetracyclin resistance by means of transformant is differentiated transformant on the LB agar plate that contains 5 μ g/mL tsiklomitsins.Preparation plasmid and detect as the segmental situation that exists of 1.8kb PCR of inserting body from 12 transformant by restriction analysis.Isolating by this way recombinant plasmid is called pEC-T18mob2zwf (Fig. 2).
Embodiment 2:
The preparation of amino acid production strain with zwf gene of amplification
The bacterial strain Corynebacterium glutamicum DSM5715 that produces L-Methionin describes in EP-B-0435132, and the bacterial strain brevibacterium flavum DSM5399 that produces the L-Threonine describes in EP-B-0385940.These two bacterial strains all are deposited in the German microbial preservation center (Germany) of Braunschweig according to budapest treaty.
2.1: the preparation of strain DSM 5715/pEC-T18mob2zwf and DSM5399/pEC-T18mob2zwf
Strain DSM 5715 and DSM5399 are used (FEM S Microbiology Letters, 53:299-303 (1989)) described electroporation method conversions such as Liebl with plasmid pEC-T18mob2zwf.Add the 5mg/l tsiklomitsin, comprising 18.5g/l brain heart meat extract, the 0.5M Sorbitol Powder, 5g/l Bacto-tryptone, 2.5g/l Bacto-yeast extract is selected transformant on the LBHIS agar of 5g/l NaCl and 18g/l Bacto agar.33 ℃ of insulations 2 days.
At every turn by ordinary method from transformant isolated plasmid dna (Peters-Wendisch etal., 1998, Microbiology 144,915-927), with restriction endonuclease XbaI and KpnI cutting, detect plasmid by agarose gel electrophoresis subsequently.The bacterial strain of Huo Deing is called DSM5715/pEC-T18mob2zwf and DSM5399/pEC-T18mob2zwf by this way.
2.2:L-the preparation of Threonine
The Corynebacterium glutamicum strain DSM5399/pEC-T18mob2zwf that will obtain in embodiment 2.1 is being suitable for cultivating in the nutritional medium that Threonine produces, determines threonine content in the culture supernatant.
For this reason, at first bacterial strain had corresponding antibiotic agar plate (the brain heart agar with tsiklomitsin (5mg/l)) upward 33 ℃ of insulations 24 hours.From this agar plate culture, inoculate pre-culture (10ml cultivates based in the 100ml Erlenmeyer flask).Perfect medium CgIII is as the substratum of pre-culture.
Culture medium C g III
NaCl 2.5g/l
Bacto-peptone 10g/l
Bacto-yeast extract 10g/l
Glucose (autoclaving separately) 2% (w/v)
With pH regulator is pH7.4
To wherein adding tsiklomitsin (5mg/l).This pre-culture is incubated 16 hours with 240rpm at 33 ℃ on shaking table.Inoculate master culture from this pre-culture, the initial OD (660nm) of master culture is 0.1 thus.Substratum MM is used for master culture.
Substratum MM
CSL (corn immersion liquid) 5g/l
MOPS (morpholino propane sulfonic acid) 20g/l
Glucose (autoclaving separately) 50g/l
(NH 4) 2SO 4 25g/l
KH 2PO 4 0.1g/l
MgSO 4*7H 2O 1.0g/l
CaCl 2*2H 2O 10mg/l
FeSO 4*7H 2O 10mg/l
MnSO 4*H 2O 5.0mg/l
Vitamin H (filtration sterilization) 0.3mg/l
VitB1 * HCl (filtration sterilization) 0.2mg/l
L-leucine (filtration sterilization) 0.1g/l
CaCO 3 25g/l
With CSL, the pH regulator of MOPS and described salts solution is 7, and autoclaving with ammoniacal liquor.Add aseptic substrate and vitamin solution then, and under drying regime autoclaved CaCO 3
In having the 100ml Erlenmeyer flask of baffle plate, cultivate with the 10ml volume.Add tsiklomitsin (5mg/l).Under 33 ℃ and 80% humidity, cultivate.
After 72 hours, (Beckmann Instruments GmbH Munich) measures OD under 660nm mensuration wavelength with Biomek 1000.(Hamburg Germany) detects post-column derivatization and the Threonine amount determining to form through ion exchange chromatography with triketohydrindene hydrate with the amino acidanalyser of Eppendorf-Bio Tronik company.
Experimental result is shown in table 1.
Table 1
Bacterial strain OD (660nm) L-Threonine g/l
DSM5399 12.3 0.74
DSM5399/pEC-T18mob2zwf 10.2 1.0
2.3:L-the preparation of Methionin
The Corynebacterium glutamicum strain DSM5715/pEC-T18mob2zwf that will obtain in embodiment 2.1 is being suitable for cultivating in the nutritional medium that Methionin produces, determines lysine content in the culture supernatant.
For this reason, at first this bacterial strain had corresponding antibiotic agar plate (the brain heart agar with tsiklomitsin (5mg/l)) upward 33 ℃ of insulations 24 hours.From this agar plate culture, inoculate pre-culture (10ml cultivates based in the 100ml Erlenmeyer flask).Perfect medium CgIII is as pre-incubated substratum.
Culture medium C g III
NaCl 2.5g/l
Bacto-peptone 10g/l
Bacto-yeast extract 10g/l
Glucose (autoclaving separately) 2% (w/v)
pH 7.4
To wherein adding tsiklomitsin (5mg/l).This pre-culture is incubated 16 hours with 240rpm at 33 ℃ on shaking table.Inoculate master culture from this pre-culture, the initial OD (660nm) of master culture is 0.1 thus.Substratum MM is used for master culture.
Substratum MM
CSL (corn immersion liquid) 5g/l
MOPS (morpholino propane sulfonic acid) 20g/l
Glucose (autoclaving separately) 58g/l
(NH 4) 2SO 4 25g/l
KH 2PO 4 0.1g/l
MgSO 4*7H 2O 1.0g/l
CaCl 2*2H 2O 10mg/l
FeSO 4*7H 2O 10mg/l
MnSO 4*H 2O 5.0mg/l
Vitamin H (filtration sterilization) 0.3mg/l
VitB1 * HCl (filtration sterilization) 0.2mg/l
L-leucine (filtration sterilization) 0.1g/l
CaCO 3 25g/l
With CSL, the pH regulator of MOPS and described salts solution is 7, and autoclaving with ammoniacal liquor.Add aseptic substrate and vitamin solution then, and under drying regime autoclaved CaCO 3
In having the 100ml Erlenmeyer flask of baffle plate, cultivate with the 10ml volume.Add tsiklomitsin (5mg/l).Under 33 ℃ and 80% humidity, cultivate.
After 72 hours, (Beckmann Instruments GmbH Munich) measures OD under 660nm mensuration wavelength with Biomek 1000.(Hamburg Germany) detects post-column derivatization and the lysine amount determining to form through ion exchange chromatography with triketohydrindene hydrate with the amino acidanalyser of Eppendorf-Bio Tronik company.
Experimental result is shown in table 2.
Table 2
Bacterial strain OD (660nm) L-Methionin HCl g/l
DSM5715 10.8 16.0
DSM5715/pEC-T18mob2zwf 7.2 17.1
Embodiment 3:
The structure of the gene library of Corynebacterium glutamicum strain ASO19
λ Zap Express is used in the DNA library of Corynebacterium glutamicum strain ASO19 (Yoshihama et al., Journal ofBacteriology 162,591-597 (1985)) TM(the Short et al. of system, (1988) Nucleic Acids Research, 16:7583-7600) make up, as O ' Donohue (O ' Donohue, M. (1997) .The Cloning and MolecularAnalysis of Four Common Aromatic Amino Acid Biosynthetic Genes fromCorynebacterium glutamicum.Ph.D.Thesis, National University ofIreland, Galway) described.λ Zap Express TMTest kit instructs available from Stratagene (La Jolla, California 92037 for Stratagene, 11011 North Torrey Pines Rd.) and according to manufacturer and uses.AS019-DNA is advanced BamHI with restriction enzyme Sau3A digestion and connection to be handled and dephosphorylized λ Zap Express TMIn the arm.
Embodiment 4:
The clone of pgi gene and order-checking
4.1: the clone
To as described in Kupor and Fraenkel (Journal of Bacteriology 100:1296-1301 (1969)), have the AS019 λ Zap Express of the coli strain DF1311 of pgi and pg1 transgenation with embodiment 3 described about 500ng TMPlasmid library transforms.At the M9 minimum medium that contains 50mg/l concentration kantlex (Sambrook et al., (1989) .Molecular Cloning.A Laboratory Manual, Cold Spring HarborLaboratories USA) goes up the selection transformant, and 37 ℃ of insulations 48 hours.According to Birnboim and Doly (Nucleic Acids Research 7:1513-1523 (1979)) described from a transformant isolated plasmid dna, be called pAMC1 (Fig. 3).
4.2: order-checking
For the insertion body to the pAMC1 clone carries out sequential analysis, use (Proceedings of the National Academy of Sciences USA 74 such as Sanger, 5463-5467 (1977)) described method, use through coloured fluorescent mark not the primer of isolabeling analyze.Use Perkin Elmer Applied Biosystems (Perkin Elmer Corporation, Norwalk, Connecticut, the ABI prism Big Dye of ABI prism 310 genetic analyzers U.S.A) and PerkinElmer TMTerminator Cycle Sequencing ReadyReaction Kit carries out.
The homing sequence analysis use derive from Pharmacia Biotech (St.Albans, Herts, AL13AW, UK) general forward and M13 reverse primer carry out:
General forward primer:
GTA ATA CGA CTC ACT ATA GGG C(SEQ ID NO:13)
The M13 reverse primer:
GGA AAC AGC TAT GAC CAT G(SEQ ID NO:14)
From the sequence that obtains, design inherent primer, the pgi gene that can derive whole thus subsequently.The sequence of inherent primer is as follows:
Inherent primer 1 (SEQ ID NO:15): GGA AAC AGG GGA GCC GTC
Inherent primer 2 (SEQ ID NO:16): TGC TGA GAT ACC AGC GGT
Use DNA Strider program (Marck, (1988) .Nucleic Acids Research16:1829-1836) then, 1.0 versions are analyzed the sequence that obtains on the Apple macintosh computer.This program can be analyzed as restriction site and use, and open reading frame analysis and codon use to be determined.Blast program is used in dna sequence dna that obtains and the search between those sequences in EMBL and the Genbank database, and (Altschul et al., (1997) .Nucleic AcidsResearch 25:3389-3402) carries out.DNA and protein sequence use Clustal V and Clustal W program (Higgins and Sharp, 1988 Gene 73:237-244) to arrange contrast.
Thus obtained sequence is shown in SEQ ID NO:1.The nucleotide sequence analysis that obtains shows the open reading frame of one 1650 base pair, is called the pgi gene, and its coding has 550 amino acid whose protein, shown in SEQ ID NO:2.
Embodiment 5:
Integrate the preparation of the integrative vector of mutagenesis pgi gene
The interior segments of pgi gene is by polymerase chain reaction (PCR) amplification, use to separate genomic dna from Corynebacterium glutamicum AS019 (Heery and Dunican, (1993) Applied andEnvironmental Microbiology 59:791-799) as template.The pgi primer that uses is:
Forward primer: ATG GAR WCC AAY GGH AA (SEQ ID NO:17)
Reverse primer: YTC CAC GCC CCA YTG RTC (SEQ ID NO:18)
Wherein: R=A+G; Y=C+T; W=A+T; H=A+T+C.
The PCR parameter is as follows:
35 circulations
94 1 minute
47 1 minute
72 ℃ 30 seconds
1.5mM MgCl 2
About 150-200ng dna profiling
The PCR product cloning that obtains advanced to be purchased (Promega UK in pGEM-T carrier Southampton.), uses coli strain JM109, and (Yanisch-Perron et al., 1985.Gene 33:103-119) are the host from Promega company.The sequence of this PCR product is shown in SEQ ID NO:3.The insertion body that to clone then is cut into the EcoRI fragment and connects with using the pretreated plasmid pBGS8 of EcoRI (Spratt et al., Gene 41:337-342 (1986)).The restriction enzyme of using derives from Boehringer Mannheim UK Ltd., and (BellLane, Lewes East Sussex BN7 1LG UK.), instruct use according to manufacturer.Then e. coli jm109 is connected mixture with this and transforms, and added concentration be respectively 1mM, 0.02% and the Luria agar of IPTG (sec.-propyl-β-D-thio-galactose pyran-glucoside), the XGAL (5-bromo-4-chloro-3-indoles-D-semi-lactosi pyranoside) of 50mg/l and kantlex on selection electric transformant.
Agar plate is incubated 12 hours at 37 ℃.Isolated plasmid dna from a transformant uses EcoRI, BamHI and SalI to identify by restriction enzyme analysis, is called pMC1 (Fig. 4).
Plasmid pMC1 with the form of coli strain DH5 α/pMC1 according to budapest treaty be deposited in German microbial preservation center (DSMZ, Braunschweig, Germany), preserving number DSM 12969.
Embodiment 6:
The integration mutagenesis of pgi gene in Methionin production strain DSM 5715
Embodiment 5 described carrier pMC1 are advanced among the Corynebacterium glutamicum DSM 5715 by (FEMSMicrobiological Letters, 123:343-347 (1994)) described electroporation method electroporations such as Tauch.Strain DSM 5715 is that a kind of AEC-resistance Methionin is produced bacterial strain.Carrier pMC1 can not be independently duplicated in DSM5715, just can be retained in the cell when only being integrated in DSM 5715 karyomit(e)s.By electroporation batch thing bed board is being added the LB agar of 15mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) last selection pMC1 is integrated into the clone in the karyomit(e).
In order to detect integration, inherent pgi fragment (embodiment 5) is used the Dig hybridization kit mark that derives from BoehringerMannheim, method (the Mannheim of " The DIG System Users Guide for Filter Hybridization " by Boehringer Mannheim GmbH, Germany, 1993) carry out mark.The chromosomal DNA of transformant separates by the method (Microbiology 140:1817-1828 (1994)) of Eikmanns etc., and at every turn with restriction enzyme SalI, SacI and HindIII cutting.The fragment that forms is separated by sepharose, hybridizes with the Dig hybridization kit that derives from Boehringer at 68 ℃.Find that in this mode plasmid pMC1 is inserted in the karyomit(e) pgi gene of strain DSM 5715.This bacterial strain is called DSM5715 ∷ pMC1.
Embodiment 7:
Zwf gene overexpression and pgi gene elimination simultaneously are to the effect of Methionin preparation
7.1: the preparation of strain DSM 5715 ∷ pMC1/pEC-T18mob2zwf
With embodiment 1.2 described carrier pEC-T18mob2zwf by Tauch etc. (1994, FEMS Microbiological Letters, 123:343-347) described electroporation method electroporation advances among the Corynebacterium glutamicum DSM 5715 ∷ pMC1.By with electroporation batch thing bed board at the LB agar of having added 15mg/l kantlex and 5mg/l tsiklomitsin (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring HarborLaboratory Press, Cold Spring Harbor, N.Y., 1989) the last cell of selecting to carry plasmid.By ordinary method (Peters-Wendisch et al., 1998, Microbiology144,915-927) isolated plasmid dna from transformant, and by handling with restriction enzyme KpnI and SalI and subsequently agarose coagulates electrophoresis detection.Described bacterial strain is called DSM5715 ∷ pMC1/pEC-T18mob2zwf.
7.2: the preparation of Methionin
The Corynebacterium glutamicum strain DSM5715 ∷ pMC1/pEC-T18mob2zwf that obtains among the embodiment 7.1 is cultivated in the nutritional medium that is suitable for the Methionin generation, determine lysine content in the culture supernatant.
For this reason, at first bacterial strain had corresponding antibiotic agar plate (the brain heart agar with tsiklomitsin (5mg/l) and kantlex (25mg/l)) upward 33 ℃ of insulations 24 hours.Antibiotic resistance is added the culture of contrast bacterial strain according to it.From this agar plate culture, inoculate pre-culture (10ml cultivates based in the 100ml Erlenmeyer flask).Perfect medium CgIII is as pre-incubated substratum.
Culture medium C g III
NaCl 2.5g/l
Bacto-peptone 10g/l
Bacto-yeast extract 10g/l
Glucose (autoclaving separately) 2% (w/v)
pH7.4
To wherein adding tsiklomitsin (5mg/l) and kantlex (5mg/l).This pre-culture is incubated 16 hours with 240rpm at 33 ℃ on shaking table.Inoculate master culture from this pre-culture, the initial OD (660nm) of master culture is 0.1 thus.Substratum MM is used for master culture.
Substratum MM
CSL (corn immersion liquid) 5g/l
MOPS (morpholino propane sulfonic acid) 20g/l
Glucose (autoclaving separately) 50g/l
(NH 4) 2SO 4 25g/l
KH 2PO 4 0.1g/l
MgSO 4*7H 2O 1.0g/l
CaCl 2*2H 2O 10mg/l
FeSO 4*7H 2O 10mg/l
MnSO 4*H 2O 5.0mg/l
Vitamin H (filtration sterilization) 0.3mg/l
VitB1 * HCl (filtration sterilization) 0.2mg/l
L-leucine (filtration sterilization) 0.1g/l
CaCO 3 25g/l
Is 7 with ammoniacal liquor with the pH regulator of CSL, MOPS and described salts solution, and autoclaving.Add aseptic substrate and vitamin solution then, and under drying regime autoclaved CaCO 3
In having the 100ml Erlenmeyer flask of baffle plate, cultivate with the 10ml volume.Add tsiklomitsin (5mg/l) and kantlex (25mg/l).Under 33 ℃ and 80% humidity, cultivate.
After 72 hours, (Beckmann Instruments GmbH Munich) measures OD under 660nm mensuration wavelength with Biomek 1000.(Hamburg Germany) detects post-column derivatization and the lysine amount determining to form through ion exchange chromatography with triketohydrindene hydrate with the amino acidanalyser of Eppendorf-Bio Tronik company.
Experimental result is shown in table 3.
Table 3
Bacterial strain OD (660nm) L-Methionin HCl g/l
DSM5715 7.3 14.3
DSM5715/pEC-T18mob2zwf 7.1 14.6
DSM5715∷pMC1/ pECTmob2zwf 10.4 15.2
Embodiment 8:
From Corynebacterium glutamicum ATCC 13032 preparation genome clay gene libraries
The chromosomal DNA of Corynebacterium glutamicum ATCC 13032 such as Tauch etc. (1995, Plasmid 33:168-179) the described separation, and with restriction enzyme Sau3AI (AmershamPharmacia, Freiburg, Germany, Product Description Sau3AI, Code no.27-0913-02) the part cutting.With this dna fragmentation shrimp alkaline phosphotase (RocheMolecular Biochemicals, Mannheim, Germany, Product DescriptionSAP, Code no.1758250) dephosphorylation.To derive from Stratagene (La Jolla, USA, Product Description SuperCosl Cosmid Vektor Kit, Code no.251301) DNA of cosmid vector SuperCosl (Wahl et al. (1987) Proceedings of theNational Academy of Sciences USA 84:2160-2164) restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, Product DescriptionXbaI, Code no.27-0948-02) cutting, and use the shrimp alkaline phosphotase dephosphorylation equally.
Then cosmid DNA is cut with restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no.27-0868-04).The cosmid DNA of handling is in this way mixed with the ATCC13032 DNA of processing, and with this batch thing T4 dna ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) handle.To connect mixture then packs in phage by means of Gigapack II XL PackingExtracts (Stratagene, La Jolla, USA, Product Description Gigapack IIXL Packing Extract, Code no.200217).For ehec infection bacterial strain NM554 (Raleigh et al.1988, Nucleic Acid Res.16:1563-1575), cell is placed 10mM MgSO 4In and mix with phage suspension liquid equal portions.As (1989, Molecular Cloning:A laboratory Manual, ColdSpring Harbor) such as Sambrook are described cosmid library is infected and titration, with the cell bed board at LB agar (Lennox, 1955, Virology is 1:190)+100 on the μ g/ml penbritin.After 37 ℃ of incubated overnight, select each clone of reorganization.
Embodiment 9:
The separation of poxB gene and order-checking
The cosmid DNA of each bacterium colony (embodiment 7) uses Qiaprep Spin Miniprep test kit (Product No.27106, Qiagen, Hilden, Germany) separate according to manufacturer's guidance, and use restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No.27-0913-02) the part cutting.With this dna fragmentation shrimp alkaline phosphotase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No.1758250) dephosphorylation.After the gel electrophoresis separation, size is used QiaExII gel extraction kit (Product No.20021, Qiagen, Hilden, Germany) separation at the cosmid fragment of 1500-2000bp scope.Derive from the DNA (Groningen of the sequencing vector pZero-1 of Invitrogen, Holland, Product Description Zero Background CloningKit, Product No.K2500-01) with restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No.27-0868-04) cutting.By Sambrook etc. (1989, Molecular Cloning:A laboratoryManual, Cold Spring Harbor) described method connects described cosmid fragment in sequencing vector pZero-1, with DNA mixture and T4 ligase enzyme (Pharmacia Biotech, Freiburg, Germany) incubated overnight together.
Then this is connected mixture electroporation (Tauch et al.1994, FEMS MicrobiolLetters, 123:343-7) advance coli strain DH5 α MCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) in, and be plated on LB agar (Lennox with 50 μ g/ml zeocin, 1955, Virology, 1:190) on.Biorobot 9600 is used in the plasmid preparation of recombinant clone, and (Hilden Germany) carries out for ProductNo.900200, Qiagen.Order-checking is by Zimmermann etc. (1990, Nucleic Acids Research, 18:1067) Sanger of Xiu Gaiing etc. (1977, Proceedings of the National Academies of Sciences U.S.A., dideoxy-chain terminating method 74:5463-5467) carries out." the RRdRhodamin Terminator Cycle Sequencing Kit " of use PE Applied Biosystems (Product No.403044, Weiterstadt, Germany).Has PE Applied Biosystems (Weiterstadt, " (Product No.A 124.1; Roth; Karlsruhe carries out the analysis of gel electrophoresis separation and sequencing reaction on Germany) to Gel (29:1) to the Rotiphoresis NFAcrylamide/Bisacrylamide of ABI Prism 377 sequenators of sequenator Germany).
Then the original series data that obtain are used the Staden routine package (1986, NucleicAcids Research, 14:217-231) version 97-0 handles.Each sequence of pZero1 derivative is assembled into continuous contig (contig).With the XNIP program (Staden, 1986, Nucleic Acids Research 14:217-231) carries out computer assisted coding region and analyzes.Use in addition the blast search program (Altschul et al., 1997, Nucleic AcidsResearch, 25:3389-3402) to state-run biotechnology information center (NCBI, Bethesda, MD, Non-redundant data storehouse USA) is analyzed.
The gained nucleotides sequence is shown in SEQ ID NO:4.Nucleotide sequence analysis illustrates the open reading frame of one 1737 base pair, and it is called the poxB gene.579 amino acid whose polypeptide of poxB genes encoding (SEQ ID NO:5).
Embodiment 10:
Carry out the preparation of the integrative vector of poxB gene integration mutagenesis
From strains A TCC 13032, separate chromosomal DNA by described method such as Eikmanns (Microbiology 140:1817-1828 (1994)).Based on the sequence of the poxB gene of known Corynebacterium glutamicum from embodiment 8, select following oligonucleotide to carry out polymerase chain reaction:
poxBint1(SEQ ID NO:19):
5`TGC GAG ATG GTG AAT GGT GG 3`
poxBint2(SEQ ID NO:20):
5`GCA TGA GGC AAC GCA TTA GC 3`
Shown in primer by MWG Biotech (Ebersberg, Germany) synthetic, the PCR reaction is by (PCR protocols.A guide to methods and applications such as Innis, 1990, Academic Press) standard pcr carries out, and uses the Pwo polysaccharase of Boehringer.By means of polymerase chain reaction, separate the dna fragmentation of an about 0.9kb of size, it carries the interior segments of poxB gene, shown in SEQ ID NO:6.
With the dna fragmentation of amplification and TOPO TA clone test kit (Carlsbad, CA, the USA of Invitrogen company; Catalogue Number K4500-01) in carrier pCR2.1-TOPO (Mead at al. (1991) Bio/Technology 9:657-663), connects.Then coli strain DH5 α is used and connect batch thing electroporation (Hanahan, In:DNA cloning.APractical Approach.Vol.I, IRL-Press, Oxford, Washington DC, USA, 1985).Adding the LB agar of 25mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 with transforming batch thing bed board NdEd., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) on, the cell of plasmid is carried in selection.Plasmid DNA is separated from transformant by means of the QIAprep SpinMiniprep test kit of Qiagen, and by detecting with limiting enzyme EcoRI restriction and agarose gel electrophoresis (0.8%) subsequently.This plasmid is called pCR2.1poxBint (Fig. 5).
Plasmid pCR2.1poxBint is deposited in German microbial preservation center with coli strain DH5 α/pCR2.1poxBint form according to budapest treaty, and (Germany), preserving number is DSM 13114 for DSMZ, Braunschweig.
Embodiment 11:
The integration mutagenesis of poxB gene in Methionin production strain DSM 5715
Embodiment 10 described carrier pCR2.1poxBint are advanced among the Corynebacterium glutamicum DSM 5715 by electroporation method (FEMS Microbiological Letters, 123:343-347 (the 1994)) electroporation of Tauch etc.Strain DSM 5715 is that AEC resistance Methionin is produced bacterial strain.Carrier pCR2.1poxBint can not be independently duplicated in DSM5715, only is integrated in the karyomit(e) of DSM5715 just can be retained in the cell.With electroporation batch thing bed board at the LB agar of having added the 15mg/l kantlex (Sambrook et al., Molecular Cloning:ALaboratory Manual.2 NdEd., Cold Spring Harbor Laboratory Press, ColdSpring Harbor, N.Y.) on, select pCR2.1poxBint to be integrated into clone in the karyomit(e).In order to detect integration, by Boehringer Mannheim GmbH (Mannheim, the method of Germany, 1993) " The DIG System Users Guide for FilterHybridization " is with the Dig hybridization kit mark of poxBint fragment with Boehringer.
The chromosomal DNA of potential intasome separates by described method such as Eikmanns (Microbiology 140:1817-1828 (1994)), and at every turn with restriction enzyme SalI, SacI and HindIII cutting.The fragment that forms is separated by agarose gel electrophoresis, 68 ℃ of Dig hybridization kit hybridization with Boehringer.Embodiment 9 described plasmid pCR2.1poxBint insert in the chromosomal poxB gene of DSM5715.This bacterial strain is called DSM5715 ∷ pCR2.1poxBint.
Embodiment 12:
Zwf gene overexpression poxB gene is simultaneously eliminated the effect that Methionin is produced
12.1: the preparation of strain DSM 5715 ∷ pCR2.1poxBint/pEC-T18mob2zwf
Use described electroporation methods (FEMS Microbiology Letters, 53:299-303 (1989)) such as Liebl, 5715 ∷ pCR2.1poxBint transform with plasmid pEC-T18mob2zwf with strain DSM.Comprising 18.5g/l brain heart meat extract, 0.5M Sorbitol Powder, 5g/l Bacto-tryptone, 2.5g/l Bacto-yeast extract, 5g/l NaCl and 18g/lBacto-agar have also been added on the LBHIS agar of 5mg/l tsiklomitsin and 25mg/l kantlex and have been selected transformant.33 ℃ of insulations 2 days.
By ordinary method (Peters-Wendisch et al., 1998, Microbiology 144,915-927) isolated plasmid dna from transformant at every turn, with restriction endonuclease XbaI and KpnI cutting, and the agarose gel electrophoresis that plasmid is passed through subsequently detects.The bacterial strain of Huo Deing is called DSM5715:pCR2.1poxBint/pEC-T18mob2zwf by this way.
12.2:L-the preparation of Methionin
The Corynebacterium glutamicum strain DSM5715 ∷ pCR2.1poxBint/EC-T18mob2zwf that obtains among the embodiment 12.1 is cultivated in the nutritional medium that is suitable for Methionin production, determine the lysine content in the culture supernatant.
For this reason, at first bacterial strain had corresponding antibiotic agar plate (the brain heart agar with tsiklomitsin (5mg/l) and kantlex (25mg/l)) upward 33 ℃ of insulations 24 hours.Add the contrast bacterial strain according to its antibiotics resistance.From this agar plate culture, inoculate pre-culture (10ml cultivates based in the 100ml Erlenmeyer flask).Perfect medium Cg III is as pre-incubated substratum.
Culture medium C g III
NaCl 2.5g/l
Bacto-peptone 10g/l
Bacto-yeast extract 10g/l
Glucose (autoclaving separately) 2% (w/v)
pH 7.4
To wherein adding tsiklomitsin (5mg/l) and kantlex (25mg/l).This pre-culture is incubated 16 hours with 240rpm at 33 ℃ on shaking table.Inoculate master culture from this pre-culture, the initial OD (660nm) of master culture is 0.1 thus.Substratum MM is used for master culture.
Substratum MM
CSL (corn immersion liquid) 5g/l
MOPS (morpholino propane sulfonic acid) 20g/l
Glucose (autoclaving separately) 58g/l
(NH 4) 2SO 4 25g/l
KH 2PO 4 0.1g/l
MgSO 4*7H 2O 1.0g/l
CaCl 2*2H 2O 10mg/l
FeSO 4*7H 2O 10mg/l
MnSO 4*H 2O 5.0mg/l
Vitamin H (filtration sterilization) 0.3mg/l
VitB1 * HCl (filtration sterilization) 0.2mg/l
L-leucine (filtration sterilization) 0.1g/l
CaCO 3 25g/l
Is 7 with ammoniacal liquor with the pH regulator of CSL, MOPS and described salts solution, and autoclaving.Add aseptic substrate and vitamin solution then, and under drying regime autoclaved CaCO 3
In having the 100ml Erlenmeyer flask of baffle plate, cultivate with the 10ml volume.Add tsiklomitsin (5mg/l) and kantlex (25mg/l).Under 33 ℃ and 80% humidity, cultivate.
After 72 hours, (Beckmann Instruments GmbH Munich) measures OD under 660nm mensuration wavelength with Biomek 1000.(Hamburg Germany) detects post-column derivatization and the lysine amount determining to form through ion exchange chromatography with triketohydrindene hydrate with the amino acidanalyser of Eppendorf-BioTronik company.
Experimental result is shown in table 4.
Table 4
Bacterial strain OD (660nm) L-Methionin HCl g/l
DSM5715 10.8 16.0
DSM5715/pEC-T18mob2zwf 8.3 17.1
DSM5715∷pCR2.1poxBint 7.1 16.7
DSM5715∷pCR2.1poxBint/ pEC-Tmob2zwf 7.8 17.7
Embodiment 13:
Zwf allelotrope zwf (A243T)
Separate and order-checking
Corynebacterium glutamicum strain DM658 is by selecting and screen to prepare through multiple, non-directional mutagenesis, mutant from Corynebacterium glutamicum ATCC 13032.This bacterial strain has resistance to L-lysine analogues S-(2-aminoethyl)-L-halfcystine (AEC), and has the insensitive feedback resistance of the mixture E.C. 2.7.2.4. to L-Methionin, L-lysine analogues S-(2-aminoethyl)-L-halfcystine (AEC) and L-Threonine.Bacterial strain DM658 is deposited in German microbial preservation center (DSMZ), and preserving number is DSM7431.
By ordinary method (Eikmanns et al., Microbiology 140:1817-1828 (1994)), from bacterial strain DM658, separate chromosomal DNA.By means of polymerase chain reaction (PCR), zwf gene or allelic dna fragmentation are carried in amplification.Based on the sequence of the zwf gene of Corynebacterium glutamicum, select the primer tasteless nucleotide among the following embodiment 1.2 to carry out PCR:
Zwf-forward (SEQ ID NO:11):
5′-TCG ACG CGG TTC TGG AGC AG-3′
Zwf-is (SEQ ID NO:12) oppositely:
5′-CTA AAT TAT GGC CTG CGC CAG-3′
Shown in primer (Ebersberg, Germany) synthetic, the standard pcr by (PCR Protocols.A Guide to Methods and Applications, 1990, Academic Press) such as Innis carries out PCR by MWG Biotech.Described primer amplification go out length be about 1.85kb, carry the allelic dna fragmentation of zwf.
Differentiate that by 0.8% agarose gel electrophoresis the zwf that carries bacterial strain DM658 is allelic, length is the dna fragmentation of the amplification of about 1.85kb, from gel, separate and by ordinary method (QIAquick Gel Extraction Kit, Qiagen, Hilden, Germany) purifying.
The dna fragmentation of amplification or the nucleotide sequence of PCR product are by MWG Biotech (Ebersberg, Germany) order-checking and determining.The sequence of this PCR product is shown in SEQ IDNO:21.Aminoacid sequence by means of zymoprotein (Zwf albumen) between the acquisition of Patentin program is shown in SEQ ID NO:22.
The nucleotides sequence of the allelic coding region of zwf of bacterial strain DM658 is listed in the 727th and has bases adenine.The 727th corresponding to nucleotide sequence shown in the SEQ ID NO:21 the 1034th in the nucleotide sequence of zwf allelotrope coding region.
The 727th Nucleotide at the nucleotide sequence of wild-type gene coding region is the base guanine.The 727th of the nucleotide sequence of wild type gene coding region corresponding to SEQ ID NO:9 the 1264th.
The aminoacid sequence of zymoprotein between bacterial strain DM658 (Zwf (A243T)) has amino acid Threonine (SEQ ID NO:22) at the 243rd.In the proteic corresponding position of wild-type is amino acid alanine (SEQ ID NO:10).Therefore, described allelotrope is called zwf (A243T).
SEQ ID NO:23 illustrates an inner segment of the allelic encoding sequence of zwf (A243T) that comprises guanine VITAMIN B4 conversion (see SEQ ID NO:23 the 137th).
Embodiment 14:
The transfer of zwf allelotrope zwf (A243T)
14.1: the separation of carrying the allelic dna fragmentation of zwf (A243T)
By ordinary method (Eikmanns et al., Microbiology 140:1817-1828 (1994)), from bacterial strain DM658, separate chromosomal DNA.Carry the allelic DNA of zwf (A243T) zone by means of PCR amplification, described allelotrope in the coding region (CDS) the 727th contain the base guanine that bases adenine replaces wild type gene to contain in this position.Based on the sequence of the zwf gene of Corynebacterium glutamicum, select following primer tasteless nucleotide primer to carry out polymerase chain reaction:
zwf_XL-A1(SEQ ID NO:24):
5`ga tct aga-agc tcg cct gaa gta gaa tc 3`
zwf_XL-E1(SEQ ID NO:25):
5`ga tct aga-gat tca cgc agt cga gtt ag 3`
Shown in primer by MWG Biotech (Ebersberg, Germany) synthetic, carry out the PCR reaction by (PCR Protocols.A Guide to Methods and Applications, 1990, Academic Press) standard pcrs such as Innis.Described primer amplification goes out to carry the dna fragmentation (SEQ IDNO:26) that zwf (A243T) is allelic, length is about 1.75kb.Described primer contains the sequence of the cleavage site of restriction endonuclease XbaI in addition, and it is indicated with underscore in above-mentioned nucleotide sequence.
The dna fragmentation that carries the amplification that zwf (A243T) is allelic, length is about 1.75kb cuts with restriction endonuclease XbaI, differentiate by in 0.8% sepharose, carrying out electrophoresis, from gel, separate and purifying (QIAquick GelExtraction Kit by ordinary method then, Qiagen, Hilden).
14.2: the structure of replacement vector
The XbaI dna fragmentation (seeing embodiment 14.1) that will contain the allelic length of zwf (A243T) and be about 1.75kb mixes in the karyomit(e) of Corynebacterium glutamicum strain DSM5715, by described sacB (Gene of system such as Schaefer, 14,69-73 (1994)) replaces mutagenesis.This system can prepare and select the allelic replacement of generation by homologous recombination.
Movably cloning vector pK18mobsacB digests with restriction enzyme XbaI, and with end alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim, Germany) dephosphorylation.The carrier of preparation is by this way mixed with zwf (A243T) fragment of about 1.75kb size, and (Amersham-Pharmacia, Freiburg Germany) handle with the T4 dna ligase with mixture.
Then with coli strain S17-1 (Simon et al., Bio/Technologie 1:784-791,1993) connect batch thing with this and transform (Hanahan, In.DNA cloning.APractical Approach.Vol.1, ILR-Press, Cold Spring Harbor, NewYork, 1989).To transform batch thing bed board at the LB agar of having added the 25mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor, New York, 1989) on, the cell of plasmid is carried in selection
By means of QIAprep Spin Miniprep test kit isolated plasmid dna from transformant of Qiagen, by detecting with restricted cutting of enzyme PstI and agarose gel electrophoresis subsequently.This plasmid is called pK18mobsacB_zwf (A243T), is shown in Fig. 6.
14.3: allelic transfer
Carrier pK18mobsacB_zwf (A243T) described in the embodiment 14.2 is moved among the Corynebacterium glutamicum strain DSM5715 by joint, and (Journal of Microbiology 172:1663-1666 (1990)) carries out by described methods such as Schaefer.This carrier can not be independently duplicated in DSM5715, has only to be integrated in the karyomit(e) by recombination event just to be retained in the cell.To engage batch thing bed board at the LB agar of having added 15mg/l kantlex and 50mg/l nalidixic acid (Sambrook et al., Molecular Cloning:A LaboratoryManual.2 NdEd., Cold Spring Harbor, New York, 1989) on, select transconjugant, promptly have the clone of the pK18mobsacB_zwf (A243T) of integration.Kalamycin resistance transconjugant bed board is being contained on the LB agar plate of 25mg/l kantlex, 33 ℃ of insulations 24 hours.The kalamycin resistance transconjugant is called DSM5715 ∷ pK18mobsacB_zwf (A243T).Be integrated into result in strain DSM 5715 karyomit(e)s as plasmid vector pK18mobsacB_zwf (A243T), the bacterial strain of acquisition is that DSM5715 ∷ pK18mobsacB_zwf (A243T) contains zwf wild type gene and zwf (A243T) allelotrope.
In order to select wherein since the excision due to the secondary recombination event mutant of described plasmid, with the non-selective cultivation 24 hours in the LB liquid nutrient medium of the cell of strain DSM 5715 ∷ pK18mobsacB_zwf (A243T), bed board has on the LB agar of 10% sucrose then, is incubated 30 hours.
(A243T is the same with initial plasmid pK18mobsacB, except kalamycin resistance gene, also contains the sacB gene copy of the levansucrase of coding subtilis (Bacillussubtilis) for plasmid pK18mobsacB_zwf.Can be caused levansucrase to form by the expression of sucrose induction, its catalysis be the synthetic of toxic product Polylevulosan for Corynebacterium glutamicum.Having only wherein those that excised the plasmid pK18mobsacB_zwf (A243T) that integrates owing to the secondary recombination event to be cloned on the LB agar that contains sucrose grows.Depend on position, allelic replacement (promptly mixing sudden change) or original copy (being wild type gene) take place be retained in host's the karyomit(e) about the secondary recombination event in mutational site.
Phenotype to about 40-50 bacterium colony test " growth when having sucrose " and " not growing when having kantlex ".In 4 bacterium colonies of the phenotype that " growth when having sucrose " and " not growing when having kantlex " is shown, a zone order-checking to the zwf gene of crossing over zwf (A243T) sudden change, from sequencing primer zf_1 (SEQID NO:27) (GATC Biotech AG, Konstanz, the Germany preparation) there is zwf (A243T) allelic mutation in beginning to prove in the karyomit(e).The nucleotide sequence of primer zf_1 is as follows:
zf_1(SEQ ID NO:27):
5`ggc tta cta cct gtc cat tc 3`
Differentiate by this way the 727th of zwf gene coding region (CDS) and contain bases adenine and therefore in its karyomit(e), have the allelic clone of zwf (A243T).This clone is called strain DSM 5715zwf2_A243T.
Strain DSM 5715zwf2_A243T is deposited in German microbial preservation center according to budapest treaty, and (Germany), preserving number is DSM15237 for DSMZ, Braunschweig.
Embodiment 15:
The evaluation of glucose-6-phosphate dehydrogenase (G6PD) and definite
15.1: the glucose-6-phosphate dehydrogenase (G6PD) of bacterial strain DM658 is active to be determined
In order to identify the activity of the glucose-6-phosphate dehydrogenase (G6PD) that zwf allelotrope zwf (A243T) encodes, (Germany) middle insulation is 24 hours for Merck KG, Darmstadt at the LB substratum with bacterial strain DM658.Cultivation is to carry out on shaking table with 200rpm at 33 ℃ in having the 250ml Erlenmeyer flask of plate washer with the 25ml volume.In order to compare parallel cultivation wild type strain ATCC 13032.Also in the Tris-HCl of pH7.8 (100mM) damping fluid, wash subsequently by centrifugal collection of biological amount.(Hybaid AG, Heidelberg Germany) make cytolysis to use the Ribolyser system.By this method, use 1.6g granulated glass sphere (diameter 0.2 μ m) and contain above-mentioned cell pH 7.8,0.6g Tris-HCl (100mM)/NaCl damping fluid (520mM) pair cell carries out mechanize and dissolves.After centrifugal, separate supernatant and be used as crude extract.By colorimetric BCA method (Pierce, Rockford, IL, USA, Order No.23235ZZ), use the equal portions supernatant to determine total protein concentration.Another equal portions are used for determining the glucose-6-phosphate dehydrogenase (G6PD) activity.
The following reaction of glucose-6-phosphate dehydrogenase (G6PD) (EC 1.1.1.49) catalysis:
G-6-P+NADP + 6-phosphogluconic acid-delta-lactone+NADPH
Determine that the active analytical system of glucose-6-phosphate dehydrogenase (G6PD) contains 100mM Tris-HCl (pH 7.8), 10mM MgCl 2With 260 μ M NADP +Add G-6-P to final concentration and begin reaction for the 7mM G-6-P.NADPH is absorbed in 25 ℃ in 340nm use Hitachi U3200 spectrophotometer (Nissei Sangyo, Duesseldorf, Germany) monitoring.
For the capacity enzymic activity of Units of Account/milliliter, use following formula:
Variation in the absorption of 340nm NADPH per minute
6.22* the volume of the crude extract that is used to analyze (ml)
Specific enzyme activity (U/mg for Units of Account/milligram total protein; The mU=milliunit/mg), with the protein concn of enzymic activity divided by crude extract.
Active being determined at of glucose-6-phosphate dehydrogenase (G6PD) contained 100mM Tris-HCl (pH7.8), 10mM MgCl when having NADPH 2, 260 μ M NADP +With carry out in the analytical system of 260 μ MNADPH.Adding G-6-P to final concentration is that 7mM begins reaction.The calculating of enzymic activity is carried out with same way as described above when having NADPH.
Experimental result is shown in table 5.
Table 5
Bacterial strain Glucose-6-phosphate dehydrogenase (G6PD)
Activity when not having NADPH (mU/mg protein) Activity when having NADPH (mU/mg protein) Residual activity (%)
ATCC13032 80 14 17.5
DM658 130 84 64.6
15.2: the glucose-6-phosphate dehydrogenase (G6PD) of strain DSM 5715zwf2_A243T is active to be determined
For the activity of glucose-6-phosphate dehydrogenase (G6PD) that determine to contain among the strain DSM 5715zwf2_A243T, zwf allelotrope zwf (A243T) coding, (Germany) middle insulation is 24 hours for Merck KG, Darmstadt at the LB substratum with this bacterial strain.Cultivation is to have in the Erlenmeyer flask of plate washer at 250ml with the 25ml volume, carries out on shaking table with 200rpm at 33 ℃.In order to compare, parallel insulation has the parental strain DSM5715 of wild-type zwf gene.The preparation of biomass is carried out as described in embodiment 15.1.
Glucose-6-phosphate dehydrogenase (G6PD) activity being determined in the situation that has its reacting final product NADPH contained 100mM Tris-HCl (pH7.8), 10mM MgCl 2, 260 μ MNADP +, 7mM G-6-P and 400 μ M NADPH analytical system in carry out.Enzymic activity when having NDDPH is calculated with aforementioned same way as.
Experimental result is shown in table 6.
Table 6
Bacterial strain Glucose-6-phosphate dehydrogenase (G6PD)
Activity when not having NADPH (mU/mg protein) Activity when having NADPH (mU/mg protein) Residual activity (%)
DSM5715 86 13 15
DSM5715zwf2_A243T 64 18 28
Embodiment 16:
The production of L-Methionin
Corynebacterium glutamicum strain DSM5715 that will obtain in embodiment 14 and DSM5715zwf2_A243T are being suitable for cultivating in the nutritional medium that Methionin produces, determine lysine content in the culture supernatant.
For this reason, at first bacterial strain is incubated 24 hours at 33 ℃ on agar plate.From this agar plate culture, inoculate pre-culture (10ml cultivates based in the 100ml Erlenmeyer flask) at every turn.Substratum MM is as pre-incubated substratum.Pre-culture is incubated 24 hours with 240rpm at 33 ℃ on shaking table.In all cases, inoculate master culture from these pre-cultures, the initial OD (660nm) of master culture is 0.1 thus.Substratum MM also is used for main the cultivation.
Substratum MM
CSL 5g/l
MOPS 20g/l
Glucose (autoclaving separately) 50g/l
Salt:
(NH 4) 2SO 4 25g/l
KH 2PO 4 0.1g/l
MgSO 4*7H 2O 1.0g/l
CaCl 2*2H 2O 10mg/l
FeSO 4*7H 2O 10mg/l
MnSO 4*H 2O 5.0mg/l
Vitamin H (filtration sterilization) 0.3mg/l
VitB1 * HCl (filtration sterilization) 0.2mg/l
L-leucine (filtration sterilization) 0.1g/l
CaCO 3 25g/l
Is 7 with ammoniacal liquor with the pH regulator of CSL (corn immersion liquid), MOPS (morpholino propane sulfonic acid) and described salts solution, and autoclaving.Add aseptic substrate and vitamin solution then, and under drying regime autoclaved CaCO 3
In having the 100ml Erlenmeyer flask of baffle plate, cultivate with the 10ml volume.Under 33 ℃ and 80% humidity, cultivate.
After 72 hours, (Beckmann Instruments GmbH Munich) measures OD under 660nm mensuration wavelength with Biomek1000.(Hamburg Germany) detects post-column derivatization and the lysine amount determining to form through ion exchange chromatography with triketohydrindene hydrate with the amino acidanalyser of Eppendorf-BioTronik company.
Experimental result is shown in table 7.
Table 7
Bacterial strain OD (660nm) Methionin HCl g/l
DSM5715 8.6 15.3
DSM5715zwf2_A243T 9.0 16.2
Embodiment 17:
The zwf wild type gene of bacterial strain DM1697 is by zwf (D245S) allelic replacement
17.1: the separation of carrying the dna fragmentation of zwf gene
Corynebacterium glutamicum strain DM1697 is by selecting to produce through repeatedly non-directional mutagenesis, selection and mutant from Corynebacterium glutamicum ATCC21527.ATCC21527 is auxotrophic for L-leucine and L-homoserine.On the contrary, bacterial strain DM1697 is anauxotrophic for L-leucine and L-homoserine, lysine analogues S-(2-aminoethyl)-L-halfcystine there is resistance, and has the insensitive feedback resistance of restraining effect E.C. 2.7.2.4. S-(2-aminoethyl)-L-halfcystine and Threonine (in all situations, being 25mM) mixture.
(Eikmanns et al., Microbiology 140:1817-1828 (1994)) separates chromosomal DNA from bacterial strain DM1697 by ordinary method.The dna fragmentation that carries the zwf gene is by means of PCR amplification.Based on known Corynebacterium glutamicum zwf gene order from embodiment 1, select following Oligonucleolide primers to carry out polymerase chain reaction:
zwf_XL-Al(SEQ ID NO:24):
5`ga tctaga agc tcg cct gaa gta gaa tc 3`
zwf_XL-E1(SEQ ID NO:25):
5`ga tctaga gat tca cgc agt cga gtt ag 3`
Shown in primer (Ebersberg, Germany) synthetic, the PCR reaction is carried out (PCR Protocols.A Guide to Methodsand Applications, 1990, Academic Press) by the standard pcr of Innis etc. by MWG Biotech.Primer can amplification length be dna fragmentation about 1.75kb, that carry the zwf gene (SEQ ID NO:38).Described primer contains the sequence of the cleavage site of restriction endonuclease XbaI in addition, indicates with underscore in nucleotide sequence as implied above.
With carry the zwf gene, length is that the dna fragmentation of amplification of about 1.75kb is with restriction endonuclease XbaI cutting, differentiate by electrophoresis in 0.8% sepharose, separate from gel by ordinary method then and purifying (QIAquick Gel Extraction Kit, Qiagen, Hilden).
17.2: the structure of replacement vector pK18mobsacB_zwf
Will be movably cloning vector pK18mobsacB with restriction enzyme XbaI digestion, and with end with the alkaline phosphatase dephosphorylation (Alkaline Phosphatase, BoehringerMannheim, Germany).The carrier of preparation is by this way mixed with the zwf fragment of the about 1.75kb of size, and (Amersham-Pharmacia, Freiburg Germany) handle with the T4 dna ligase with mixture.
Then with coli strain DH5 α (Brown (ed.) Molecular BiologyLabfax, BIOS Scientific Publishers, Oxford, UK, 1991) transform (Hanahan, In.DNA cloning.A Practical Approach.Vol.1 with connecting batch thing, ILR-Press, Cold Spring Harbor, New York, 1989).To transform batch thing bed board at the LB agar of having added the 50mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor, New York, 1989) on, the cell of plasmid is carried in selection.
By means of QIAprep Spin Miniprep test kit isolated plasmid dna from transformant of Qiagen, by detecting with restricted cutting of enzyme XbaI and agarose gel electrophoresis subsequently.This plasmid is called pK18mobsacB_zwf, is shown in Fig. 7.
17.3: the site-directed mutagenesis by wild-type zwf gene makes up zwf (D245S) allelotrope
(Stratagene, La Jolla USA) carry out site-directed mutagenesis to use QuikChange Site-Directed mutagenesis kit.In the nucleotide sequence of zwf wild type gene shown in the SEQ ID NO:38, import three point mutation (replacement).These replacements be the 861st of nucleotide sequence guanine by thymus pyrimidine replace, the 862nd VITAMIN B4 is replaced by cytosine(Cyt) and the 863rd thymus pyrimidine is replaced by VITAMIN B4.The nucleotides sequence of Chan Shenging is shown in SEQID NO:39 by this way, and it is coded in the 245th variant Zwf albumen that is replaced aspartic acid by Serine of its aminoacid sequence.
This equipotential gene is called zwf (D245S).In order to produce described sudden change, select following Oligonucleolide primers to carry out linear amplification:
DM_D245Sa(SEQ ID NO:40):
5′AGATCACCATGGCTGAA(TCA)ATTGGCTTGGGTGGAC 3′
DM_D245Sb(SEQ ID NO:41):
5′GCACGTCCACCCAAGCCAAT(TGA)TTCAGCCATGGTG 3′
Shown in primer synthetic by MWG Biotech.Indicate with bracket in above-mentioned nucleotide sequence at the 245th Serine codon that replaces aspartic acid of aminoacid sequence derived from the zwf gene.Use with embodiment 17.2 described plasmid pK18mobsacB_zwf with two primers of the equal complementary of the chain of plasmid, carry out linear amplification by Pfu Turbo archaeal dna polymerase.Prolong by this primer, formed mutant plasmid with alternate endless chain.The product of linear amplification is methylated and hemimethylated template DNA with DpnI processing-this restriction endonuclease specificity cutting.The carrier DNA transformed into escherichia coli strain X L1 Blue (Bullock, Fernandez and Short, BioTechniques (5) 376-379 (1987)) of new synthetic, alternate, sudden change.After the conversion, the breach in the XL1 Blue cytothesis mutant plasmid.Select transformant having on the LB substratum of 50mg/l kantlex.The plasmid that obtains detects by restricted cutting after DNA isolation, and differentiates by electrophoresis.The dna sequence dna of the dna fragmentation of sudden change detects by order-checking.The sequence of PCR product is corresponding to nucleotide sequence shown in the SEQ ID NO:39.The gained plasmid is called pK18mobsacB_zwf (D245S).The collection of illustrative plates of plasmid is shown in Fig. 8.
17.4: the zwf wild type gene of bacterial strain DM1697 is by zwf (D245S) allelic replacement
17.3 described plasmid pK18mobsacB_zwf (D245S) move among the Corynebacterium glutamicum strain DM1697 by joint as described in embodiment 14.3 with EXAMPLE Example.Select as deciding recombination event at the target in the Corynebacterium glutamicum DM1697 karyomit(e) as described in the embodiment 14.3.Depend on the position of secondary recombination event during the plasmid cleavage, the zwf allelotrope that contains sudden change appears in the karyomit(e) zwf locus, perhaps keeps host's primary zwf locus.
Phenotype to about 40-50 bacterium colony test " when having sucrose, growing " and " when having kantlex, not growing ".In 6 bacterium colonies of the phenotype that " growing when having sucrose " and " not growing when having kantlex " is shown, a zone order-checking to the zwf gene of crossing over zwf (D245S) sudden change, from sequencing primer zf_2 (SEQ ID NO:42) (GATCBiotech AG, Konstanz, the Germany preparation) there is zwf (D245S) allelic mutation in beginning to prove in the karyomit(e).The nucleotide sequence of primer zf_2 is as follows:
zf_2(SEQ ID NO:42):
5`TTC TGT GTT CCG CAT CGA CC 3`
Differentiated by this way the 733rd, 734 and 735 of zwf gene coding region (CDS) and contained therefore base thymus pyrimidine, cytosine(Cyt) and VITAMIN B4 also have zwf (D245S) allelotrope (SEQ ID NO:36) in its karyomit(e) clone respectively.The the 733rd, 734 and 735 of the nucleotide sequence of zwf allelotrope coding region corresponding to SEQ ID No:39 the 861st, 862 and 863.This clone is called bacterial strain DM1697_zwf (D245S).
Bacterial strain DM1697_zwf (D245S) is deposited in German microbial preservation center according to budapest treaty, and (Germany), preserving number is DSM15632 for DSMZ, Braunschweig.
17.5: the glucose-6-phosphate dehydrogenase (G6PD) of strain DSM 15632 is active to be determined
In order to determine the activity by the glucose-6-phosphate dehydrogenase (G6PD) of the zwf that contains in the strain DSM 15632 (D245S) allelotrope coding, (Germany) middle insulation is 24 hours for Merck KG, Darmstadt at the LB substratum with this bacterial strain.Cultivation is to carry out on shaking table with 200rpm at 33 ℃ in having the 250ml Erlenmeyer flask of plate washer with the 25ml volume.In order to compare, parallel insulation has the parental strain DM1697 of wild-type zwf gene.The preparation of biomass is as preparation as described in the embodiment 15.1.
The active mensuration of glucose-6-phosphate dehydrogenase (G6PD) is to contain 100mM Tris-HCl (pH 7.8), 10mM MgCl in the situation that has its reacting final product NADPH 2, 260 μ MNADP +, 7mM G-6-P and 400 μ M NADPH analytical system in carry out.Enzymic activity in having the situation of NADPH is calculated with aforementioned same way as.
Experimental result is shown in table 8.
Table 8
Bacterial strain Glucose-6-phosphate dehydrogenase (G6PD)
Activity when not having NADPH (mU/mg protein) Activity when having NADPH (mU/mg protein) Residual activity (%)
DM1697 97 14 14
DSM15632 57 16 28
17.6:L-the preparation of Methionin
To go up LSS1 substratum (the Ohnishi et al. of cell inoculation 50ml in the Erlenmeyer flask that has plate washer at 500ml of the Corynebacterium glutamicum strain DSM15632 that in 24 hours embodiment 17.4 of 33 ℃ of growths, obtains at agar plate (brain heart agar), Applied Microbiologyand Biotechnology 58:217-223 (2002)) in, 5% sucrose replaces with 5% glucose in the substratum.The early stage steady stage after the initial sugar that adds all consumes stops at 33 ℃ of cultivations on rotary shaker.Use the inoculation of 4ml seed meat soup to contain 1000ml LPG1 substratum (Ohnishi et al., Applied Microbiology and Biotechnology 58:217-223 (2002)) 2L fermentor tank (Biostat B reactor, B.Braun, Melsungen, Germany).
After the initial sugar consumption that adds, lasting adding contains 50% (w/v) glucose and 3.5% (w/v) (NH 4) 2SO 4Solution, total volume of culture reaches 2000ml in fermentor tank.Cultivation is at pO 2>20%, inflate under>0.51/ minute and 33 ℃ and carry out.PH remains on 7.0.(Hamburg, amino acidanalyser Germany) detects post-column derivatization and definite lysine amount that forms through ion exchange chromatography with triketohydrindene hydrate with Eppendorf-BioTronik company.
Experimental result is shown in table 9.
Table 9
Bacterial strain OD (660nm) L-Methionin HCl g/l
DM1697 88 118.6
DSM15632 86 124.6
Embodiment 18:
The structure of Corynebacterium glutamicum DM1698
Corynebacterium glutamicum strain DM1698 makes up based on embodiment 17.1 described Corynebacterium glutamicum DM1697.Its replacement vector pK18mobsacB_zwf (A243T) that portably uses embodiment 14.2 structures imports zwf (A243T) allelotrope among the bacterial strain DM1697.Zwf (A243T) allelotrope moves among the DM1697 by joint, displacement and selection as described in embodiment 14.3.Obtained strains is called DM1698, uses in this embodiment.
The production of L-Methionin that sudden change zwf (A243T) has been integrated into the zwf improvement of genes is described for strain DSM 5715 and DSM5715zwf2_A243T as embodiment 16.This equally also is used to carry the allelic bacterial strain DM1698 of zwf (A243T), and the result is than the better L-Methionin of parental strain DM1697 production strain.
Embodiment 19:
The activity of the glucose-6-phosphate dehydrogenase (G6PD) that in the zwf of bacterial strain DM1697 wild type gene, imports 90 base pair disappearances and determine to encode
The experiment of design implementation example 19 and embodiment 20 is that the glucose-6-phosphate dehydrogenase (G6PD) activity is necessary with 5 ' of the zwf gene coded sequence of proving Corynebacterium glutamicum terminal 90 base pairs (seeing zwf (A243T) allelotrope shown in zwf wild type gene shown in the SEQ ID NO:9 for example or the SEQ ID NO:21), and described 90 base pairs are not included in the encoding sequence of the described zwf gene of JP-A-092244661 (seeing SEO ID NO:7).
At embodiment 19, proved the glucose-6-phosphate dehydrogenase (G6PD) (SEQ ID NO:10) of wild type gene (SEQ ID NO:9) and coding.In embodiment 20, proved the glucose-6-phosphate dehydrogenase (G6PD) (SEQ ID NO:22) of embodiment 13 described zwf (A243T) allelotrope (SEQ ID NO:21) and coding.
In this embodiment, 90 base pairs of the zwf wild type gene of Corynebacterium glutamicum strain DM1697 (seeing embodiment 17.1) disappearance are with the activity of the glucose-6-phosphate dehydrogenase (G6PD) that relatively wild-type allele is encoded before and after 90 base pair disappearances.
19.1:zwf deletion fragment is cloned among the carrier pCRBluntII TOPO
From strains A TCC13032, separate chromosomal DNA by described methods such as Tauch (1995, Plasmid 33:168-179).Based on sequence from embodiment 1 known Corynebacterium glutamicum zwf gene, select following oligonucleotide to produce the zwf deletion fragment by polymerase chain reaction (PCR), by gene SOEing method (Gene Splicing by OverlapExtension, Horton, Molecular Biotechnology 3:93-98 (1995)) carry out.
zwfA(SEQ ID NO:43):
5′-AT TCTAGA CAC CTT GAT CTT CTC CGT TG-3′
zwfB(SEQ ID NO:44):
5′-GAT GGT AGT GTC ACG ATC CT-3′
zwfC(SEQ ID NO:45):
5′-AGG ATC GTG ACA CTA CCA TCA TGG TGA TCT TCG GTG TCA C-3′
zwfD(SEQ ID NO:46):
5′-AT TCTAGA GCG GAG GTT TTA TCC AAT GG-3′
Shown in primer by MWG Biotech (Ebersberg, Germany) synthetic, PCR is by standard pcr (the PCR Protocols.A Guide to Methods andApplications of Innis etc., 1990, Academic Press) carries out, use the Vent archaeal dna polymerase (Germany, Product Description Vent DNAPolymerase) of NewEnglandBiolabs.
In all situations, primer zwfA and zwfD all contain the cleavage site of the insertion of restriction enzyme XbaI, indicate with underscore in above-mentioned nucleotide sequence.Preceding 20 bases of primer zwfC contain the reverse complementary sequence of primer zwfB.
By means of polymerase chain reaction, primer zwfA and zwfB make the dna fragmentation of a 710bp increase, and primer zwfC and zwfD make the dna fragmentation of a 850bp increase.Amplified material detects by the agarose gel electrophoresis in 0.8% sepharose subsequently, use High Pure PCR product purification test kit (Roche Diagnostics GmbH, Mannheim, Deutschland) from sepharose, separate, and in another PCR reaction of using primer zwfA and zwfD, be used as dna profiling together.Cause the zwf deletion fragment to produce like this, size is 1560bp (seeing shown in the SEQ ID NO:47).
The product of amplification detects in 0.8% sepharose subsequently.
The PCR product cloning that obtains is advanced carrier pCRBluntII TOPO (Zero BluntTOPO PCR Cloning Kit, Invitrogen, Deutschland) in, instruct coli strain TOP10 (Grant et al. according to manufacturer then, Proceedings of the NationalAcademy of Sciences USA, 87 (1990) 4645-4649) connect a batch thing conversion with this.To transform batch thing bed board at the LB agar of having added the 50mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor, New York, 1989) on, the cell of plasmid is carried in selection.
By means of High Pure plasmid separating kit (Roche Diagnostics GmbH, Mannheim, Germany) isolated plasmid dna from transformant, and by detecting with restriction enzyme XbaI restriction and agarose gel electrophoresis (0.8%) subsequently.This plasmid is called pCRBluntII_AB1CD1, is shown in Fig. 9.
19.2: the structure of replacement vector pK18mobsacB_zwfdelta90bp
The zwf deletion fragment that is called " deltazwf90 " among Fig. 9 and 10 is isolating by with restriction enzyme XbaI the carrier pCRBluntII_AB1CD1 that obtains among the embodiment 19.1 being cut fully.After separating in sepharose (0.8%), (Roche DiagnosticsGmbH, Mannheim Germany) separates from sepharose by means of High Pure PCR product purification test kit with the zwf deletion fragment of about 1600bp.
The zwf deletion fragment of Chu Liing is used for and movably cloning vector pK18mobsacB (Sch  fer et al., Gene 14:69-73 (1994)) connection by this way.Described carrier cuts with restriction enzyme XbaI in advance, uses shrimp alkaline phosphotase (Roche DiagnosticsGmbH, Mannheim, Germany) dephosphorylation then.This carrier DNA is mixed with the zwf deletion fragment, and (Amersham-Pharmacia, Freiburg Germany) handle with the T4 dna ligase with mixture.
Then coli strain S17-1 (Simon et al., Bio/Technologie 1:784-791,1993) being connected batch thing with this transforms.To transform batch thing bed board at the LB agar of having added the 50mg/l kantlex (Sambrook et al., Molecular Cloning:A LaboratoryManual.2 NdEd., Cold Spring Harbor, New York, 1989) on, the cell of plasmid is carried in selection.
By means of High Pure plasmid separating kit (Roche Diagnostics GmbH, Mannheim, Deutschland) separation quality grain from transformant, and by detecting with restriction enzyme XbaI restriction and agarose gel electrophoresis (0.8%) subsequently.In addition, (Konstanz, Germany) examine by order-checking by GATC Biotech AG for clone's zwf deletion fragment.This plasmid is called pK18mobsacB_zwfdelta90bp, is shown in Figure 10.
19.3: in the zwf of bacterial strain DM1697 wild type gene, import 90 base pairs disappearance
Bacterial strain DM1697 describes in embodiment 17.1, and it carries the zwf wild type gene.
The plasmid pK18mobsacB_zwfdelta90bp that describes among the embodiment 19.2 is moved to (Sch  ifer etal. among the Corynebacterium glutamicum strain DM1697 by joint as described in embodiment 14.3, Applied and Environmental Microbiology 60,756-759 (1994)).Decide recombination event and select as hitting at Corynebacterium glutamicum DM1697 karyomit(e) as described in the embodiment 14.3.Depend on the position of secondary recombination event, after the plasmid excision, the zwf allelotrope that carries the 90bp disappearance appears at karyomit(e) zwf locus, perhaps keeps host's primary zwf locus.
Phenotype to about 40-50 bacterium colony test " when having sucrose, growing " and " when having kantlex, not growing ".In 30 bacterium colonies of the phenotype that " growing when having sucrose " and " not growing when having kantlex " is shown, PCR amplification is passed through in a zone to the zwf gene of crossing over the zwf disappearance, use Taq archaeal dna polymerase (Qiagen, Hilden, Germany) by described standard pcrs such as Innis (PCRprotocols.A guide to methods and applications, 1990, Academic Press) carries out, have 90bp disappearance in the zwf allelotrope in the karyomit(e) to prove.
The PCR reaction uses following oligonucleotide (by MWG Biotech, Ebersberg is synthetic) to carry out:
zwfi1(SEQ ID NO:48):
5`-GGC GTT GAC TTG GCA GAT GT-3`
zwfi2(SEQ ID NO:49):
5`-GCA GAC CGC TGT GAA GGA AT-3`
This causes the PCR fragment amplification of 581bp size, and there is the 90bp disappearance in expression, and perhaps the PCR fragment amplification of 671bp size represents to exist the zwf wild-type sequence.
Amplified production detects in 0.8% sepharose subsequently.
Therefore differentiated that containing zwf lacks allelic Corynebacterium glutamicum strain, separated and it is called DM1697deltazwf90bp.
19.4: the glucose-6-phosphate dehydrogenase (G6PD) of bacterial strain DM1697deltazwf90bp is active to be determined
For the activity of the glucose-6-phosphate dehydrogenase (G6PD) of the zwf disappearance allelotrope coding determining to contain among the bacterial strain DM1697deltazwf90bp, with this bacterial strain the LB substratum (MerckKG, Darmstadt, Germany) in insulation 24 hours.Cultivation is to carry out on shaking table with 200rpm at 33 ℃ in having the 250ml Erlenmeyer flask of plate washer with the 25ml volume.In order to compare, with the parallel insulation of parental strain DM1697.The preparation of biomass is carried out as described in embodiment 15.1.
Active being determined at of glucose-6-phosphate dehydrogenase (G6PD) contained 100mM Tris-HCl (pH 7.5)+1mM DTT, 15mM MgCl 2, 1.5mM NADP +With carry out in the analytical system of 10mM G-6-P.Calculate enzymic activity with same way as described above.
Experimental result is shown in table 10.
Table 10
Bacterial strain The activity of glucose-6-phosphate dehydrogenase (G6PD) (mU/mg protein)
DM1697 80
DM1697zwfdelta90bp 0
Embodiment 20:
The glucose-6-phosphate dehydrogenase (G6PD) activity that in the zwf of bacterial strain DM1698 (A243T) allelotrope, imports 90 base pair disappearances and determine to encode
20.1: in the zwf of bacterial strain DM1698 (A243T) allelotrope, import 90 base pair disappearances
Embodiment 19.2 described plasmid pK18mobsacB_zwfdelta90bp are passed through to engage (Sch  fer et al. as described in embodiment 14.3, Applied and EnvironmentalMicrobiology 60,756-759 (1994)) moves to Corynebacterium glutamicum strain DM1698 (seeing embodiment 18).As described in embodiment 14.3, select at the secondary recombination event in the Corynebacterium glutamicum DM1698 karyomit(e).Depend on the position of secondary recombination event, after the plasmid excision, the zwf allelotrope that carries 90 base pair disappearances appears at karyomit(e) zwf locus, perhaps keeps host's primary zwf locus.
Phenotype to about 40-50 bacterium colony test " when having sucrose, growing " and " when having kantlex, not growing ".In 30 bacterium colonies of the phenotype that " growing when having sucrose " and " not growing when having kantlex " is shown, PCR amplification is passed through in a zone to the zwf gene of crossing over the zwf disappearance, use Taq archaeal dna polymerase (Qiagen, Hilden, Germany) by described standard pcrs such as Innis (PCRprotocols.A guide to methods and applications, 1990, Academic Press) carries out, to prove the disappearance that exists in the karyomit(e) in the zwf allelotrope.
Use oligonucleotide as described below (by MWG Biotech, Ebersberg is synthetic) to carry out PCR:
zwfi1(SEQ ID NO:48):
5`-GGC GTT GAC TTG GCA GAT GT-3`
zwfi2(SEQ ID NO:49):
5`-GCA GAC CGC TGT GAA GGA AT-3`
This dna fragmentation that causes carrying 90bp disappearance, 581bp size forms, and the dna fragmentation that perhaps carries corresponding zwf wild-type sequence, 671bp size forms.
Amplified production detects in 0.8% sepharose subsequently.
Separation contains zwf and lacks allelic Corynebacterium glutamicum strain, and it is called DM1698deltazwf90bp (A243T).
Zwf (A243T) allelotrope that the plasmid pK18mobsacB_zwfdelta90bp of embodiment 19.2 is used for 90 base pair disappearances are integrated into bacterial strain DM1698.The nucleotide sequence of the zwf deletion fragment that contains in this plasmid has the 91-934 position Nucleotide of wild type gene encoding sequence (SEQ ID NO:9) from the 711-1554 position of its nucleotide sequence (SEQ ID NO:47).The 31-311 amino acids of their coding zwf wild-type proteins (SEQ ID NO:10) is included in the wild-type sequence of the 243rd of aminoacid sequence.The possibility of result that engages is that zwf (A243T) sudden change of bacterial strain DM1698 is replaced by the zwf wild-type allele of replacement vector pK18mobsacB_zwfdelta90bp in joint.
Still be present in the karyomit(e) of bacterial strain DM1698deltazwf90bp (A243T) in order to examine sudden change zwf (A243T), (RocheDiagnostics GmbH, Mannheim Germany) detect sudden change by means of LightCycler.
LightCycler has made up thermal cycler and fluorescence detection device.
From bacterial strain DM1698deltazwf90bp (A243T), separate chromosomal DNA by described methods such as Tauch (1995, Plasmid 33:168-179).In the fs, by means of PCR reaction (Innis et al., PCR protocols.A guide to methods andapplications, 1990, Academic Press) dna fragmentation of the chromosomal about 0.3kb of amplification DM 1698deltazwf90bp (A243T), it contains zwf (A243T) sudden change.The PCR reaction uses following oligonucleotide (by MWG Biotech, Ebersberg is synthetic) to carry out:
LC-zwfl(SEQ ID NO:50):
5′-tccgcatcgaccactatttg-3′
LC-zwf2(SEQ ID NO:51):
5′-cgctggcacgaaagaaattg-3′
In subordinate phase, use two kinds of different sizes, with the oligonucleotide (LightCycler (LC)-Red640 and fluorescein) of different fluorescent mark substance markers.Hybridize in sequence, sudden change zwf (A243T) is positioned at wherein.By means of " FRET (fluorescence resonance energy transfer) (FluorescenceResonance Energy Transfer) " method (FRED), can detect the existence of sudden change.The following oligonucleotide that is used to hybridize by TIB MOLBIOL (Berlin, Germany) synthetic::
zwf243-C(SEQ ID No:52):
5`-LC-Red640-tatcttcagtcatggtgatc-(P)3`
zwf243-A(SEQ ID No:53):
5`-gtcgtagtaaccagcacgtccacccaagcc-fluorescein 3`
Confirmed that like this bacterial strain DM1698deltazwf90bp (A243T) still contains sudden change zwf (A243T).It carries zwf allelotrope zwfdelta90bp (A243T), is shown in SEQID NO:54; The corresponding aminoacid sequence of the glucose-6-phosphate dehydrogenase (G6PD) of coding is shown in SEQID NO:55.
20.2: the glucose-6-phosphate dehydrogenase (G6PD) of bacterial strain DM1698deltazwf90bp (A243T) is active to be determined
Activity for the glucose-6-phosphate dehydrogenase (G6PD) of zwfdelta90bp (A243T) the allelotrope coding determining to contain among the bacterial strain DM1698deltazwf90bp (A243T), with this bacterial strain at LB substratum (Merck KG, Darmstadt, Germany) middle insulation is 24 hours.Cultivation is to carry out on shaking table with 200rpm at 33 ℃ in having the 250ml Erlenmeyer flask of plate washer with the 25ml volume.In order to compare, will have the parallel insulation of the allelic parental strain DM1698 of zwf (A243T).The preparation of biomass is carried out as described in embodiment 15.1.
Active being determined at of glucose-6-phosphate dehydrogenase (G6PD) contained 100mM Tris-HCl (pH 7.5)+1mM DTT, 15mM MgCl 2, 1.5mM NADP +With carry out in the analytical system of 10mM G-6-P.Enzymic activity same way as is as described above calculated.
Experimental result is shown in table 10.
Table 10
Bacterial strain The activity of glucose-6-phosphate dehydrogenase (G6PD) (mU/mg protein)
DM1698 127
DM1698zwfdelta90bp(A243T) 0
Embodiment 21:
Determining of the allelic expression of two plasmid-encoded zwf
In this embodiment, allelic two plasmids of two different zwf of construction expression, and the recovery of test enzymic activity of the glucose-6-phosphate dehydrogenase (G6PD) of bacterial strain DM1698zwfdelta90bp (A243T) inactivation of acquisition in embodiment 20.1.The zwf allelotrope of test is zwfL and zwfS, and wherein L is long abbreviation, and S is short abbreviation.Allelotrope zwfL carries sudden change zwf (A243T), comprises 90 base pairs (shown in SEQ ID NO:9 shown in wild type gene and the SEQ ID NO:21 shown in zwf (A243T) allelotrope) in 5 ' zone of zwf gene coded sequence.Allelotrope zwfS also carries sudden change zwf (A243T), but lacks 90 base pairs (shown in SEQ ID NO:7 shown in the wild type gene) in 5 ' zone of zwf gene coded sequence.
21.1: the amplification of allelotrope zwfS and zwfL
Zwf allelotrope zwfS and zwfL use polymerase chain reaction (PCR) and increase as following synthetic oligonucleotide.From bacterial strain DM658, separate the chromosomal DNA that carries allelotrope zwf (A243T) by described methods such as Tauch (1995, Plasmid 33:168-179).Based on sequence from embodiment 1 known Corynebacterium glutamicum zwf gene, select primer so that amplified fragments contains 25 base pairs of allelic coding region of zwf and upstream region thereof, but not possible promoter region.In addition, insert to make and to clone suitable restriction enzyme sites in the targeting vector into.The sequence of the restriction enzyme SalI cleavage site (underscore sequence) of PCR primer and insertion is as described below:
zwfRBS1(SEQ ID NO:56):
5′-AT GTCGAC AAG AAA GGA TCG TGA CAC TAC-3′
zwfRBS2(SEQ ID NO:57):
5′-AT GTCGAC CCC CCG CAT CGC TGG CC-3′
zwfRBSE(SEQ ID NO:58):
5′-AT GTCGAC ATC GCT TTC GGA GTC AGT GA-3′
The primer that illustrates is by MWG Biotech (Ebersberg, Germany) synthetic, by described standard pcrs such as Innis (PCR Protocols.A Guide to Methods andApplications, 1990, Academic Press) use the Vent archaeal dna polymerase of NewEnglandBiolabs (Germany, Product Description Vent DNA Polymerase) to carry out the PCR reaction.
By means of polymerase chain reaction, primer zwfRBS1 and zwfRBSE amplify the 1732bp dna fragmentation (SEQ ID NO:59) that is called zwfL (SEQ ID NO:60), and it comprises the proteinic encoding sequence of Zwf that expression is made up of 514 amino acid.Primer zwfRBS2 and zwfRBSE amplification are called the 1642bp dna fragmentation (SEQ IDNO:61) of zwfS (SEQ ID NO:62), and it comprises the proteinic encoding sequence of Zwf that expression is made up of 484 amino acid.Amplified material is by the detection of the agarose gel electrophoresis in 0.8% sepharose subsequently, and (Roche Diagnostics GmbH, Mannheim Germany) separates from sepharose to use High Pure PCR product purification test kit.
The PCR product cloning that obtains is advanced carrier pCRBluntII TOPO (Zero BluntTOPO PCR Cloning Kit, Invitrogen, Germany) in, then with coli strain TOP 10 (Grant et al., Proceedings of the National Academy of SciencesUSA, 87 (1990) 4645-4649) instruct with this connection batch thing conversion according to manufacturer.Be plated on LB agar (Sambrook et al., the Molecular Cloning:A Laboratory Manual.2 that has added the 50mg/l kantlex with transforming batch thing NaEd., Cold Spring Harbor, New York, 1989) on, the cell of plasmid is carried in selection.
By means of High Pure plasmid separating kit (Roche Diagnostics GmbH, Mannheim, Germany) isolated plasmid dna from transformant, by with restriction enzyme SalI restriction and subsequently agarose gel electrophoresis (0.8%) detect.The plasmid that obtains is called pCRBluntII_zwfL (being shown in Figure 11) and pCRBluntII_zwfS (being shown in Figure 12).
21.2: allelotrope zwfS and the zwfL clone in carrier pZ8-1
Use intestinal bacteria-Corynebacterium glutamicum shuttle expression carrier pZ8-1 (EP 0 375 889) as Corynebacterium glutamicum and at the underlying carrier of expression in escherichia coli.(Invitrogen, Germany) shrimp alkaline phosphotase (Roche Diagnostics GmbH, Mannheim, Germany) dephosphorylation are used in cutting fully to the DNA of this plasmid then with restriction enzyme SalI.
ZwfL allelotrope separates by with restriction enzyme SalI the carrier pCRBluntII_zwfL that obtains among the embodiment 21.1 being cut fully.ZwfS allelotrope separates by with restriction enzyme SalI the carrier pCRBluntII_zwfS that obtains among the embodiment 21.2 being cut fully.After in sepharose (0.8%), separating, by means of High Pure PCR product purification test kit (Roche Diagnostics GmbH, Mannheim Germany) separates size approximately zwfL fragment and the big or small approximately zwfS fragment of 1.6kb of 1.7kb from sepharose.
With separate from the zwfL of sepharose fragment and zwfS fragment with as the carrier pZ8-1 of above-mentioned preparation mixes, will batch thing T4DNA ligase enzyme (Amersham Pharmacia, Freiburg, Germany) processing.
To connect a batch thing transform into coli strain DH5 α (Hanahan, In:DNAcloning.A Practical Approach.Vol.I.IRL-Press, Oxford, WashingtonDC, USA) in.Be plated on LB agar (Lennox, 1955, Virology, 1:190) the last cell of selecting to carry plasmid of having added the 50mg/l kantlex with transforming batch thing.After 37 ℃ of incubated overnight, select each clone of reorganization.By means of High Pure plasmid separating kit t (Roche Diagnostics GmbH, Mannheim, Germany) instruct isolated plasmid dna from transformant according to manufacturer, by detecting with restriction enzyme SalI restriction and agarose gel electrophoresis (0.8%) subsequently.In addition, use following primer by GATC Biotech AG (Konstanz, Germany) clone's zwf allelotrope is examined in order-checking:
GATC-R1neu-29234(SEQ ID NO:63)
5`-GGAACACAGAAGATTCTG-3`
GATC-F1_neu-29233(SEQ ID NO:64)
5`-CCGTGTTACTGAGATTGC-3`
GATC-zwf_int-27334(SEQ ID NO:65)
5`-TGGCTGAATCCACCGAAGAA-3`
The gained plasmid is called pZ8-1_zwfL (being shown in Figure 13) and pZ8-1_zwfS (being shown in Figure 14).
21.3: preparation bacterial strain DM1698/pZ8-1, DM1698zwfdelta90bp (A243T)/pZ8-1, DM1698zwfdelta90bp (A243T)/pZ8-1_zwfL and DM1698zwfdelta90bp (A243T)/pZ8-1_zwfS
To not insert segmental carrier pZ8-1 by described electroporation methods such as Tauch (1994, FEMS Microbiological Letters, 123:343-347) electroporation advances among the Corynebacterium glutamicum DM 1698.
With embodiment 21.2 described carrier pZ8-1_zwfL and pZ8-1_zwfS and do not insert segmental carrier pZ8-1 (FEMSMicrobiological Letters, 123 (1994): 343-347) electroporation advances among the embodiment 20 described Corynebacterium glutamicum DM1698zwfdelta90bp (A243T) by described electroporation methods such as Tauch.
With electroporation batch thing bed board at the LB agar of having added the 15mg/l kantlex (Sambrook et al., Molecular Cloning:A Laboratory Manual.2 NdEd., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) the last cell of selecting to carry plasmid.In all situations, by ordinary method (Peters-Wendisch et al., 1998, Microbiology 144,915-927) isolated plasmid dna from transformant is by detecting with restriction enzyme SalI restriction and agarose gel electrophoresis (0.8%) subsequently.
Bacterial strain is called DM1698/pZ8-1, DM1698zwfdelta90bp (A243T)/pZ8-1, DM1698zwfdelta90bp (A243T)/pZ8-1_zwfL and DM1698zwfdelta90bp (A243T)/pZ8-1_zwfS.
21.4: the glucose-6-phosphate dehydrogenase (G6PD) of the bacterial strain of acquisition is active to be determined
Activity for the glucose-6-phosphate dehydrogenase (G6PD) of the different zwf allelotrope codings determining to contain among bacterial strain DM1698deltazwf90bp (A243T)/pZ8-1_zwfL and DM1698deltazwf90bp (the A243T)/pZ8-1_zwfS, bacterial strain is being added LB substratum (the Merck KG of 25mg/l kantlex, Darmstadt, Germany) middle insulation is 24 hours.Cultivation is to carry out on shaking table with 200rpm at 33C in having the 250ml Erlenmeyer flask of plate washer with the 25ml volume.
In order to compare, with parental strain DM1698 with as described in embodiment 20, in karyomit(e), have two allelic bacterial strain DM1698zwfdelta90bpA243T of different zwf and have the bacterial strain DM1698/pZ8-1 and DM1698zwfdelta90bp (A243T)/parallel insulation of pZ8-1 of carrier pZ8-1.Because DM1698 and DM1698zwfdelta90bpA243T do not contain any plasmid, so they are incubated with the substratum that does not add kantlex.
The preparation of biomass is carried out as described in embodiment 15.1.
Active being determined at of glucose-6-phosphate dehydrogenase (G6PD) contained 100mM Tris-HCl (pH 7.5)+1mM DTT, 15mM MgCl 2, 1.5mM NADP +With carry out in the analytical system of 10mM G-6-P.Enzymic activity is with same way as calculating as described above.
This result of experiment is shown in table 11.
Table 11
Bacterial strain/plasmid The activity of glucose-6-phosphate dehydrogenase (G6PD) (mU/mg protein)
DM1698 75
DM1698zwfdelta90bp(A243T) 0
DM1698/pZ8-1 67
DM1698zwfdelta90bp(A243T)/ pZ8-1 0
DM1698zwfdelta90bp(A243T)/ pZ8-1_zwfL 40
DM1698zwfdelta90bp(A243T)/ pZ8-1_zwfS 0
The acceptance of original preservation
According to detailed rules and regulations 7.1 by shown at the bottom of the page or leaf
International depositary institution announces
I. microorganism identification
The evaluation reference that the preservation people is given: DH5 α/pEC-T18mob2 The given preserving number of international preservation mechanism: DSM 13244
II. the systematic name of scientific description and/or suggestion
The microorganism of identifying according to above I has: the systematic name (position that meets is represented with cross) of [*] A scientific description [*] A suggestion
III. accept and accept
International preservation mechanism on 01 20th, 2000 (original preservation date) 1Accept the microorganism of identifying according to above I
IV. transform the acceptance that requires
The microorganism that above I identifies receives for international preservation mechanism and has received in (accepting to transform the date that requires) at (original preservation date) original preservation thing is converted into requirement according to the preservation thing of budapest treaty
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2000.01.25
1 uses detailed rules and regulations 6.4 (d), and the described date is the date that international preservation mechanism obtains.
Form: DSMZ-BP/4 (single page) 0196
The survival proof
According to detailed rules and regulations 10.2 by shown at the bottom of the page or leaf
International depositary institution announces
I. preservation people II. microorganism identification
Title: De Gusa is in Er Si stock company kantstr.2 address: 33790 Halle i.W. The given preserving number of international preservation mechanism: DSM 13244 preservations or transfer date 1:2000-01-20
III. survival proves
The survival of the microorganism of identifying according to above II is tested in 2000-01-20 2At that time, described microorganism: [*] 3Survival [] 3Not survival
The condition of IV. surviving and testing
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2000.01.25
1 represents original preservation, carries out new preservation or shifts date, nearest relevant date (new preservation date or transfer date)
2 according to detailed rules and regulations 12.2 (a) (i) profit (ii) refer to survive the date recently
3 positions that meet are represented with cross
4 information be required and test result negative
Form: DSMZ-BP/4 (single page) 0196
The acceptance of original preservation
According to detailed rules and regulations 7.1 by shown at the bottom of the page or leaf
International depositary institution announces
I. microorganism identification
The evaluation reference that the preservation people is given: DM 658 The given preserving number of international preservation mechanism: DSM 7431
II. the systematic name of scientific description and/or suggestion
The microorganism of identifying according to above I has: the systematic name (position that meets is represented with cross) of [] A scientific description [*] A suggestion
III. accept and accept
International preservation mechanism on 01 27th, 1993 (original preservation date) 1Accept the microorganism of identifying according to above I
IV. transform the acceptance that requires
The microorganism that above I identifies receives for international preservation mechanism and has received in 2002-10-17 (accepting to shift the date that requires) at 1993-01-27 (original preservation date) original preservation thing is converted into requirement according to the preservation thing of budapest treaty
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2002.10.18
1 uses detailed rules and regulations 6.4 (d), and the described date is the date that international preservation mechanism obtains.
Form: DSMZ-BP/4 (single page) 12/2001
The survival proof
According to detailed rules and regulations 10.2 by shown at the bottom of the page or leaf
International depositary institution announces
I. preservation people II. microorganism identification
Title: address: the kantstr.2 of Degussa 33790 Halle i.W. The given preserving number of international preservation mechanism: DSM 7431 preservations or transfer date 1:1993-01-27
III. survival proves
The survival of the microorganism of identifying according to above II is tested in: 1999-06-01 at that time, described microorganism: [*] 3Survival [] 3Not survival
The condition of IV. surviving and testing
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2002.10.18
1 represents original preservation, carries out new preservation or shifts date, nearest relevant date (new preservation date or transfer date)
2 according to detailed rules and regulations 12.2 (a) (i) and (ii), refers to survive the date recently
3 positions that meet are represented with cross
4 information be required and test result negative
Form: DSMZ-BP/4 (single page) 12/2001
The acceptance of original preservation
According to detailed rules and regulations 7.1 by shown at the bottom of the page or leaf
International depositary institution announces
I. microorganism identification
The evaluation reference that the preservation people is given: DSM5715zwf2_A243T The given preserving number of international preservation mechanism: DSM 15237
II. the systematic name of scientific description and/or suggestion
The microorganism of identifying according to above I has: the systematic name (position that meets is represented with cross) of [*] A scientific description [*] A suggestion
III. accept and accept
World preservation mechanism accepts on October 11st, 2002 (original preservation date) 1The microorganism that the above I of the basis of accepting identifies
IV. transform the acceptance that requires
The microorganism that above I identifies receives for international preservation mechanism and has received in (accepting to transform the date that requires) at (original preservation date) original preservation thing is converted into requirement according to the preservation thing of budapest treaty
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2002.10.15
1 uses detailed rules and regulations 6.4 (d), and the described date is the date that international preservation mechanism obtains.
Form: DSMZ-BP/4 (single page) 12/2001
The survival proof
According to detailed rules and regulations 10.2 by shown at the bottom of the page or leaf
International depositary institution announces
I. preservation people II. microorganism identification
Title: Degussa FA-FE-BT address: kantstr.2 33790 Halle/Westfalen The given preserving number of international preservation mechanism: DSM 15237 preservations or transfer date 1:2002-10-11
III. survival proves
The survival of the microorganism of identifying according to above II is tested in: 2002-10-14 at that time, described microorganism: [*] 3Survival [] 3Not survival
The condition of IV. surviving and testing
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2002.10.15
1 represents original preservation, carries out new preservation or shifts date, nearest relevant date (new preservation date or transfer date)
2 according to detailed rules and regulations 12.2 (a) (i) profit (ii) refer to survive the date recently
3 positions that meet are represented with cross
4 information be required and test result negative
Form: DSMZ-BP/4 (single page) 12/2001
The acceptance of original preservation
According to detailed rules and regulations 7.1 by shown at the bottom of the page or leaf
International depositary institution announces
I. microorganism identification
The evaluation reference that the preservation people is given: DM1697_zwfD245S The given preserving number of international preservation mechanism: DSM 15632
II. the systematic name of scientific description and/or suggestion
The microorganism of identifying according to above I has: the systematic name (position that meets is represented with cross) of [*] A scientific description [*] A suggestion
III. accept and accept
World preservation mechanism accepts on 05 23rd, 2003 (original preservation date) 1The microorganism that the above I of the basis of accepting identifies
IV. transform the acceptance that requires
The microorganism that above I identifies receives for international preservation mechanism and has received in (accepting to transform the date that requires) at (original preservation date) original preservation thing is converted into requirement according to the preservation thing of budapest treaty
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2003.05.26
1 uses detailed rules and regulations 6.4 (d), and the described date is the date that international preservation mechanism obtains.
Form: DSMZ-BP/4 (single page) 12/2001
The survival proof
According to detailed rules and regulations 10.2 by shown at the bottom of the page or leaf
International depositary institution announces
I. preservation people II. microorganism identification
Title: Degussa address: kantstr.2 33790 Halle/Westfalen The given preserving number of international preservation mechanism: DSM 15632 preservations or transfer date 1:2003-05-23
III. survival proves
The survival of the microorganism of identifying according to above II is tested in: 2003-05-23 at that time, described microorganism: [*] 3Survival [] 3Not survival
The condition of IV. surviving and testing
V. international preservation mechanism
Title: DSMZ-Germany microbial preservation centre address: Mascheroder Weg 1b D-38214 Braunschweig World preservation mechanism represents official's signature: the date: 2003.05.26
1 represents original preservation, carries out new preservation or shifts date, nearest relevant date (new preservation date or transfer date)
2 according to detailed rules and regulations 12.2 (a) (i) profit (ii) refer to survive the date recently
3 positions that meet are represented with adopted number
4 information be required and test result negative
Form: DSMZ-BP/4 (single page) 12/2001
Sequence table
<110〉Degussa
<120〉prepare the amino acid whose method of L-with amplification zwf gene
<130>990239BT
<160>65
<170>PatentIn version 3.1
<210>1
<211>2811
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>CDS
<222>(373)..(2022)
<223>pgi
<400>1
aaaacccgag gggcgaaaat tccaccctaa cttttttggg atcccctttt tccggggaat 60
taattggttt gggtttcaat gggaaaacgg gaaacaatgg gccaaaggtt caaaaacccc 120
aaaagggggc cgggttcaaa ttcccaaaaa aaatggcaaa aaaggggggg ccaaaaccaa 180
gttggccccc aaaccaccgg ggcaacggcc cacccacaaa ggggttgggt taaaggaagg 240
acgcccaaag taagcccgga atggcccacg ttcgaaaaag caggccccaa ttaaacgcac 300
cttaaatttg tcgtgtttcc cactttgaac actcttcgat gcgcttggcc acaaaagcaa 360
gctaacctga ag atg tta ttt aac gac aat aaa gga gtt ttc atg gcg gac 411
Met Leu Phe Asn Asp Asn Lys Gly Val Phe Met Ala Asp
1 5 10
att tcg acc acc cag gtt tgg caa gac ctg acc gat cat tac tca aac 459
Ile Ser Thr Thr Gln Val Trp Gln Asp Leu Thr Asp His Tyr Ser Asn
15 20 25
ttc cag gca acc act ctg cgt gaa ctt ttc aag gaa gaa aac cgc gcc 507
Phe Gln Ala Thr Thr Leu Arg Glu Leu Phe Lys Glu Glu Asn Arg Ala
30 35 40 45
gag aag tac acc ttc tcc gcg gct ggc ctc cac gtc gac ctg tcg aag 555
Glu Lys Tyr Thr Phe Ser Ala Ala Gly Leu His Val Asp Leu Ser Lys
50 55 60
aat ctg ctt gac gac gcc acc ctc acc aag ctc ctt gca ctg acc gaa 603
Asn Leu Leu Asp Asp Ala Thr Leu Thr Lys Leu Leu Ala Leu Thr Glu
65 70 75
gaa tct ggc ctt cgc gaa cgc att gac gcg atg ttt gcc ggt gaa cac 651
Glu Ser Gly Leu Arg Glu Arg Ile Asp Ala Met Phe Ala Gly Glu His
80 85 90
ctc aac aac acc gaa gac cgc gct gtc ctc cac acc gcg ctg cgc ctt 699
Leu Asn Asn Thr Glu Asp Arg Ala Val Leu His Thr Ala Leu Arg Leu
95 100 105
cct gcc gaa gct gat ctg tca gta gat ggc caa gat gtt gct gct gat 747
Pro Ala Glu Ala Asp Leu Ser Val Asp Gly Gln Asp Val Ala Ala Asp
110 115 120 125
gtc cac gaa gtt ttg gga cgc atg cgt gac ttc gct act gcg ctg cgc 795
Val His Glu Val Leu Gly Arg Met Arg Asp Phe Ala Thr Ala Leu Arg
130 135 140
tca ggc aac tgg ttg gga cac acc ggc cac acg atc aag aag atc gtc 843
Ser Gly Asn Trp Leu Gly His Thr Gly His Thr Ile Lys Lys Ile Val
145 150 155
aac att ggt atc ggt ggc tct gac ctc gga cca gcc atg gct acg aag 891
Asn Ile Gly Ile Gly Gly Ser Asp Leu Gly Pro Ala Met Ala Thr Lys
160 165 170
gct ctg cgt gca tac gcg acc gct ggt atc tca gca gaa ttc gtc tcc 939
Ala Leu Arg Ala Tyr Ala Thr Ala Gly Ile Ser Ala Glu Phe Val Ser
175 180 185
aac gtc gac cca gca gac ctc gtt tct gtg ttg gaa gac ctc gat gca 987
Asn Val Asp Pro Ala Asp Leu Val Ser Val Leu Glu Asp Leu Asp Ala
190 195 200 205
gaa tcc aca ttg ttc gtg atc gct tcg aaa act ttc acc acc cag gag 1035
Glu Ser Thr Leu Phe Val Ile Ala Ser Lys Thr Phe Thr Thr Gln Glu
210 215 220
acg ctg tcc aac gct cgt gca gct cgt gct tgg ctg gta gag aag ctc 1083
Thr Leu Ser Asn Ala Arg Ala Ala Arg Ala Trp Leu Val Glu Lys Leu
225 230 235
ggt gaa gag gct gtc gcg aag cac ttc gtc gca gtg tcc acc aat gct 1131
Gly Glu Glu Ala Val Ala Lys His Phe Val Ala Val Ser Thr Asn Ala
240 245 250
gaa aag gtc gca gag ttc ggt atc gac acg gac aac atg ttc ggc ttc 1179
Glu Lys Val Ala Glu Phe Gly Ile Asp Thr Asp Asn Met Phe Gly Phe
255 260 265
tgg gac tgg gtc gga ggt cgt tac tcc gtg gac tcc gca gtt ggt ctt 1227
Trp Asp Trp Val Gly Gly Arg Tyr Ser Val Asp Ser Ala Val Gly Leu
270 275 280 285
tcc ctc atg gca gtg atc ggc cct cgc gac ttc atg cgt ttc ctc ggt 1275
Ser Leu Met Ala Val Ile Gly Pro Arg Asp Phe Met Arg Phe Leu Gly
290 295 300
gga ttc cac gcg atg gat gaa cac ttc cgc acc acc aag ttc gaa gag 1323
Gly Phe His Ala Met Asp Glu His Phe Arg Thr Thr Lys Phe Glu Glu
305 310 315
aac gtt cca atc ttg atg gct ctg ctc ggt gtc tgg tac tcc gat ttc 1371
Asn Val Pro Ile Leu Met Ala Leu Leu Gly Val Trp Tyr Ser Asp Phe
320 325 330
tat ggt gca gaa acc cac gct gtc cta cct tat tcc gag gat ctc agc 1419
Tyr Gly Ala Glu Thr His Ala Val Leu Pro Tyr Ser Glu Asp Leu Ser
335 340 345
cgt ttt gct gct tac ctc cag cag ctg acc atg gag acc aat ggc aag 1467
Arg Phe Ala Ala Tyr Leu Gln Gln Leu Thr Met Glu Thr Asn Gly Lys
350 355 360 365
tca gtc cac cgc gac ggc tcc cct gtt tcc act ggc act ggc gaa att 1515
Ser Val His Arg Asp Gly Ser Pro Val Ser Thr Gly Thr Gly Glu Ile
370 375 380
tac tgg ggt gag cct ggc aca aat ggc cag cac gct ttc ttc cag ctg 1563
Tyr Trp Gly Glu Pro Gly Thr Asn Gly Gln His Ala Phe Phe Gln Leu
385 390 395
atc cac cag ggc act cgc ctt gtt cca gct gat ttc att ggt ttc gct 1611
Ile His Gln Gly Thr Arg Leu Val Pro Ala Asp Phe Ile Gly Phe Ala
400 405 410
cgt cca aag cag gat ctt cct gcc ggt gag cgc acc atg cat gac ctt 1659
Arg Pro Lys Gln Asp Leu Pro Ala Gly Glu Arg Thr Met His Asp Leu
415 420 425
ttg atg agc aac ttc ttc gca cag acc aag gtt ttg gct ttc ggt aag 1707
Leu Met Ser Asn Phe Phe Ala Gln Thr Lys Val Leu Ala Phe Gly Lys
430 435 440 445
aac gct gaa gag atc gct gcg gaa ggt gtc gca cct gag ctg gtc aac 1155
Asn Ala Glu Glu Ile Ala Ala Glu Gly Val Ala Pro Glu Leu Val Asn
450 455 460
cac aag gtc gtg cca ggt aat cgc cca acc acc acc att ttg gcg gag 1803
His Lys Val Val Pro Gly Asn Arg Pro Thr Thr Thr Ile Leu Ala Glu
465 470 475
gaa ctt acc cct tct att ctc ggt gcg ttg atc gct ttg tac gaa cac 1851
Glu Leu Thr Pro Ser Ile Leu Gly Ala Leu Ile Ala Leu Tyr Glu His
480 485 490
acc gtg atg gtt cag ggc gtg att tgg gac atc aac tcc ttc gac caa 1899
Thr Val Met Val Gln Gly Val Ile Trp Asp Ile Asn Ser Phe Asp Gln
495 500 505
tgg ggt gtt gaa ctg ggc aaa cag cag gca aat gac ctc gct ccg gct 1947
Trp Gly Val Glu Leu Gly Lys Gln Gln Ala Asn Asp Leu Ala Pro Ala
510 515 520 525
gtc tct ggt gaa gag gat gtt gac tcg gga gat tct tcc act gat tca 1995
Val Ser Gly Glu Glu Asp Val Asp Ser Gly Asp Ser Ser Thr Asp Ser
530 535 540
ctg att aag tgg tac cgc gca aat agg tagtcgcttg cttatagggt 2042
Leu Ile Lys Trp Tyr Arg Ala Asn Arg
545 550
caggggcgtg aagaatcctc gcctcatagc actggccgct atcatcctga cctcgttcaa 2102
tctgcgaaca gctattactg ctttagctcc gctggtttct gagattcggg atgatttagg 2162
ggttagtgct tctcttattg gtgtgttggg catgatcccg actgctatgt tcgcggttgc 2222
tgcgtttgcg cttccgtcgt tgaagaggaa gttcactact tcccaactgt tgatgtttgc 2282
catgctgttg actgctgccg gtcagattat tcgtgtcgct ggacctgctt cgctgttgat 2342
ggtcggtact gtgttcgcga tgtttgcgat cggagttacc aatgtgttgc ttccgattgc 2402
tgttagggag tattttccgc gtcacgtcgg tggaatgtcg acaacttatc tggtgtcgtt 2462
ccagattgtt caggcacttg ctccgacgct tgccgtgccg atttctcagt gggctacaca 2522
tgtggggttg accggttgga gggtgtcgct cggttcgtgg gcgctgctgg ggttggttgc 2582
ggcgatttcg tggattccgc tgttgagttt gcagggtgcc agggttgttg cggcgccgtc 2642
gaaggtttct cttcctgtgt ggaagtcttc ggttggtgtg gggctcgggt tgatgtttgg 2702
gtttacttcg tttgcgacgt atatcctcat gggttttatg ccgcagatgg taggtgatcc 2762
aaagaattca aaaagcttct cgagagtact tctagagcgg ccgcgggcc 2811
<210>2
<211>550
<212>PRT
<213>Corynebacterium glutamicum
<400>2
Met Leu Phe Asn Asp Asn Lys Gly Val Phe Met Ala Asp Ile Ser Thr
1 5 10 15
Thr Gln Val Trp Gln Asp Leu Thr Asp His Tyr Ser Asn Phe Gln Ala
20 25 30
Thr Thr Leu Arg Glu Leu Phe Lys Glu Glu Asn Arg Ala Glu Lys Tyr
35 40 45
Thr Phe Ser Ala Ala Gly Leu His Val Asp Leu Ser Lys Asn Leu Leu
50 55 60
Asp Asp Ala Thr Leu Thr Lys Leu Leu Ala Leu Thr Glu Glu Ser Gly
65 70 75 80
Leu Arg Glu Arg Ile Asp Ala Met Phe Ala Gly Glu His Leu Asn Asn
85 90 95
Thr Glu Asp Arg Ala Val Leu His Thr Ala Leu Arg Leu Pro Ala Glu
100 105 110
Ala Asp Leu Ser Val Asp Gly Gln Asp Val Ala Ala Asp Val His Glu
115 120 125
Val Leu Gly Arg Met Arg Asp Phe Ala Thr Ala Leu Arg Ser Gly Asn
130 135 140
Trp Leu Gly His Thr Gly His Thr Ile Lys Lys Ile Val Asn Ile Gly
145 150 155 160
Ile Gly Gly Ser Asp Leu Gly Pro Ala Met Ala Thr Lys Ala Leu Arg
165 170 175
Ala Tyr Ala Thr Ala Gly Ile Ser Ala Glu Phe Val Ser Asn Val Asp
180 185 190
Pro Ala Asp Leu Val Ser Val Leu Glu Asp Leu Asp Ala Glu Ser Thr
195 200 205
Leu Phe Val Ile Ala Ser Lys Thr Phe Thr Thr Gln Glu Thr Leu Ser
210 215 220
Asn Ala Arg Ala Ala Arg Ala Trp Leu Val Glu Lys Leu Gly Glu Glu
225 230 235 240
Ala Val Ala Lys His Phe Val Ala Val Ser Thr Asn Ala Glu Lys Val
245 250 255
Ala Glu Phe Gly Ile Asp Thr Asp Asn Met Phe Gly Phe Trp Asp Trp
260 265 270
Val Gly Gly Arg Tyr Ser Val Asp Ser Ala Val Gly Leu Ser Leu Met
275 280 285
Ala Val Ile Gly Pro Arg Asp Phe Met Arg Phe Leu Gly Gly Phe His
290 295 300
Ala Met Asp Glu His Phe Arg Thr Thr Lys Phe Glu Glu Asn Val Pro
305 310 315 320
Ile Leu Met Ala Leu Leu Gly Val Trp Tyr Ser Asp Phe Tyr Gly Ala
325 330 335
Glu Thr His Ala Val Leu Pro Tyr Ser Glu Asp Leu Ser Arg Phe Ala
340 345 350
Ala Tyr Leu Gln Gln Leu Thr Met Glu Thr Asn Gly Lys Ser Val His
355 360 365
Arg Asp Gly Ser Pro Val Ser Thr Gly Thr Gly Glu Ile Tyr Trp Gly
370 375 380
Glu Pro Gly Thr Asn Gly Gln His Ala Phe Phe Gln Leu Ile His Gln
385 390 395 400
Gly Thr Arg Leu Val Pro Ala Asp Phe Ile Gly Phe Ala Arg Pro Lys
405 410 415
Gln Asp Leu Pro Ala Gly Glu Arg Thr Met His Asp Leu Leu Met Ser
420 425 430
Asn Phe Phe Ala Gln Thr Lys Val Leu Ala Phe Gly Lys Asn Ala Glu
435 440 445
Glu Ile Ala Ala Glu Gly Val Ala Pro Glu Leu Val Asn His Lys Val
450 455 460
Val Pro Gly Asn Arg Pro Thr Thr Thr Ile Leu Ala Glu Glu Leu Thr
465 470 475 480
Pro Ser Ile Leu Gly Ala Leu Ile Ala Leu Tyr Glu His Thr Val Met
485 490 495
Val Gln Gly Val Ile Trp Asp Ile Asn Ser Phe Asp Gln Trp Gly Val
500 505 510
Glu Leu Gly Lys Gln Gln Ala Asn Asp Leu Ala Pro Ala Val Ser Gly
515 520 525
Glu Glu Asp Val Asp Ser Gly Asp Ser Ser Thr Asp Ser Leu Ile Lys
530 535 540
Trp Tyr Arg Ala Asn Arg
545 550
<210>3
<211>462
<212>DNA
<213>Corynebacterium glutamicum
<400>3
atggagacca atggcaagtc agtccaccgc gacggctccc ctgtttccac tggcactggc 60
gaaatttact ggggtgagcc tggcacaaat ggccagcacg ctttcttcca gctgatccac 120
cagggcactc gccttgttcc agctgatttc attggtttcg ctcgtccaaa gcaggatctt 180
cctgccggtg agcgcaccat gcatgacctt ttgatgagca acttcttcgc acagaccaag 240
gttttggctt tcggtaagaa cgctgaagag atcgctgcgg aaggtgtcgc acctgagctg 300
gtcaaccaca aggtcgtgcc aggtaatcgc ccaaccacca ccattttggc ggaggaactt 360
accccttcta ttctcggtgc gttgatcgct ttgtacgaac acaccgtgat ggttcagggc 420
gtgatttggg acatcaactc cttcgaccaa tggggcgtgg aa 462
<210>4
<211>2160
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>CDS
<222>(327)..(2063)
<223>poxB
<400>4
ttagaggcga ttctgtgagg tcactttttg tggggtcggg gtctaaattt ggccagtttt 60
cgaggcgacc agacaggcgt gcccacgatg tttaaatagg cgatcggtgg gcatctgtgt 120
ttggtttcga cgggctgaaa ccaaaccaga ctgcccagca acgacggaaa tcccaaaagt 180
gggcatccct gtttggtacc gagtacccac ccgggcctga aactccctgg caggcgggcg 240
aagcgtggca acaactggaa tttaagagca caattgaagt cgcaccaagt taggcaacac 300
aatagccata acgttgagga gttcag atg gca cac agc tac gca gaa caa tta 353
Met Ala His Ser Tyr Ala Glu Gln Leu
1 5
att gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg 401
Ile Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val
10 15 20 25
ggt gac agc ctt aat ccg atc gtg gat gct gtc cgc caa tca gat att 449
Gly Asp Ser Leu Asn Pro Ile Val Asp Ala Val Arg Gln Ser Asp Ile
30 35 40
gag tgg gtg cac gtt cga aat gag gaa gcg gcg gcg ttt gca gcc ggt 497
Glu Trp Val His Val Arg Asn Glu Glu Ala Ala Ala Phe Ala Ala Gly
45 50 55
gcg gaa tcg ttg atc act ggg gag ctg gca gta tgt gct gct tct tgt 545
Ala Glu Ser Leu Ile Thr Gly Glu Leu Ala Val Cys Ala Ala Ser Cys
60 65 70
ggt cct gga aac aca cac ctg att cag ggt ctt tat gat tcg cat cga 593
Gly Pro Gly Asn Thr His Leu Ile Gln Gly Leu Tyr Asp Ser His Arg
75 80 85
aat ggt gcg aag gtg ttg gcc atc gct agc cat att ccg agt gcc cag 641
Asn Gly Ala Lys Val Leu Ala Ile Ala Ser His Ile Pro Ser Ala Gln
90 95 100 105
att ggt tcg acg ttc ttc cag gaa acg cat ccg gag att ttg ttt aag 689
Ile Gly Ser Thr Phe Phe Gln Glu Thr His Pro Glu Ile Leu Phe Lys
110 115 120
gaa tgc tct ggt tac tgc gag atg gtg aat ggt ggt gag cag ggt gaa 737
Glu Cys Ser Gly Tyr Cys Glu Met Val Asn Gly Gly Glu Gln Gly Glu
125 130 135
cgc att ttg cat cac gcg att cag tcc acc atg gcg ggt aaa ggt gtg 785
Arg Ile Leu His His Ala Ile Gln Ser Thr Met Ala Gly Lys Gly Val
140 145 150
tcg gtg gta gtg att cct ggt gat atc gct aag gaa gac gca ggt gac 833
Ser Val Val Val Ile Pro Gly Asp Ile Ala Lys Glu Asp Ala Gly Asp
155 160 165
ggt act tat tcc aat tcc act att tct tct ggc act cct gtg gtg ttc 881
Gly Thr Tyr Ser Asn Ser Thr Ile Ser Ser Gly Thr Pro Val Val Phe
170 175 180 185
ccg gat cct act gag gct gca gcg ctg gtg gag gcg att aac aac gct 929
Pro Asp Pro Thr Glu Ala Ala Ala Leu Val Glu Ala Ile Asn Asn Ala
190 195 200
aag tct gtc act ttg ttc tgc ggt gcg ggc gtg aag aat gct cgc gcg 977
Lys Ser Val Thr Leu Phe Cys Gly Ala Gly Val Lys Asn Ala Arg Ala
205 210 215
cag gtg ttg gag ttg gcg gag aag att aaa tca ccg atc ggg cat gcg 1025
Gln Val Leu Glu Leu Ala Glu Lys Ile Lys Ser Pro Ile Gly His Ala
220 225 230
ctg ggt ggt aag cag tac atc cag cat gag aat ccg ttt gag gtc ggc 1073
Leu Gly Gly Lys Gln Tyr Ile Gln His Glu Asn Pro Phe Glu Val Gly
235 240 245
atg tct ggc ctg ctt ggt tac ggc gcc tgc gtg gat gcg tcc aat gag 1121
Met Ser Gly Leu Leu Gly Tyr Gly Ala Cys Val Asp Ala Ser Asn Glu
250 255 260 265
gcg gat ctg ctg att cta ttg ggt acg gat ttc cct tat tct gat ttc 1169
Ala Asp Leu Leu Ile Leu Leu Gly Thr Asp Phe Pro Tyr Ser Asp Phe
270 275 280
ctt cct aaa gac aac gtt gcc cag gtg gat atc aac ggt gcg cac att 1217
Leu Pro Lys Asp Asn Val Ala Gln Val Asp Ile Asn Gly Ala His Ile
285 290 295
ggt cga cgt acc acg gtg aag tat ccg gtg acc ggt gat gtt gct gca 1265
Gly Arg Arg Thr Thr Val Lys Tyr Pro Val Thr Gly Asp Val Ala Ala
300 305 310
aca atc gaa aat att ttg cct cat gtg aag gaa aaa aca gat cgt tcc 1313
Thr Ile Glu Asn Ile Leu Pro His Val Lys Glu Lys Thr Asp Arg Ser
315 320 325
ttc ctt gat cgg atg ctc aag gca cac gag cgt aag ttg agc tcg gtg 1361
Phe Leu Asp Arg Met Leu Lys Ala His Glu Arg Lys Leu Ser Ser Val
330 335 340 345
gta gag acg tac aca cat aac gtc gag aag cat gtg cct att cac cct 1409
Val Glu Thr Tyr Thr His Asn Val Glu Lys His Val Pro Ile His Pro
350 355 360
gaa tac gtt gcc tct att ttg aac gag ctg gcg gat aag gat gcg gtg 1457
Glu Tyr Val Ala Ser Ile Leu Asn Glu Leu Ala Asp Lys Asp Ala Val
365 370 375
ttt act gtg gat acc ggc atg tgc aat gtg tgg cat gcg agg tac atc 1505
Phe Thr Val Asp Thr Gly Met Cys Asn Val Trp His Ala Arg Tyr Ile
380 385 390
gag aat ccg gag gga acg cgc gac ttt gtg ggt tca ttc cgc cac ggc 1553
Glu Asn Pro Glu Gly Thr Arg Asp Phe Val Gly Ser Phe Arg His Gly
395 400 405
acg atg gct aat gcg ttg cct cat gcg att ggt gcg caa agt gtt gat 1601
Thr Met Ala Asn Ala Leu Pro His Ala Ile Gly Ala Gln Ser Val Asp
410 415 420 425
cga aac cgc cag gtg atc gcg atg tgt ggc gat ggt ggt ttg ggc atg 1649
Arg Asn Arg Gln Val Ile Ala Met Cys Gly Asp Gly Gly Leu Gly Met
430 435 440
ctg ctg ggt gag ctt ctg acc gtt aag ctg cac caa ctt ccg ctg aag 1697
Leu Leu Gly Glu Leu Leu Thr Val Lys Leu His Gln Leu Pro Leu Lys
445 450 455
gct gtg gtg ttt aac aac agt tct ttg ggc atg gtg aag ttg gag atg 1745
Ala Val Val Phe Asn Asn Ser Ser Leu Gly Met Val Lys Leu Glu Met
460 465 470
ctc gtg gag gga cag cca gaa ttt ggt act gac cat gag gaa gtg aat 1793
Leu Val Glu Gly Gln Pro Glu Phe Gly Thr Asp His Glu Glu Val Asn
475 480 485
ttc gca gag att gcg gcg gct gcg ggt atc aaa tcg gta cgc atc acc 1841
Phe Ala Glu Ile Ala Ala Ala Ala Gly Ile Lys Ser Val Arg Ile Thr
490 495 500 505
gat ccg aag aaa gtt cgc gag cag cta gct gag gca ttg gca tat cct 1889
Asp Pro Lys Lys Val Arg Glu Gln Leu Ala Glu Ala Leu Ala Tyr Pro
510 515 520
gga cct gta ctg atc gat atc gtc acg gat cct aat gcg ctg tcg atc 1937
Gly Pro Val Leu Ile Asp Ile Val Thr Asp Pro Asn Ala Leu Ser Ile
525 530 535
cca cca acc atc acg tgg gaa cag gtc atg gga ttc agc aag gcg gcc 1985
Pro Pro Thr Ile Thr Trp Glu Gln Val Met Gly Phe Ser Lys Ala Ala
540 545 550
acc cga acc gtc ttt ggt gga gga gta gga gcg atg atc gat ctg gcc 2033
Thr Arg Thr Val Phe Gly Gly Gly Val Gly Ala Met Ile Asp Leu Ala
555 560 565
cgt tcg aac ata agg aat att cct act cca tgatgattga tacacctgct 2083
Arg Ser Asn Ile Arg Asn Ile Pro Thr Pro
570 575
gttctcattg accgcgagcg cttaactgcc aacatttcca ggatggcagc tcacgccggt 2143
gcccatgaga ttgccct 2160
<210>5
<211>579
<212>PRT
<213>Corynebacterium glutamicum
<400>5
Met Ala His Ser Tyr Ala Glu Gln Leu Ile Asp Thr Leu Glu Ala Gln
1 5 10 15
Gly Val Lys Arg Ile Tyr Gly Leu Val Gly Asp Ser Leu Asn Pro Ile
20 25 30
Val Asp Ala Val Arg Gln Ser Asp Ile Glu Trp Val His Val Arg Asn
35 40 45
Glu Glu Ala Ala Ala Phe Ala Ala Gly Ala Glu Ser Leu Ile Thr Gly
50 55 60
Glu Leu Ala Val Cys Ala Ala Ser Cys Gly Pro Gly Asn Thr His Leu
65 70 75 80
Ile Gln Gly Leu Tyr Asp Ser His Arg Asn Gly Ala Lys Val Leu Ala
85 90 95
Ile Ala Ser His Ile Pro Ser Ala Gln Ile Gly Ser Thr Phe Phe Gln
100 105 110
Glu Thr His Pro Glu Ile Leu Phe Lys Glu Cys Ser Gly Tyr Cys Glu
115 120 125
Met Val Asn Gly Gly Glu Gln Gly Glu Arg Ile Leu His His Ala Ile
130 135 140
Gln Ser Thr Met Ala Gly Lys Gly Val Ser Val Val Val Ile Pro Gly
145 150 155 160
Asp Ile Ala Lys Glu Asp Ala Gly Asp Gly Thr Tyr Ser Asn Ser Thr
165 170 175
Ile Ser Ser Gly Thr Pro Val Val Phe Pro Asp Pro Thr Glu Ala Ala
180 185 190
Ala Leu Val Glu Ala Ile Asn Asn Ala Lys Ser Val Thr Leu Phe Cys
195 200 205
Gly Ala Gly Val Lys Asn Ala Arg Ala Gln Val Leu Glu Leu Ala Glu
210 215 220
Lys Ile Lys Ser Pro Ile Gly His Ala Leu Gly Gly Lys Gln Tyr Ile
225 230 235 240
Gln His Glu Asn Pro Phe Glu Val Gly Met Ser Gly Leu Leu Gly Tyr
245 250 255
Gly Ala Cys Val Asp Ala Ser Asn Glu Ala Asp Leu Leu Ile Leu Leu
260 265 270
Gly Thr Asp Phe Pro Tyr Ser Asp Phe Leu Pro Lys Asp Asn Val Ala
275 280 285
Gln Val Asp Ile Asn Gly Ala His Ile Gly Arg Arg Thr Thr Val Lys
290 295 300
Tyr Pro Val Thr Gly Asp Val Ala Ala Thr Ile Glu Asn Ile Leu Pro
305 310 315 320
His Val Lys Glu Lys Thr Asp Arg Ser Phe Leu Asp Arg Met Leu Lys
325 330 335
Ala His Glu Arg Lys Leu Ser Ser Val Val Glu Thr Tyr Thr His Asn
340 345 350
Val Glu Lys His Val Pro Ile His Pro Glu Tyr Val Ala Ser Ile Leu
355 360 365
Asn Glu Leu Ala Asp Lys Asp Ala Val Phe Thr Val Asp Thr Gly Met
370 375 380
Cys Asn Val Trp His Ala Arg Tyr Ile Glu Asn Pro Glu Gly Thr Arg
385 390 395 400
Asp Phe Val Gly Ser Phe Arg His Gly Thr Met Ala Asn Ala Leu Pro
405 410 415
His Ala Ile Gly Ala Gln Ser Val Asp Arg Asn Arg Gln Val Ile Ala
420 425 430
Met Cys Gly Asp Gly Gly Leu Gly Met Leu Leu Gly Glu Leu Leu Thr
435 440 445
Val Lys Leu His Gln Leu Pro Leu Lys Ala Val Val Phe Asn Asn Ser
450 455 460
Ser Leu Gly Met Val Lys Leu Glu Met Leu Val Glu Gly Gln Pro Glu
465 470 475 480
Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala
485 490 495
Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu
500 505 510
Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile
515 520 525
Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu
530 535 540
Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly
545 550 555 560
Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile
565 570 575
Pro Thr Pro
<210>6
<211>875
<212>DNA
<213>Corynebacterium glutamicum
<400>6
tgcgagatgg tgaatggtgg tgagcagggt gaacgcattt tgcatcacgc gattcagtcc 60
accatggcgg gtaaaggtgt gtcggtggta gtgattcctg gtgatatcgc taaggaagac 120
gcaggtgacg gtacttattc caattccact atttcttctg gcactcctgt ggtgttcccg 180
gatcctactg aggctgcagc gctggtggag gcgattaaca acgctaagtc tgtcactttg 240
ttctgcggtg cgggcgtgaa gaatgctcgc gcgcaggtgt tggagttggc ggagaagatt 300
aaatcaccga tcgggcatgc gctgggtggt aagcagtaca tccagcatga gaatccgttt 360
gaggtcggca tgtctggcct gcttggttac ggcgcctgcg tggatgcgtc caatgaggcg 420
gatctgctga ttctattggg tacggatttc ccttattctg atttccttcc taaagacaac 480
gttgcccagg tggatatcaa cggtgcgcac attggtcgac gtaccacggt gaagtatccg 540
gtgaccggtg atgttgctgc aacaatcgaa aatattttgc ctcatgtgaa ggaaaaaaca 600
gatcgttcct tccttgatcg gatgctcaag gcacacgagc gtaagttgag ctcggtggta 660
gagacgtaca cacataacgt cgagaagcat gtgcctattc accctgaata cgttgcctct 720
attttgaacg agctggcgga taaggatgcg gtgtttactg tggataccgg catgtgcaat 780
gtgtggcatg cgaggtacat cgagaatccg gagggaacgc gcgactttgt gggttcattc 840
cgccacggca cgatggctaa tgcgttgcct catgc 875
<210>7
<211>2260
<212>DNA
<213>Brevibacterium flavum MJ-233
<220>
<221>CDS
<222>(629)..(2080)
<223>Glucose-6-Phosphate Dehydrogenase(EC 1.1.1.49);JP-A-09-22461
<400>7
gatccgatga ggctttggct ctgcgtggca aggcaggcgt tgccaacgct cagcgcgctt 60
acgctgtgta caaggagctt ttcgacgccg ccgagctgcc tgtaaggcgc caacactcag 120
cgcccactgt gggcatccac cggcgtgaag aaccctgcgt acgctgcaac tctttacgtt 180
tccgagctgg ctggtccaaa caccgtcaac accatgccag aaggcaccat cgacgctgtt 240
ctggaactgg gcaacctgca cggtgacaac ctgtccaact ccgcggcaga agctgacgct 300
gtgttctccc agcttgaggc tctgggcgtt gacttggcag atgtcttcca ggtcctggag 360
accgaggccg tggacaagtt cgttgcttct tggagcgaac tgcttgagtc catggaagct 420
cgcctgaagt agaatcagca cgctgcatca gtaacggcga catgaaatcg aattagttcg 480
atcttatgtg gccgttacac atctttcatt aaagaaagga tcgtgacgct taccatcgtg 540
agcacaaaac acgaccccct ccagctggac aaacccactg cgcgacccgc aggataaacg 600
actcccccgc atcgctggcc cttccggc atg gtg atc ttc ggt gtc act ggc 652
Met Val Ile Phe Gly Val Thr Gly
1 5
gac ttg gct cga aag aag ctg ctc ccc gcc att tat gat cta gca aac 700
Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala Ile Tyr Asp Leu Ala Asn
10 15 20
cgc gga ttg ctg ccc cca gga ttc tcg ttg gta ggt tac ggc cgc cgc 748
Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu Val Gly Tyr Gly Arg Arg
25 30 35 40
gaa tgg tcc aaa gaa gac ttt gaa aaa tac gta cgc gat gcc gca agt 796
Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr Val Arg Asp Ala Ala Ser
45 50 55
gct ggt gct cgt acg gaa ttc cgt gaa aat gtt tgg gag cgc ctc gcc 844
Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn Val Trp Glu Arg Leu Ala
60 65 70
gag ggt atg gaa ttt gtt cgc ggc aac ttt gat gat gat gca gct ttc 892
Glu Gly Met Glu Phe Val Arg Gly Asn Phe Asp Asp Asp Ala Ala Phe
75 80 85
gac aac ctc gct gca aca ctc aag cgc atc gac aaa acc cgc ggc acc 940
Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile Asp Lys Thr Arg Gly Thr
90 95 100
gcc ggc aac tgg gct tac tac ctg tcc att cca cca gat tcc ttc gca 988
Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile Pro Pro Asp Ser Phe Ala
105 110 115 120
gcg gtc tgc cac cag ctg gag cgt tcc ggc atg gct gaa tcc acc gaa 1036
Ala Val Cys His Gln Leu Glu Arg Ser Gly Met Ala Glu Ser Thr Glu
125 130 135
gaa gca tgg cgc cgc gtg atc atc gag aag cct ttc ggc cac aac ctc 1084
Glu Ala Trp Arg Arg Val Ile Ile Glu Lys Pro Phe Gly His Asn Leu
140 145 150
gaa tcc gca cac gag ctc aac cag ctg gtc aac gca gtc ttc cca gaa 1132
Glu Ser Ala His Glu Leu Asn Gln Leu Val Asn Ala Val Phe Pro Glu
155 160 165
tct tct gtg ttc cgc atc gac cac tat ttg ggc aag gaa aca gtt caa 1180
Ser Ser Val Phe Arg Ile Asp His Tyr Leu Gly Lys Glu Thr Val Gln
170 175 180
aac atc ctg gct ctg cgt ttt gct aac cag ctg ttt gag cca ctg tgg 1228
Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln Leu Phe Glu Pro Leu Trp
185 190 195 200
aac tcc aac tac gtt gac cac gtc cag atc acc atg gct gaa gat att 1276
Asn Ser Asn Tyr Val Asp His Val Gln Ile Thr Met Ala Glu Asp Ile
205 210 215
ggc ttg ggt gga cgt gct ggt tac tac gac ggc atc ggc gca gcc cgc 1324
Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp Gly Ile Gly Ala Ala Arg
220 225 230
gac gtc atc cag aac cac ctg atc cag ctc ttg gct ctg gtt gcc atg 1372
Asp Val Ile Gln Asn His Leu Ile Gln Leu Leu Ala Leu Val Ala Met
235 240 245
gaa gaa cca att tct ttc gtg cca gcg cag ctg cag gca gaa aag atc 1420
Glu Glu Pro Ile Ser Phe Val Pro Ala Gln Leu Gln Ala Glu Lys Ile
250 255 260
aag gtg ctc tct gcg aca aag ccg tgc tac cca ttg gat aaa acc tcc 1468
Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr Pro Leu Asp Lys Thr Ser
265 270 275 280
gct cgt ggt cag tac gct gcc ggt tgg cag ggc tct gag tta gtc aag 1516
Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln Gly Ser Glu Leu Val Lys
285 290 295
gga ctt cgc gaa gaa gat ggc ttc aac cct gag tcc acc act gag act 1564
Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro Glu Ser Thr Thr Glu Thr
300 305 310
ttt gcg gct tgt acc tta gag atc acg tct cgt cgc tgg gct ggt gtg 1612
Phe Ala Ala CVs Thr Leu Glu Ile Thr Ser Arg Arg Trp Ala Gly Val
315 320 325
ccg ttc tac ctg cgc acc ggt aag cgt ctt ggt cgc cgt gtt act gag 1660
Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu Gly Arg Arg Val Thr Glu
330 335 340
att gcc gtg gtg ttt aaa gac gca cca cac cag cct ttc gac ggc gac 1708
Ile Ala Val Val Phe Lys Asp Ala Pro His Gln Pro Phe Asp Gly Asp
345 350 355 360
atg act gta tcc ctt ggc caa aac gcc atc gtg att cgc gtg cag cct 1756
Met Thr Val Ser Leu Gly Gln Asn Ala Ile Val Ile Arg Val Gln Pro
365 370 375
gat gaa ggt gtg ctc atc cgc ttc ggt tcc aag gtt cca ggt tct gcc 1804
Asp Glu Gly Val Leu Ile Arg Phe Gly Ser Lys Val Pro Gly Ser Ala
380 385 390
atg gaa gtc cgt gac gtc aac atg gac ttc tcc tac tca gaa tcc ttc 1852
Met Glu Val Arg Asp Val Asn Met Asp Phe Ser Tyr Ser Glu Ser Phe
395 400 405
act gaa gaa tca cct gaa gca tac gag cgc ctt atc ttg gat gcg ctg 1900
Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg Leu Ile Leu Asp Ala Leu
410 415 420
ttg gat gaa tcc agc ctt ttc cct acc aac gag gaa gtg gaa ctg agc 1948
Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn Glu Glu Val Glu Leu Ser
425 430 435 440
tgg aag att ctg gat cca att ctt gaa gca tgg gat gcc gat gga gaa 1996
Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala Trp Asp Ala Asp Gly Glu
445 450 455
cca gag gat tac cca gca ggt acg tgg ggt cca aag agc gct gat gaa 2044
Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly Pro Lys Ser Ala Asp Glu
460 465 470
atg ctt tcc cgc aac ggt cac acc tgg cgc agg cca taatttaggg 2090
Met Leu Ser Arg Asn Gly His Thr Trp Arg Arg Pro
475 480
gcaaaaaatg atctttgaac ttccggatac caccacccag caaatttcca agaccctaac 2150
tcgactgcgt gaatcgggca cccaggtcac caccggccga gtgctcaccc tcatcgtggt 2210
cactgactcc gaaagcgatg tcgctgcagt taccgagtcc accaatgaag 2260
<210>8
<211>484
<212>PRT
<213>Brevibacterium flavum MJ-233
<400>8
Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu
1 5 10 15
Pro Ala Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe
20 25 30
Ser Leu Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu
35 40 45
Lys Tyr Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg
50 55 60
Glu Asn Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly
65 70 75 80
Asn Phe Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys
85 90 95
Arg Ile Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu
100 105 110
Ser Ile Pro Pro Asp Ser Phe Ala Ala Val Cys His Gln Leu Glu Arg
115 120 125
Ser Gly Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile
130 135 140
Glu Lys Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln
145 150 155 160
Leu Val Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His
165 170 175
Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala
180 185 190
Asn Gln Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val
195 200 205
Gln Ile Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr
210 215 220
Tyr Asp Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile
225 230 235 240
Gln Leu Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro
245 250 255
Ala Gln Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro
260 265 270
Cys Tyr Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly
275 280 285
Trp Gln Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe
290 295 300
Asn Pro Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile
305 310 315 320
Thr Ser Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys
325 330 335
Arg Leu Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala
340 345 350
Pro His Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn
355 360 365
Ala Ile Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe
370 375 380
Gly Ser Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met
385 390 395 400
Asp Phe Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr
405 410 415
Glu Arg Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro
420 425 430
Thr Asn Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu
435 440 445
Glu Ala Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr
450 455 460
Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr
465 470 475 480
Trp Arg Arg Pro
<210>9
<211>2259
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>CDS
<222>(538)..(2079)
<223>Zwf-Protein
<220>
<221>nucleotide guanine
<222>(1264)..(1264)
<223>corresponds to position 727 of the coding sequence
<400>9
gatccgatga ggctttggct ctgcgtggca aggcaggcgt tgccaacgct cagcgcgctt 60
acgctgtgta caaggagctt ttcgacgccg ccgagctgcc tgtaaggcgc caacactcag 120
cgcccactgt gggcatccac cggcgtgaag aaccctgcgt acgctgcaac tctttacgtt 180
tccgagctgg ctggtccaaa caccgtcaac accatgccag aaggcaccat cgacgctgtt 240
ctggaactgg gcaacctgca cggtgacaac ctgtccaact ccgcggcaga agctgacgct 300
gtgttctccc agcttgaggc tctgggcgtt gacttggcag atgtcttcca ggtcctggag 360
accgaggccg tggacaagtt cgttgcttct tggagcgaac tgcttgagtc catggaagct 420
cgcctgaagt agaatcagca cgctgcatca gtaacggcga catgaaatcg aattagttcg 480
atcttatgtg gccgttacac atctttcatt aaagaaagga tcgtgacgct taccatc 537
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 585
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 633
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 681
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 729
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 777
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 825
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 873
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 921
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 969
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc gca gcg gtc tgc cac cag ctg gag cgt tcc ggc 1017
Pro Pro Asp Ser Phe Ala Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 1065
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 1113
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 1161
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 1209
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 1257
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc atg gct gaa gat att ggc ttg ggt gga cgt gct ggt tac tac gac 1305
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 1353
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 1401
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 1449
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 1497
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1545
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1593
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1641
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca cca cac 1689
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1737
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1785
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1833
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1881
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctt atc ttg gat gcg ctg ttg gat gaa tcc agc ctt ttc cct acc aac 1929
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1977
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gca ggt acg tgg ggt 2025
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 2073
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taatttaggg gcaaaaaatg atctttgaac ttccggatac caccacccag 2129
Arg Pro
caaatttcca agaccctaac tcgactgcgt gaatcgggca cccaggtcac caccggccga 2189
gtgctcaccc tcatcgtggt cactgactcc gaaagcgatg tcgctgcagt taccgagtcc 2249
accaatgaag 2259
<210>10
<211>514
<212>PRT
<213>Corynebacterium glutamicum
<400>10
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
l 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Ala Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>11
<211>20
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwf-forward
<400>11
tcgacgcggt tctggagcag 20
<210>12
<211>21
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwf reverse
<400>12
ctaaattatg gcctgcgcca g 21
<210>13
<211>22
<212>DNA
<213>Artificial Sequence
<220>
<223>Universal forward Primer
<400>13
gtaatacgac tcactatagg gc 22
<210>14
<211>18
<212>DNA
<213>Artificial Sequence
<220>
<223>M13 reverse primer
<400>14
ytccacgccc caytgrtc 18
<210>15
<211>18
<212>DNA
<213>Artificial Sequence
<220>
<223>Internal Primer 1
<400>15
ggaaacaggg gagccgtc 18
<210>16
<211>18
<212>DNA
<213>Artificial Sequence
<220>
<223>Internal Primer 2
<400>16
tgctgagata ccagcggt 18
<210>17
<211>17
<212>DNA
<213>Artificial Sequence
<220>
<223>fwd.primer
<400>17
atggarwcca aygghaa 17
<210>18
<211>18
<212>DNA
<213>Artificial Sequence
<220>
<223>rev.primer
<400>18
ytccacgccc caytgrtc 18
<210>19
<211>20
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer poxBint1
<220>
<221>misc_feature
<223>Primer poxBint1
<400>19
tgcgagatgg tgaatggtgg 20
<210>20
<211>20
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer poxBint2
<400>20
gcatgaggca acgcattagc 20
<210>21
<211>1857
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>CDS
<222>(308)..(1849)
<223>
<220>
<221>mutation
<222>(1034)..(1034)
<223>corresponds to position 727 of the coding sequence
<220>
<221>nucleotide adenine
<222>(1034)..(1034)
<223>corresponds to position 727 of the coding sequence
<400>21
tcgacgcggt tctggagcag ggcaacctgc acggtgacac cctgtccaac tccgcggcag 60
aagctgacgc tgtgttctcc cagcttgagg ctctgggcgt tgacttggca gatgtcttcc 120
aggtcctgga gaccgagggt gtggacaagt tcgttgcttc ttggagcgaa ctgcttgagt 180
ccatggaagc tcgcctgaag tagaatcagc acgctgcatc agtaacggcg acatgaaatc 240
gaattagttc gatcttatgt ggccgttaca catctttcat taaagaaagg atcgtgacac 300
taccatc gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg 349
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu
1 5 10
cgc gac ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc 397
Arg Asp Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly
15 20 25 30
atg gtg atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc 445
Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu
35 40 45
ccc gcc att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc 493
Pro Ala Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe
50 55 60
tcg ttg gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa 541
Ser Leu Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu
65 70 75
aaa tac gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt 589
Lys Tyr Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg
80 85 90
gaa aat gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc 637
Glu Asn Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly
95 100 105 110
aac ttt gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag 685
Asn Phe Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys
115 120 125
cgc atc gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg 733
Arg Ile Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu
130 135 140
tcc att cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt 781
Ser Ile Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg
145 150 155
tcc ggc atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc 829
Ser Gly Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile
160 165 170
gag aag cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag 877
Glu Lvs Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln
175 180 185 190
ctg gtc aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac 925
Leu Val Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His
195 200 205
tat ttg ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct 973
Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala
210 215 220
aac cag ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc 1021
Asn Gln Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val
225 230 235
cag atc acc atg act gaa gat att ggc ttg ggt gga cgt gct ggt tac 1069
Gln Ile Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr
240 245 250
tac gac ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc 1117
Tyr Asp Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile
255 260 265 270
cag ctc ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca 1165
Gln Leu Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro
275 280 285
gcg cag ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg 1213
Ala Gln Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro
290 295 300
tgc tac cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt 1261
Cys Tyr Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly
305 310 315
tgg cag ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc 1309
Trp Gln Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe
320 325 330
aac cct gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc 1357
Asn Pro Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile
335 340 345 350
acg tct cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag 1405
Thr Ser Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys
355 360 365
cgt ctt ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca 1453
Arg Leu Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala
370 375 380
cca cac cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac 1501
Pro His Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn
385 390 395
gcc atc gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc 1549
Ala Ile Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe
400 405 410
ggt tcc aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg 1597
Gly Ser Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met
415 420 425 430
gac ttc tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac 1645
Asp Phe Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr
435 440 445
gag cgc ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct 1693
Glu Arg Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro
450 455 460
acc aac gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt 1741
Thr Asn Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu
465 470 475
gaa gca tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg 1789
Glu Ala Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr
480 485 490
tgg ggt cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc 1837
Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr
495 500 505 510
tgg cgc agg cca taatttag 1857
Trp Arg Arg Pro
<210>22
<211>514
<212>PRT
<213>Corynebacterium glutamicum
<400>22
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>23
<211>756
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(756)
<223>Internal segment of the coding sequence of the zwf(A243T) allele
<220>
<221>nucleotide adenine
<222>(137)..(137)
<223>Corresponding to position 727 of the coding sequence of the zwf(A
243T)allele
<400>23
agaatcttct gtgttccgca tcgaccacta tttgggcaag gaaacagttc aaaacatcct 60
ggctctgcgt tttgctaacc agctgtttga gccactgtgg aactccaact acgttgacca 120
cgtccagatc accatgactg aagatattgg cttgggtgga cgtgctggtt actacgacgg 180
catcggcgca gcccgcgacg tcatccagaa ccacctgatc cagctcttgg ctctggttgc 240
catggaagaa ccaatttctt tcgtgccagc gcagctgcag gcagaaaaga tcaaggtgct 300
ctctgcgaca aagccgtgct acccattgga taaaacctcc gctcgtggtc agtacgctgc 360
cggttggcag ggctctgagt tagtcaaggg acttcgcgaa gaagatggct tcaaccctga 420
gtccaccact gagacttttg cggcttgtac cttagagatc acgtctcgtc gctgggctgg 480
tgtgccgttc tacctgcgca ccggtaagcg tcttggtcgc cgtgttactg agattgccgt 540
ggtgtttaaa gacgcaccac accagccttt cgacggcgac atgactgtat cccttggcca 600
aaacgccatc gtgattcgcg tgcagcctga tgaaggtgtg ctcatccgct tcggttccaa 660
ggttccaggt tctgccatgg aagtccgtga cgtcaacatg gacttctcct actcagaatc 720
cttcactgaa gaatcacctg aagcatacga gcgcct 756
<210>24
<211>28
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwf_XL-Al
<400>24
gatctagaag ctcgcctgaa gtagaatc 28
<210>25
<211>28
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwf_XL-E1
<400>25
gatctagaga ttcacgcagt cgagttag 28
<210>26
<211>1763
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>PCR product
<222>(1)..(1763)
<223>
<400>26
gatctagaag ctcgcctgaa gtagaatcag cacgctgcat cagtaacggc gacatgaaat 60
cgaattagtt cgatcttatg tggccgttac acatctttca ttaaagaaag gatcgtgaca 120
ctaccatcgt gagcacaaac acgaccccct ccagctggac aaacccactg cgcgacccgc 180
aggataaacg actcccccgc atcgctggcc cttccggcat ggtgatcttc ggtgtcactg 240
gcgacttggc tcgaaagaag ctgctccccg ccatttatga tctagcaaac cgcggattgc 300
tgcccccagg attctcgttg gtaggttacg gccgccgcga atggtccaaa gaagactttg 360
aaaaatacgt acgcgatgcc gcaagtgctg gtgctcgtac ggaattccgt gaaaatgttt 420
gggagcgcct cgccgagggt atggaatttg ttcgcggcaa ctttgatgat gatgcagctt 480
tcgacaacct cgctgcaaca ctcaagcgca tcgacaaaac ccgcggcacc gccggcaact 540
gggcttacta cctgtccatt ccaccagatt ccttcacagc ggtctgccac cagctggagc 600
gttccggcat ggctgaatcc accgaagaag catggcgccg cgtgatcatc gagaagcctt 660
tcggccacaa cctcgaatcc gcacacgagc tcaaccagct ggtcaacgca gtcttcccag 720
aatcttctgt gttccgcatc gaccactatt tgggcaagga aacagttcaa aacatcctgg 780
ctctgcgttt tgctaaccag ctgtttgagc cactgtggaa ctccaactac gttgaccacg 840
tccagatcac catggctgaa gatattgact tgggtggacg tgctggttac tacgacggca 900
tcggcgcagc ccgcgacgtc atccagaacc acctgatcca gctcttggct ctggttgcca 960
tggaagaacc aatttctttc gtgccagcgc agctgcaggc agaaaagatc aaggtgctct 1020
ctgcgacaaa gccgtgctac ccattggata aaacctccgc tcgtggtcag tacgctgccg 1080
gttggcaggg ctctgagtta gtcaagggac ttcgcgaaga agatggcttc aaccctgagt 1140
ccaccactga gacttttgcg gcttgtacct tagagatcac gtctcgtcgc tgggctggtg 1200
tgccgttcta cctgcgcacc ggtaagcgtc ttggtcgccg tgttactgag attgccgtgg 1260
tgtttaaaga cgcaccacac cagcctttcg acggcgacat gactgtatcc cttggccaaa 1320
acgccatcgt gattcgcgtg cagcctgatg aaggtgtgct catccgcttc ggttccaagg 1380
ttccaggttc tgccatggaa gtccgtgacg tcaacatgga cttctcctac tcagaatcct 1440
tcactgaaga atcacctgaa gcatacgagc gcctcatttt ggatgcgctg ttagatgaat 1500
ccagcctctt ccctaccaac gaggaagtgg aactgagctg gaagattctg gatccaattc 1560
ttgaagcatg ggatgccgat ggagaaccag aggattaccc agcgggtacg tggggtccaa 1620
agagcgctga tgaaatgctt tcccgcaacg gtcacacctg gcgcaggcca taatttaggg 1680
gcaaaaaatg atctttgaac ttccggatac caccacccag caaatttcca agaccctaac 1740
tcgactgcgt gaatctctag atc 1763
<210>27
<211>20
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zf_1
<400>27
ggcttactac ctgtccattc 20
<210>28
<211>1545
<212>DNA
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<220>
<221>CDS
<222>(1)..(1542)
<223>zwf(R370M)allele
<400>28
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 48
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 96
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 144
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 192
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 240
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 288
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 336
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 384
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 432
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt tcc ggc 480
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 528
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 576
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 624
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 672
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 720
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc atg gct gaa gat att ggc ttg ggt gga cgt gct ggt tac tac gac 768
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 816
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 864
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 912
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 960
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1008
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1056
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1104
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt atg cgt gtt act gag att gcc gtg gtg ttt aaa gac gca cca cac 1152
Gly Met Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1200
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1248
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1296
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1344
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct acc aac 1392
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1440
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg tgg ggt 1488
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 1536
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taa 1545
Arg Pro
<210>29
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>Obtained by in-Vitro mutagenesis
<400>29
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Met Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>30
<211>1545
<212>DNA
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<220>
<221>CDS
<222>(1)..(1542)
<223>zwf(V372A)allele
<400>30
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 48
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 96
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 144
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 192
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 240
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 288
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 336
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 384
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 432
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt tcc ggc 480
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 528
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 576
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 624
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 672
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 720
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc atg gct gaa gat att ggc ttg ggt gga cgt gct ggt tac tac gac 768
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 816
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 864
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 912
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 960
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1008
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1056
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1104
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt cgc cgt gca act gag att gcc gtg gtg ttt aaa gac gca cca cac 1152
Gly Arg Arg Ala Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1200
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1248
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1296
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1344
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct acc aac 1392
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1440
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg tgg ggt 1488
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 1536
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taa 1545
Arg Pro
<210>31
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<400>31
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gin Ile
225 230 235 240
Thr Met Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Ala Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>32
<211>1545
<212>DNA
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<220>
<221>CDS
<222>(1)..(1542)
<223>zwf(M242L)allele
<400>32
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 48
Met Ser Thr Ash Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 96
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 144
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 192
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 240
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 288
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 336
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 384
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 432
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt tcc ggc 480
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 528
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 576
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 624
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 672
Gly LVs Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 720
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc ctt gct gaa gat att ggc ttg ggt gga cgt gct ggt tac tac gac 768
Thr Leu Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 816
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 864
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 912
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 960
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1008
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1056
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1104
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca cca cac 1152
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1200
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1248
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1296
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1344
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct acc aac 1392
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1440
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg tgg ggt 1488
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 1536
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taa 1545
Arg Pro
<210>33
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<400>33
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Leu Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>34
<211>1545
<212>DNA
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<220>
<221>CDS
<222>(1)..(1542)
<223>zwf(M242S)allele
<400>34
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 48
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 96
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 144
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 192
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 240
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 288
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 336
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 384
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 432
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt tcc ggc 480
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 528
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 576
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 624
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 672
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 720
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc tca gct gaa gat att ggc ttg ggt gga cgt gct ggt tac tac gac 768
Thr Ser Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 816
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 864
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 912
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 960
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1008
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1056
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1104
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca cca cac 1152
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1200
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1248
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1296
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1344
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct acc aac 1392
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1440
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg tgg ggt 1488
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 1536
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taa 1545
Arg Pro
<210>35
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<400>35
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Ser Ala Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>36
<211>1545
<212>DNA
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<220>
<221>CDS
<222>(1)..(1542)
<223>zwf(D245S)allele
<400>36
gtg agc aca aac acg acc ccc tcc agc tgg aca aac cca ctg cgc gac 48
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
ccg cag gat aaa cga ctc ccc cgc atc gct ggc cct tcc ggc atg gtg 96
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc ccc gcc 144
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc tcg ttg 192
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac 240
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt gaa aat 288
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt 336
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag cgc atc 384
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg tcc att 432
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt tcc ggc 480
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc gag aag 528
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag ctg gtc 576
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac tat ttg 624
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct aac cag 672
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc cag atc 720
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
acc atg gct gaa tca att ggc ttg ggt gga cgt gct ggt tac tac gac 768
Thr Met Ala Glu Ser Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc cag ctc 816
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca gcg cag 864
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg tgc tac 912
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt tgg cag 960
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc aac cct 1008
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc acg tct 1056
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt 1104
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca cca cac 1152
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac gcc atc 1200
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc 1248
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg gac ttc 1296
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac gag cgc 1344
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct acc aac 1392
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt gaa gca 1440
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg tgg ggt 1488
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc tgg cgc 1536
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
agg cca taa 1545
Arg Pro
<210>37
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>Obtained by in-vitro mutagenesis
<400>37
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Met Ala Glu Ser Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>38
<211>1763
<212>DNA
<213>Artificial Sequence
<220>
<223>PCR-Product
<220>
<221>misc_feature
<222>(1)..(1763)
<223>PCR-product
<400>38
gatctagaag ctcgcctgaa gtagaatcag cacgctgcat cagtaacggc gacatgaaat 60
cgaattagtt cgatcttatg tggccgttac acatctttca ttaaagaaag gatcgtgaca 120
ctaccatcgt gagcacaaac acgaccccct ccagctggac aaacccactg cgcgacccgc 180
aggataaacg actcccccgc atcgctggcc cttccggcat ggtgatcttc ggtgtcactg 240
gcgacttggc tcgaaagaag ctgctccccg ccatttatga tctagcaaac cgcggattgc 300
tgcccccagg attctcgttg gtaggttacg gccgccgcga atggtccaaa gaagactttg 360
aaaaatacgt acgcgatgcc gcaagtgctg gtgctcgtac ggaattccgt gaaaatgttt 420
gggagcgcct cgccgagggt atggaatttg ttcgcggcaa ctttgatgat gatgcagctt 480
tcgacaacct cgctgcaaca ctcaagcgca tcgacaaaac ccgcggcacc gccggcaact 540
gggcttacta cctgtccatt ccaccagatt ccttcacagc ggtctgccac cagctggagc 600
gttccggcat ggctgaatcc accgaagaag catggcgccg cgtgatcatc gagaagcctt 660
tcggccacaa cctcgaatcc gcacacgagc tcaaccagct ggtcaacgca gtcttcccag 720
aatcttctgt gttccgcatc gaccactatt tgggcaagga aacagttcaa aacatcctgg 780
ctctgcgttt tgctaaccag ctgtttgagc cactgtggaa ctccaactac gttgaccacg 840
tccagatcac catggctgaa gatattggct tgggtggacg tgctggttac tacgacggca 900
tcggcgcagc ccgcgacgtc atccagaacc acctgatcca gctcttggct ctggttgcca 960
tggaagaacc aatttctttc gtgccagcgc agctgcaggc agaaaagatc aaggtgctct 1020
ctgcgacaaa gccgtgctac ccattggata aaacctccgc tcgtggtcag tacgctgccg 1080
gttggcaggg ctctgagtta gtcaagggac ttcgcgaaga agatggcttc aaccctgagt 1140
ccaccactga gacttttgcg gcttgtacct tagagatcac gtctcgtcgc tgggctggtg 1200
tgccgttcta cctgcgcacc ggtaagcgtc ttggtcgccg tgttactgag attgccgtgg 1260
tgtttaaaga cgcaccacac cagcctttcg acggcgacat gactgtatcc cttggccaaa 1320
acgccatcgt gattcgcgtg cagcctgatg aaggtgtgct catccgcttc ggttccaagg 1380
ttccaggttc tgccatggaa gtccgtgacg tcaacatgga cttctcctac tcagaatcct 1440
tcactgaaga atcacctgaa gcatacgagc gcctcatttt ggatgcgctg ttagatgaat 1500
ccagcctctt ccctaccaac gaggaagtgg aactgagctg gaagattctg gatccaattc 1560
ttgaagcatg ggatgccgat ggagaaccag aggattaccc agcgggtacg tggggtccaa 1620
agagcgctga tgaaatgctt tcccgcaacg gtcacacctg gcgcaggcca taatttaggg 1680
gcaaaaaatg atctttgaac ttccggatac caccacccag caaatttcca agaccctaac 1740
tcgactgcgt gaatctctag atc 1763
<210>39
<211>1763
<212>DNA
<213>Artificial Sequence
<220>
<223>PCR-Product
<220>
<221>mutation
<222>(861)..(861)
<223>nucleotide thymine,corresponding to position 733 of the coding
sequence of the zwf(D245S)allele
<220>
<221>mutation
<222>(862)..(862)
<223>nucleotide cytosine,corresponding to position 734 of the coding
sequence of the zwf(D245S)-Allele
<220>
<221>mutation
<222>(863)..(863)
<223>nucleotide adenine,corresponiding to position 735 of the coding
sequence of the zwf(D245S)-Allele
<400>39
gatctagaag ctcgcctgaa gtagaatcag cacgctgcat cagtaacggc gacatgaaat 60
cgaattagtt cgatcttatg tggccgttac acatctttca ttaaagaaag gatcgtgaca 120
ctaccatcgt gagcacaaac acgaccccct ccagctggac aaacccactg cgcgacccgc 180
aggataaacg actcccccgc atcgctggcc cttccggcat ggtgatcttc ggtgtcactg 240
gcgacttggc tcgaaagaag ctgctccccg ccatttatga tctagcaaac cgcggattgc 300
tgcccccagg attctcgttg gtaggttacg gccgccgcga atggtccaaa gaagactttg 360
aaaaatacgt acgcgatgcc gcaagtgctg gtgctcgtac ggaattccgt gaaaatgttt 420
gggagcgcct cgccgagggt atggaatttg ttcgcggcaa ctttgatgat gatgcagctt 480
tcgacaacct cgctgcaaca ctcaagcgca tcgacaaaac ccgcggcacc gccggcaact 540
gggcttacta cctgtccatt ccaccagatt ccttcacagc ggtctgccac cagctggagc 600
gttccggcat ggctgaatcc accgaagaag catggcgccg cgtgatcatc gagaagcctt 660
tcggccacaa cctcgaatcc gcacacgagc tcaaccagct ggtcaacgca gtcttcccag 720
aatcttctgt gttccgcatc gaccactatt tgggcaagga aacagttcaa aacatcctgg 780
ctctgcgttt tgctaaccag ctgtttgagc cactgtggaa ctccaactac gttgaccacg 840
tccagatcac catggctgaa tcaattggct tgggtggacg tgctggttac tacgacggca 900
tcggcgcagc ccgcgacgtc atccagaacc acctgatcca gctcttggct ctggttgcca 960
tggaagaacc aatttctttc gtgccagcgc agctgcaggc agaaaagatc aaggtgctct 1020
ctgcgacaaa gccgtgctac ccattggata aaacctccgc tcgtggtcag tacgctgccg 1080
gttggcaggg ctctgagtta gtcaagggac ttcgcgaaga agatggcttc aaccctgagt 1140
ccaccactga gacttttgcg gcttgtacct tagagatcac gtctcgtcgc tgggctggtg 1200
tgccgttcta cctgcgcacc ggtaagcgtc ttggtcgccg tgttactgag attgccgtgg 1260
tgtttaaaga cgcaccacac cagcctttcg acggcgacat gactgtatcc cttggccaaa 1320
acgccatcgt gattcgcgtg cagcctgatg aaggtgtgct catccgcttc ggttccaagg 1380
ttccaggttc tgccatggaa gtccgtgacg tcaacatgga cttctcctac tcagaatcct 1440
tcactgaaga atcacctgaa gcatacgagc gcctcatttt ggatgcgctg ttagatgaat 1500
ccagcctctt ccctaccaac gaggaagtgg aactgagctg gaagattctg gatccaattc 1560
ttgaagcatg ggatgccgat ggagaaccag aggattaccc agcgggtacg tggggtccaa 1620
agagcgctga tgaaatgctt tcccgcaacg gtcacacctg gcgcaggcca taatttaggg 1680
gcaaaaaatg atctttgaac ttccggatac caccacccag caaatttcca agaccctaac 1740
tcgactgcgt gaatctctag atc 1763
<210>40
<211>36
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer DM_zwfD245Sa
<400>40
agatcaccat ggctgaatca attggcttgg gtggac 36
<210>41
<211>36
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer DM_D245Sb
<400>41
gcacgtccac ccaagccaat tgattcagcc atggtg 36
<210>42
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer zf_2
<400>42
ttctgtgttc cgcatcgacc 20
<210>43
<211>28
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfA
<400>43
attctagaca ccttgatctt ctccgttg 28
<210>44
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer zwfB
<400>44
gatggtagtg tcacgatcct 20
<210>45
<211>39
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfC
<400>45
aggatcgtga cactaccatc atggtgatct tcggtgtca 39
<210>46
<211>28
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfD
<400>46
attctagagc ggaggtttta tccaatgg 28
<210>47
<211>1560
<212>DNA
<213>Artificial Sequence
<220>
<223>PCR-Product:zwf deletion fragment
<220>
<221>misc_feature
<222>(1)..(710)
<223>upstream region of the zwf-gene
<220>
<221>misc_feature
<222>(711)..(1560)
<223>Internal segment of the coding sequence of the zwf-gene(SEQ ID N
O:9),starting from nucleotide 91 of the zwf gene.Nucleotide 71
1 is identically to nucleotide 1 of the coding sequence of the zw
f-gene mentioned in JP-A-09-22461 as shown in SEQ ID NO:7).
<400>47
attctagaca ccttgatctt ctccgttgct cgctaccgcg aggtcatcgc tgcgttcatc 60
gagggcatca agcaggctgc tgcaaacggc cacgacgtct ccaagatcca ctctgtggct 120
tccttcttcg tctcccgcgt cgacgttgag atcgacaagc gcctcgaggc aatcggatcc 180
gatgaggctt tggctctgcg cggcaaggca ggcgttgcca acgctcagcg cgcttacgct 240
gtgtacaagg agcttttcga cgccgccgag ctgcctgaag gtgccaacac tcagcgccca 300
ctgtgggcat ccaccggcgt gaagaaccct gcgtacgctg caactcttta cgtttccgag 360
ctggctggtc caaacaccgt caacaccatg ccagaaggca ccatcgacgc ggttctggag 420
cagggcaacc tgcacggtga caccctgtcc aactccgcgg cagaagctga cgctgtgttc 480
tcccagcttg aggctctggg cgttgacttg gcagatgtct tccaggtcct ggagaccgag 540
ggtgtggaca agttcgttgc ttcttggagc gaactgcttg agtccatgga agctcgcctg 600
aagtagaatc agcacgctgc atcagtaacg gcgacatgaa atcgaattag ttcgatctta 660
tgtggccgtt acacatcttt cattaaagaa aggatcgtga cactaccatc atggtgatct 720
tcggtgtcac tggcgacttg gctcgaaaga agctgctccc cgccatttat gatctagcaa 780
accgcggatt gctgccccca ggattctcgt tggtaggtta cggccgccgc gaatggtcca 840
aagaagactt tgaaaaatac gtacgcgatg ccgcaagtgc tggtgctcgt acggaattcc 900
gtgaaaatgt ttgggagcgc ctcgccgagg gtatggaatt tgttcgcggc aactttgatg 960
atgatgcagc tttcgacaac ctcgctgcaa cactcaagcg catcgacaaa acccgcggca 1020
ccgccggcaa ctgggcttac tacctgtcca ttccaccaga ttccttcaca gcggtctgcc 1080
accagctgga gcgttccggc atggctgaat ccaccgaaga agcatggcgc cgcgtgatca 1140
tcgagaagcc tttcggccac aacctcgaat ccgcacacga gctcaaccag ctggtcaacg 1200
cagtcttccc agaatcttct gtgttccgca tcgaccacta tttgggcaag gaaacagttc 1260
aaaacatcct ggctctgcgt tttgctaacc agctgtttga gccactgtgg aactccaact 1320
acgttgacca cgtccagatc accatggctg aagatattgg cttgggtgga cgtgctggtt 1380
actacgacgg catcggcgca gcccgcgacg tcatccagaa ccacctgatc cagctcttgg 1440
ctctggttgc catggaagaa ccaatttctt tcgtgccagc gcagctgcag gcagaaaaga 1500
tcaaggtgct ctctgcgaca aagccgtgct acccattgga taaaacctcc gctctagaat 1560
<210>48
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer zwfi1
<400>48
ggcgttgact tggcagatgt 20
<210>49
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer zwfi2
<400>49
gcagaccgct gtgaaggaat 20
<210>50
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer LC-zwf1
<400>50
tccgcatcga ccactatttg 20
<210>51
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Primer LC-zwf2
<400>51
cgctggcacg aaagaaattg 20
<210>52
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(20)
<223>Oligonucleotide zwf243-C
<400>52
tatcttcagt catggtgatc 20
<210>53
<211>30
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(30)
<223>Oligonucleotide zwf243-A
<400>53
gtcgtagtaa ccagcacgtc cacccaagcc 30
<210>54
<211>1455
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>allele
<222>(1)..(1455)
<223>zwfdelta90bp(A243T)allele
<220>
<221>CDS
<222>(1)..(1452)
<223>zwfdelta90bp(A243T)allele
<400>54
atg gtg atc ttc ggt gtc act ggc gac ttg gct cga aag aag ctg ctc 48
Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu
1 5 10 15
ccc gcc att tat gat cta gca aac cgc gga ttg ctg ccc cca gga ttc 96
Pro Ala Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe
20 25 30
tcg ttg gta ggt tac ggc cgc cgc gaa tgg tcc aaa gaa gac ttt gaa 144
Ser Leu Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu
35 40 45
aaa tac gta cgc gat gcc gca agt gct ggt gct cgt acg gaa ttc cgt 192
Lys Tyr Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg
50 55 60
gaa aat gtt tgg gag cgc ctc gcc gag ggt atg gaa ttt gtt cgc ggc 240
Glu Asn Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly
65 70 75 80
aac ttt gat gat gat gca gct ttc gac aac ctc gct gca aca ctc aag 288
Asn Phe Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys
85 90 95
cgc atc gac aaa acc cgc ggc acc gcc ggc aac tgg gct tac tac ctg 336
Arg Ile Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu
100 105 110
tcc att cca cca gat tcc ttc aca gcg gtc tgc cac cag ctg gag cgt 384
Ser Ile Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg
115 120 125
tcc ggc atg gct gaa tcc acc gaa gaa gca tgg cgc cgc gtg atc atc 432
Ser Gly Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile
130 135 140
gag aag cct ttc ggc cac aac ctc gaa tcc gca cac gag ctc aac cag 480
Glu Lys Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln
145 150 155 160
ctg gtc aac gca gtc ttc cca gaa tct tct gtg ttc cgc atc gac cac 528
Leu Val Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His
165 170 175
tat ttg ggc aag gaa aca gtt caa aac atc ctg gct ctg cgt ttt gct 576
Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala
180 185 190
aac cag ctg ttt gag cca ctg tgg aac tcc aac tac gtt gac cac gtc 624
Asn Gln Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val
195 200 205
cag atc acc atg act gaa gat att ggc ttg ggt gga cgt gct ggt tac 672
Gln Ile Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr
210 215 220
tac gac ggc atc ggc gca gcc cgc gac gtc atc cag aac cac ctg atc 720
Tyr Asp Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile
225 230 235 240
cag ctc ttg gct ctg gtt gcc atg gaa gaa cca att tct ttc gtg cca 768
Gln Leu Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro
245 250 255
gcg cag ctg cag gca gaa aag atc aag gtg ctc tct gcg aca aag ccg 816
Ala Gln Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro
260 265 270
tgc tac cca ttg gat aaa acc tcc gct cgt ggt cag tac gct gcc ggt 864
Cys Tyr Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly
275 280 285
tgg cag ggc tct gag tta gtc aag gga ctt cgc gaa gaa gat ggc ttc 912
Trp Gln Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe
290 295 300
aac cct gag tcc acc act gag act ttt gcg gct tgt acc tta gag atc 960
Asn Pro Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile
305 310 315 320
acg tct cgt cgc tgg gct ggt gtg ccg ttc tac ctg cgc acc ggt aag 1008
Thr Ser Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys
325 330 335
cgt ctt ggt cgc cgt gtt act gag att gcc gtg gtg ttt aaa gac gca 1056
Arg Leu Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala
340 345 350
cca cac cag cct ttc gac ggc gac atg act gta tcc ctt ggc caa aac 1104
Pro His Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn
355 360 365
gcc atc gtg att cgc gtg cag cct gat gaa ggt gtg ctc atc cgc ttc 1152
Ala Ile Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe
370 375 380
ggt tcc aag gtt cca ggt tct gcc atg gaa gtc cgt gac gtc aac atg 1200
Gly Ser Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met
385 390 395 400
gac ttc tcc tac tca gaa tcc ttc act gaa gaa tca cct gaa gca tac 1248
Asp Phe Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr
405 410 415
gag cgc ctc att ttg gat gcg ctg tta gat gaa tcc agc ctc ttc cct 1296
Glu Arg Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro
420 425 430
acc aac gag gaa gtg gaa ctg agc tgg aag att ctg gat cca att ctt 1344
Thr Asn Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu
435 440 445
gaa gca tgg gat gcc gat gga gaa cca gag gat tac cca gcg ggt acg 1392
Glu Ala Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr
450 455 460
tgg ggt cca aag agc gct gat gaa atg ctt tcc cgc aac ggt cac acc 1440
Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr
465 470 475 480
tgg cgc agg cca taa 1455
Trp Arg Arg Pro
<210>55
<211>484
<212>PRT
<213>Corynebacterium glutamicum
<400>55
Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu
1 5 10 15
Pro Ala Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe
20 25 30
Ser Leu Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu
35 40 45
Lys Tyr Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg
50 55 60
Glu Asn Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly
65 70 75 80
Asn Phe Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys
85 90 95
Arg Ile Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu
100 105 110
Ser Ile Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg
115 120 125
Ser Gly Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile
130 135 140
Glu Lys Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln
145 150 155 160
Leu Val Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His
165 170 175
Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala
180 185 190
Asn Gln Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val
195 200 205
Gln Ile Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr
210 215 220
Tyr Asp Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile
225 230 235 240
Gln Leu Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro
245 250 255
Ala Gln Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro
260 265 270
Cys Tyr Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly
275 280 285
Trp Gln Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe
290 295 300
Asn Pro Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile
305 310 315 320
Thr Ser Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys
325 330 335
Arg Leu Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala
340 345 350
Pro His Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn
355 360 365
Ala Ile Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe
370 375 380
Gly Ser Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met
385 390 395 400
Asp Phe Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr
405 410 415
Glu Arg Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro
420 425 430
Thr Asn Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu
435 440 445
Glu Ala Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr
450 455 460
Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr
465 470 475 480
Trp Arg Arg Pro
<210>56
<211>29
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfRBS1
<400>56
atgtcgacaa gaaaggatcg tgacactac 29
<210>57
<211>25
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfRBS2
<400>57
atgtcgaccc cccgcatcgc tggcc 25
<210>58
<211>28
<212>DNA
<213>Artificial Sequence
<220>
<223>Primer zwfRBSE
<400>58
atgtcgacat cgctttcgga gtcagtga 28
<210>59
<211>1732
<212>DNA
<213>Artificial Sequence
<220>
<223>PCR-Product zwfL
<220>
<221>CDS
<222>(34)..(1575)
<223>zwf-allele zwfL
<400>59
atgtcgacaa gaaaggatcg tgacactacc atc gtg agc aca aac acg acc ccc 54
Met Ser Thr Asn Thr Thr Pro
1 5
tcc agc tgg aca aac cca ctg cgc gac ccg cag gat aaa cga ctc ccc 102
Ser Ser Trp Thr Asn Pro Leu Arg Asp Pro Gln Asp Lys Arg Leu Pro
10 15 20
cgc atc gct ggc cct tcc ggc atg gtg atc ttc ggt gtc act ggc gac 150
Arg Ile Ala Gly Pro Ser Gly Met Val Ile Phe Gly Val Thr Gly Asp
25 30 35
ttg gct cga aag aag ctg ctc ccc gcc att tat gat cta gca aac cgc 198
Leu Ala Arg Lys Lys Leu Leu Pro Ala Ile Tyr Asp Leu Ala Asn Arg
40 45 50 55
gga ttg ctg ccc cca gga ttc tcg ttg gta ggt tac ggc cgc cgc gaa 246
Gly Leu Leu Pro Pro Gly Phe Ser Leu Val Gly Tyr Gly Arg Arg Glu
60 65 70
tgg tcc aaa gaa gac ttt gaa aaa tac gta cgc gat gcc gca agt gct 294
Trp Ser Lys Glu Asp Phe Glu Lys Tyr Val Arg Asp Ala Ala Ser Ala
75 80 85
ggt gct cgt acg gaa ttc cgt gaa aat gtt tgg gag cgc ctc gcc gag 342
Gly Ala Arg Thr Glu Phe Arg Glu Asn Val Trp Glu Arg Leu Ala Glu
90 95 100
ggt atg gaa ttt gtt cgc ggc aac ttt gat gat gat gca gct ttc gac 390
Gly Met Glu Phe Val Arg Gly Asn Phe Asp Asp Asp Ala Ala Phe Asp
105 110 115
aac ctc gct gca aca ctc aag cgc atc gac aaa acc cgc ggc acc gcc 438
Asn Leu Ala Ala Thr Leu Lys Arg Ile Asp Lys Thr Arg Gly Thr Ala
120 125 130 135
ggc aac tgg gct tac tac ctg tcc att cca cca gat tcc ttc aca gcg 486
Gly Asn Trp Ala Tyr Tyr Leu Ser Ile Pro Pro Asp Ser Phe Thr Ala
140 145 150
gtc tgc cac cag ctg gag cgt tcc ggc atg gct gaa tcc acc gaa gaa 534
Val Cys His Gln Leu Glu Arg Ser Gly Met Ala Glu Ser Thr Glu Glu
155 160 165
gca tgg cgc cgc gtg atc atc gag aag cct ttc ggc cac aac ctc gaa 582
Ala Trp Arg Arg Val Ile Ile Glu Lys Pro Phe Gly His Asn Leu Glu
170 175 180
tcc gca cac gag ctc aac cag ctg gtc aac gca gtc ttc cca gaa tct 630
Ser Ala His Glu Leu Asn Gln Leu Val Asn Ala Val Pne Pro Glu Ser
185 190 195
tct gtg ttc cgc atc gac cac tat ttg ggc aag gaa aca gtt caa aac 678
Ser Val Phe Arg Ile Asp His Tyr Leu Gly Lys Glu Thr Val Gln Asn
200 205 210 215
atc ctg gct ctg cgt ttt gct aac cag ctg ttt gag cca ctg tgg aac 726
Ile Leu Ala Leu Arg Phe Ala Asn Gln Leu Phe Glu Pro Leu Trp Asn
220 225 230
tcc aac tac gtt gac cac gtc cag atc acc atg act gaa gat att ggc 774
Ser Asn Tyr Val Asp His Val Gln Ile Thr Met Thr Glu Asp Ile Gly
235 240 245
ttg ggt gga cgt gct ggt tac tac gac ggc atc ggc gca gcc cgc gac 822
Leu Gly Gly Arg Ala Gly Tyr Tyr Asp Gly Ile Gly Ala Ala Arg Asp
250 255 260
gtc atc cag aac cac ctg atc cag ctc ttg gct ctg gtt gcc atg gaa 870
Val Ile Gln Asn His Leu Ile Gln Leu Leu Ala Leu Val Ala Met Glu
265 270 275
gaa cca att tct ttc gtg cca gcg cag ctg cag gca gaa aag atc aag 918
Glu Pro Ile Ser Phe Val Pro Ala Gln Leu Gln Ala Glu Lys Ile Lys
280 285 290 295
gtg ctc tct gcg aca aag ccg tgc tac cca ttg gat aaa acc tcc gct 966
Val Leu Ser Ala Thr Lys Pro Cys Tyr Pro Leu Asp Lys Thr Ser Ala
300 305 310
cgt ggt cag tac gct gcc ggt tgg cag ggc tct gag tta gtc aag gga 1014
Arg Gly Gln Tyr Ala Ala Gly Trp Gln Gly Ser Glu Leu Val Lys Gly
315 320 325
ctt cgc gaa gaa gat ggc ttc aac cct gag tcc acc act gag act ttt 1062
Leu Arg Glu Glu Asp Gly Phe Asn Pro Glu Ser Thr Thr Glu Thr Phe
330 335 340
gcg gct tgt acc tta gag atc acg tct cgt cgc tgg gct ggt gtg ccg 1110
Ala Ala Cys Thr Leu Glu Ile Thr Ser Arg Arg Trp Ala Gly Val Pro
345 350 355
ttc tac ctg cgc acc ggt aag cgt ctt ggt cgc cgt gtt act gag att 1158
Phe Tyr Leu Arg Thr Gly Lys Arg Leu Gly Arg Arg Val Thr Glu Ile
360 365 370 375
gcc gtg gtg ttt aaa gac gca cca cac cag cct ttc gac ggc gac atg 1206
Ala Val Val Phe Lys Asp Ala Pro His Gln Pro Phe Asp Gly Asp Met
380 385 390
act gta tcc ctt ggc caa aac gcc atc gtg att cgc gtg cag cct gat 1254
Thr Val Ser Leu Gly Gln Asn Ala Ile Val Ile Arg Val Gln Pro Asp
395 400 405
gaa ggt gtg ctc atc cgc ttc ggt tcc aag gtt cca ggt tct gcc atg 1302
Glu Gly Val Leu Ile Arg Phe Gly Ser Lys Val Pro Gly Ser Ala Met
410 415 420
gaa gtc cgt gac gtc aac atg gac ttc tcc tac tca gaa tcc ttc act 1350
Glu Val Arg Asp Val Asn Met Asp Phe Ser Tyr Ser Glu Ser Phe Thr
425 430 435
gaa gaa tca cct gaa gca tac gag cgc ctc att ttg gat gcg ctg tta 1398
Glu Glu Ser Pro Glu Ala Tyr Glu Arg Leu Ile Leu Asp Ala Leu Leu
440 445 450 455
gat gaa tcc agc ctc ttc cct acc aac gag gaa gtg gaa ctg agc tgg 1446
Asp Glu Ser Ser Leu Phe Pro Thr Asn Glu Glu Val Glu Leu Ser Trp
460 465 470
aag att ctg gat cca att ctt gaa gca tgg gat gcc gat gga gaa cca 1494
Lys Ile Leu Asp Pro Ile Leu Glu Ala Trp Asp Ala Asp Gly Glu Pro
475 480 485
gag gat tac cca gcg ggt acg tgg ggt cca aag agc gct gat gaa atg 1542
Glu Asp Tyr Pro Ala Gly Thr Trp Gly Pro Lys Ser Ala Asp Glu Met
490 495 500
ctt tcc cgc aac ggt cac acc tgg cgc agg cca taatttaggg gcaaaaaatg 1595
Leu Ser Arg Asn Gly His Thr Trp Arg Arg Pro
505 510
atctttgaac ttccggatac caccacccag caaatttcca agaccctaac tcgactgcgt 1655
gaatcgggca cccaggtcac caccggccga gtgctcaccc tcatcgtggt cactgactcc 1715
gaaagcgatg tcgacat 1732
<210>60
<211>514
<212>PRT
<213>Artificial Sequence
<220>
<223>PCR-Product zwfL
<400>60
Met Ser Thr Asn Thr Thr Pro Ser Ser Trp Thr Asn Pro Leu Arg Asp
1 5 10 15
Pro Gln Asp Lys Arg Leu Pro Arg Ile Ala Gly Pro Ser Gly Met Val
20 25 30
Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala
35 40 45
Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu
50 55 60
Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr
65 70 75 80
Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn
85 90 95
Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe
100 105 110
Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile
115 120 125
Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile
130 135 140
Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly
145 150 155 160
Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys
165 170 175
Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val
180 185 190
Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu
195 200 205
Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln
210 215 220
Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile
225 230 235 240
Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp
245 250 255
Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu
260 265 270
Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln
275 280 285
Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr
290 295 300
Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln
305 310 315 320
Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro
325 330 335
Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser
340 345 350
Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu
355 360 365
Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala Pro His
370 375 380
Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile
385 390 395 400
Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser
405 410 415
Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met Asp Phe
420 425 430
Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg
435 440 445
Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn
450 455 460
Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala
465 470 475 480
Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly
485 490 495
Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg
500 505 510
Arg Pro
<210>61
<211>1642
<212>DNA
<213>Artificial Sequence
<220>
<223>PCR-Product zwfS
<220>
<221>CDS
<222>(34)..(1485)
<223>zwf-allele zwfS
<400>61
atgtcgaccc cccgcatcgc tggcccttcc ggc atg gtg atc ttc ggt gtc act 54
Met Val Ile Phe Gly Val Thr
1 5
ggc gac ttg gct cga aag aag ctg ctc ccc gcc att tat gat cta gca 102
Gly Asp Leu Ala Arg Lys Lys Leu Leu Pro Ala Ile Tyr Asp Leu Ala
10 15 20
aac cgc gga ttg ctg ccc cca gga ttc tcg ttg gta ggt tac ggc cgc 150
Asn Arg Gly Leu Leu Pro Pro Gly Phe Ser Leu Val Gly Tyr Gly Arg
25 30 35
cgc gaa tgg tcc aaa gaa gac ttt gaa aaa tac gta cgc gat gcc gca 198
Arg Glu Trp Ser Lys Glu Asp Phe Glu Lys Tyr Val Arg Asp Ala Ala
40 45 50 55
agt gct ggt gct cgt acg gaa ttc cgt gaa aat gtt tgg gag cgc ctc 246
Ser Ala Gly Ala Arg Thr Glu Phe Arg Glu Asn Val Trp Glu Arg Leu
60 65 70
gcc gag ggt atg gaa ttt gtt cgc ggc aac ttt gat gat gat gca gct 294
Ala Glu Gly Met Glu Phe Val Arg Gly Asn Phe Asp Asp Asp Ala Ala
75 80 85
ttc gac aac ctc gct gca aca ctc aag cgc atc gac aaa acc cgc ggc 342
Phe Asp Asn Leu Ala Ala Thr Leu Lys Arg Ile Asp Lys Thr Arg Gly
90 95 100
acc gcc ggc aac tgg gct tac tac ctg tcc att cca cca gat tcc ttc 390
Thr Ala Gly Asn Trp Ala Tyr Tyr Leu Ser Ile Pro Pro Asp Ser Phe
105 110 115
aca gcg gtc tgc cac cag ctg gag cgt tcc ggc atg gct gaa tcc acc 438
Thr Ala Val Cys His Gln Leu Glu Arg Ser Gly Met Ala Glu Ser Thr
120 125 130 135
gaa gaa gca tgg cgc cgc gtg atc atc gag aag cct ttc ggc cac aac 486
Glu Glu Ala Trp Arg Arg Val Ile Ile Glu Lys Pro Phe Gly His Asn
140 145 150
ctc gaa tcc gca cac gag ctc aac cag ctg gtc aac gca gtc ttc cca 534
Leu Glu Ser Ala His Glu Leu Asn Gln Leu Val Asn Ala Val Phe Pro
155 160 165
gaa tct tct gtg ttc cgc atc gac cac tat ttg ggc aag gaa aca gtt 582
Glu Ser Ser Val Phe Arg Ile Asp His Tyr Leu Gly Lys Glu Thr Val
170 175 180
caa aac atc ctg gct ctg cgt ttt gct aac cag ctg ttt gag cca ctg 630
Gln Asn Ile Leu Ala Leu Arg Phe Ala Asn Gln Leu Phe Glu Pro Leu
185 190 195
tgg aac tcc aac tac gtt gac cac gtc cag atc acc atg act gaa gat 678
Trp Asn Ser Asn Tyr Val Asp His Val Gln Ile Thr Met Thr Glu Asp
200 205 210 215
att ggc ttg ggt gga cgt gct ggt tac tac gac ggc atc ggc gca gcc 726
Ile Gly Leu Gly Gly Arg Ala Gly Tyr Tyr Asp Gly Ile Gly Ala Ala
220 225 230
cgc gac gtc atc cag aac cac ctg atc cag ctc ttg gct ctg gtt gcc 774
Arg Asp Val Ile Gln Asn His Leu Ile Gln Leu Leu Ala Leu Val Ala
235 240 245
atg gaa gaa cca att tct ttc gtg cca gcg cag ctg cag gca gaa aag 822
Met Glu Glu Pro Ile Ser Phe Val Pro Ala Gln Leu Gln Ala Glu Lys
250 255 260
atc aag gtg ctc tct gcg aca aag ccg tgc tac cca ttg gat aaa acc 870
Ile Lys Val Leu Ser Ala Thr Lys Pro Cys Tyr Pro Leu Asp Lys Thr
265 270 275
tcc gct cgt ggt cag tac gct gcc ggt tgg cag ggc tct gag tta gtc 918
Ser Ala Arg Gly Gln Tyr Ala Ala Gly Trp Gln Gly Ser Glu Leu Val
280 285 290 295
aag gga ctt cgc gaa gaa gat ggc ttc aac cct gag tcc acc act gag 966
Lys Gly Leu Arg Glu Glu Asp Gly Phe Asn Pro Glu Ser Thr Thr Glu
300 305 310
act ttt gcg gct tgt acc tta gag atc acg tct cgt cgc tgg gct ggt 1014
Thr Phe Ala Ala Cys Thr Leu Glu Ile Thr Ser Arg Arg Trp Ala Gly
315 320 325
gtg ccg ttc tac ctg cgc acc ggt aag cgt ctt ggt cgc cgt gtt act 1062
Val Pro Phe Tyr Leu Arg Thr Gly Lys Arg Leu Gly Arg Arg Val Thr
330 335 340
gag att gcc gtg gtg ttt aaa gac gca cca cac cag cct ttc gac ggc 1110
Glu Ile Ala Val Val Phe Lys Asp Ala Pro His Gln Pro Phe Asp Gly
345 350 355
gac atg act gta tcc ctt ggc caa aac gcc atc gtg att cgc gtg cag 1158
Asp Met Thr Val Ser Leu Gly Gln Asn Ala Ile Val Ile Arg Val Gln
360 365 370 375
cct gat gaa ggt gtg ctc atc cgc ttc ggt tcc aag gtt cca ggt tct 1206
Pro Asp Glu Gly Val Leu Ile Arg Phe Gly Ser Lys Val Pro Gly Ser
380 385 390
gcc atg gaa gtc cgt gac gtc aac atg gac ttc tcc tac tca gaa tcc 1254
Ala Met Glu Val Arg Asp Val Asn Met Asp Phe Ser Tyr Ser Glu Ser
395 400 405
ttc act gaa gaa tca cct gaa gca tac gag cgc ctc att ttg gat gcg 1302
Phe Thr Glu Glu Ser Pro Glu Ala Tyr Glu Arg Leu Ile Leu Asp Ala
410 415 420
ctg tta gat gaa tcc agc ctc ttc cct acc aac gag gaa gtg gaa ctg 1350
Leu Leu Asp Glu Ser Ser Leu Phe Pro Thr Asn Glu Glu Val Glu Leu
425 430 435
agc tgg aag att ctg gat cca att ctt gaa gca tgg gat gcc gat gga 1398
Ser Trp Lys Ile Leu Asp Pro Ile Leu Glu Ala Trp Asp Ala Asp Gly
440 445 450 455
gaa cca gag gat tac cca gcg ggt acg tgg ggt cca aag agc gct gat 1446
Glu Pro Glu Asp Tyr Pro Ala Gly Thr Trp Gly Pro Lys Ser Ala Asp
460 465 470
gaa atg ctt tcc cgc aac ggt cac acc tgg cgc agg cca taatttaggg 1495
Glu Met Leu Ser Arg Asn Gly His Thr Trp Arg Arg Pro
475 480
gcaaaaaatg atctttgaac ttccggatac caccacccag caaatttcca agaccctaac 1555
tcgactgcgt gaatcgggca cccaggtcac caccggccga gtgctcaccc tcatcgtggt 1615
cactgactcc gaaagcgatg tcgacat 1642
<210>62
<21l>484
<212>PRT
<213>Artificial Sequence
<220>
<223>PCR-Product zwfS
<400>62
Met Val Ile Phe Gly Val Thr Gly Asp Leu Ala Arg Lys Lys Leu Leu
1 5 10 15
Pro Ala Ile Tyr Asp Leu Ala Asn Arg Gly Leu Leu Pro Pro Gly Phe
20 25 30
Ser Leu Val Gly Tyr Gly Arg Arg Glu Trp Ser Lys Glu Asp Phe Glu
35 40 45
Lys Tyr Val Arg Asp Ala Ala Ser Ala Gly Ala Arg Thr Glu Phe Arg
50 55 60
Glu Asn Val Trp Glu Arg Leu Ala Glu Gly Met Glu Phe Val Arg Gly
65 70 75 80
Asn Phe Asp Asp Asp Ala Ala Phe Asp Asn Leu Ala Ala Thr Leu Lys
85 90 95
Arg Ile Asp Lys Thr Arg Gly Thr Ala Gly Asn Trp Ala Tyr Tyr Leu
100 105 110
Ser Ile Pro Pro Asp Ser Phe Thr Ala Val Cys His Gln Leu Glu Arg
115 120 125
Ser Gly Met Ala Glu Ser Thr Glu Glu Ala Trp Arg Arg Val Ile Ile
130 135 140
Glu Lys Pro Phe Gly His Asn Leu Glu Ser Ala His Glu Leu Asn Gln
145 150 155 160
Leu Val Asn Ala Val Phe Pro Glu Ser Ser Val Phe Arg Ile Asp His
165 170 175
Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Ala Leu Arg Phe Ala
180 185 190
Asn Gln Leu Phe Glu Pro Leu Trp Asn Ser Asn Tyr Val Asp His Val
195 200 205
Gln Ile Thr Met Thr Glu Asp Ile Gly Leu Gly Gly Arg Ala Gly Tyr
210 215 220
Tyr Asp Gly Ile Gly Ala Ala Arg Asp Val Ile Gln Asn His Leu Ile
225 230 235 240
Gln Leu Leu Ala Leu Val Ala Met Glu Glu Pro Ile Ser Phe Val Pro
245 250 255
Ala Gln Leu Gln Ala Glu Lys Ile Lys Val Leu Ser Ala Thr Lys Pro
260 265 270
Cys Tyr Pro Leu Asp Lys Thr Ser Ala Arg Gly Gln Tyr Ala Ala Gly
275 280 285
Trp Gln Gly Ser Glu Leu Val Lys Gly Leu Arg Glu Glu Asp Gly Phe
290 295 300
Asn Pro Glu Ser Thr Thr Glu Thr Phe Ala Ala Cys Thr Leu Glu Ile
305 310 315 320
Thr Ser Arg Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly Lys
325 330 335
Arg Leu Gly Arg Arg Val Thr Glu Ile Ala Val Val Phe Lys Asp Ala
340 345 350
Pro His Gln Pro Phe Asp Gly Asp Met Thr Val Ser Leu Gly Gln Asn
355 360 365
Ala Ile Val Ile Arg Val Gln Pro Asp Glu Gly Val Leu Ile Arg Phe
370 375 380
Gly Ser Lys Val Pro Gly Ser Ala Met Glu Val Arg Asp Val Asn Met
385 390 395 400
Asp Phe Ser Tyr Ser Glu Ser Phe Thr Glu Glu Ser Pro Glu Ala Tyr
405 410 415
Glu Arg Leu Ile Leu Asp Ala Leu Leu Asp Glu Ser Ser Leu Phe Pro
420 425 430
Thr Asn Glu Glu Val Glu Leu Ser Trp Lys Ile Leu Asp Pro Ile Leu
435 440 445
Glu Ala Trp Asp Ala Asp Gly Glu Pro Glu Asp Tyr Pro Ala Gly Thr
450 455 460
Trp Gly Pro Lys Ser Ala Asp Glu Met Leu Ser Arg Asn Gly His Thr
465 470 475 480
Trp Arg Arg Pro
<210>63
<211>18
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(18)
<223>Primer GATC-R1_neu-29234
<400>63
ggaacacaga agattctg 18
<210>64
<211>18
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(18)
<223>Primer GATC-F1_neu-29233
<400>64
ccgtgttact gagattgc 18
<210>65
<211>20
<212>DNA
<213>Corynebacterium glutamicum
<220>
<221>misc_feature
<222>(1)..(18)
<223>Primer GATC-zwf_int-27334
<400>65
tggctgaatc caccgaagaa 20

Claims (46)

1. isolating polynucleotide, its coding comprises the protein of the aminoacid sequence of SEQ ID NO:10, is wherein replaced by other gal4 amino acid at one or more amino acid of 369-373 position and/or at one or more amino acid of 241-246 position at least.
2. the isolating polynucleotide of claim 1, its coding comprises the protein of the aminoacid sequence of SEQ ID NO:10, wherein is selected from least as one or more amino acid of next group to be replaced by any other gal4 amino acid: the 370th L-arginine, the 372nd L-Xie Ansuan, the 242nd L-methionine(Met), the 243rd L-L-Ala, the 244th L-L-glutamic acid and the 245th L-aspartic acid.
3. the isolating polynucleotide of claim 1, its coding is selected from a kind of protein as next group: comprise the protein of the aminoacid sequence of SEQ ID NO:10, wherein at least the 243 L-L-Ala is replaced by the L-Threonine; The protein that comprises the aminoacid sequence of SEQ ID NO:10, wherein at least the 242 L-methionine(Met) is replaced by the L-leucine; The protein that comprises the aminoacid sequence of SEQ ID NO:10, wherein at least the 242 L-methionine(Met) is replaced by the L-Serine; The protein that comprises the aminoacid sequence of SEQ ID NO:10, wherein at least the 245 L-aspartic acid is replaced by the L-Serine; The protein that comprises the aminoacid sequence of SEQ IDNO:10, wherein at least the 370 L-arginine is by L-methionine(Met) displacement and comprise the protein of the aminoacid sequence of SEQ ID NO:10, and wherein at least the 372 L-Xie Ansuan is replaced by the L-L-Ala.
4. the isolating polynucleotide of claim 1, its coding comprise at least the 241-246 amino acids and the protein of the 1-10 amino acids of the aminoacid sequence of SEQ ID NO:10 randomly of the aminoacid sequence of SEQ ID NO:22.
5. the isolating polynucleotide of claim 3, it comprises the 308-1849 position Nucleotide of the nucleotide sequence of SEQ ID NO:21.
6. the isolating polynucleotide of claim 1, its coding comprise at least the 237-250 amino acids of one of SEQ ID NO:33, aminoacid sequence of 35 and 37 and the protein of the 1-10 amino acids of the aminoacid sequence of SEQ IDNO:10 randomly.
7. the isolating polynucleotide of claim 3, it comprises the 1-1542 position Nucleotide of one of SEQ ID NO:32, nucleotide sequence of 34 and 36.
8. each isolating polynucleotide of claim 1-7, wherein said encoded protein matter has the glucose-6-phosphate dehydrogenase (G6PD) activity.
9. the isolating polynucleotide of claim 8, wherein said glucose-6-phosphate dehydrogenase (G6PD) activity has resistance to the restraining effect of NADPH.
10. claim 5 or 6 isolating polynucleotide, it has the active proteinic fragment of glucose-6-phosphate dehydrogenase (G6PD) by SEQ ID NO:21, one of 33,35 and 37 sequence or its coding and forms.
11. the isolating polynucleotide of claim 10, its coding have the active protein of glucose-6-phosphate dehydrogenase (G6PD), wherein said protein comprises the 1-10 amino acids of the N-terminal sequence of SEQ ID NO:10 at least.
12. one kind comprises each the bacterium of isolating polynucleotide of claim 1-11.
13. the bacterium of claim 12, wherein said isolating polynucleotide are included in the karyomit(e) of described bacterium.
14. the bacterium of claim 13, wherein said bacterium are bar shaped bacteria or intestinal bacteria.
15. one kind comprises each the carrier of isolating polynucleotide of claim 1-11.
16. the carrier of claim 15, wherein said carrier is a plasmid.
17. isolated bacterial, it comprises the proteinic polynucleotide that coding comprises the aminoacid sequence of SEQ ID NO:10, and wherein one or more amino acid of one or more amino acid of at least the 369-373 position and/or 241-246 position is by other gal4 amino acid displacement.
18. the isolated bacterial of claim 17, it comprises the proteinic polynucleotide of aminoacid sequence that coding comprises SEQ ID NO:10, wherein is selected from as one or more amino acid at least of next group by any other gal4 amino acid displacement: the 370th L-arginine, the 372nd L-Xie Ansuan, the 242nd L-methionine(Met), the 243rd L-L-Ala, the 244th L-L-glutamic acid and the 245th L-aspartic acid.
19. the isolated bacterial of claim 17, it comprises the proteinic polynucleotide that coding comprises the aminoacid sequence of SEQ ID NO:10, and wherein at least the 243 L-L-Ala is replaced by the L-Threonine.
20. the isolated bacterial of claim 17, it comprises a kind of proteinic polynucleotide of coding, and wherein said protein comprises the 241-246 amino acids of SEQ ID NO:22 aminoacid sequence at least.
21. the isolated bacterial of claim 17, it comprises a kind of proteinic polynucleotide of coding, and described protein comprises the 1-10 amino acids of SEQ ID NO:10 aminoacid sequence and the 241-246 amino acids of SEQ ID NO:22 aminoacid sequence at least.
22. the isolated bacterial of claim 17, it comprises a kind of polynucleotide, and described polynucleotide comprise the 308-1849 position Nucleotide of SEQ ID NO:22 nucleotide sequence.
23. the isolated bacterial of claim 17, it comprises the proteinic polynucleotide that coding comprises the aminoacid sequence of SEQ ID NO:10, and wherein at least the 245 L-aspartic acid is replaced by the L-Serine.
24. the isolated bacterial of claim 17, it comprises a kind of proteinic polynucleotide of coding, and wherein said protein comprises the 237-250 amino acids of one of SEQ ID NO:33,35 and 37 aminoacid sequences at least.
25. the isolated bacterial of claim 17, it comprises a kind of proteinic polynucleotide of coding, and described protein comprises the 237-250 amino acids of one of the 1-10 amino acids of SEQ ID NO:10 aminoacid sequence at least and SEQ ID NO:33,35 and 37 aminoacid sequences.
26. the isolated bacterial of claim 17, it comprises a kind of polynucleotide, and described polynucleotide comprise the 1-1542 position Nucleotide of one of SEQ ID NO:32,34 and 36 sequences.
27. each isolated bacterial of claim 17-26, it comprises a kind of proteinic polynucleotide of coding, and wherein said protein has the glucose-6-phosphate dehydrogenase (G6PD) activity.
28. the isolated bacterial of claim 27, wherein said glucose-6-phosphate dehydrogenase (G6PD) activity has resistance to the restraining effect of NADPH.
29. each isolated bacterial of claim 17-26, it comprises a kind of proteinic polynucleotide of coding, is removed during wherein said proteinic N-terminal methionine(Met) is processed in described bacterium.
30. each isolated bacterial of claim 17-26, wherein said bacterium is a bar shaped bacteria.
31. Corynebacterium glutamicum DM658, preserving number are DSM7431.
32. Corynebacterium glutamicum DSM5715zwf2_A243T, preserving number are DSM15237.
33. Corynebacterium glutamicum DSM1697_zwfD245S, preserving number are DSM15632.
34. one kind prepares amino acid whose method by the isolating bar shaped bacteria that ferments, and comprising:
A) the amino acid whose bacterium of fermentative production, this bacterium comprises the proteinic polynucleotide that coding comprises the aminoacid sequence of SEQ ID NO:10, and wherein one or more amino acid of one or more amino acid of at least the 369-373 position and/or 241-246 position is by other gal4 amino acid displacement; With
B) in the enrichment medium or the amino acid in the bacterial cell.
35. the method for claim 28, wherein said bacterium comprise the proteinic polynucleotide that coding comprises the aminoacid sequence of SEQ IDNO:22.
36. the method for claim 34, wherein said bacterium comprise the proteinic polynucleotide that coding comprises one of SEQ IDNO:33,35 and 37 aminoacid sequences.
37. one kind prepares amino acid whose method by fermentation of coryneform bacteria, comprises the steps:
A) the amino acid whose bacterium of fermentative production, this bacterium comprises coding and comprises aminoacid sequence proteinic isolating of SEQ ID NO:10 or the polynucleotide of reorganization, and wherein one or more amino acid of one or more amino acid of at least the 369-373 position and/or 241-246 position is by other gal4 amino acid displacement; And
B) in the enrichment medium or the amino acid in the bacterial cell.
38. the method for claim 32, wherein said isolating polynucleotide encoding comprises the protein of the aminoacid sequence of SEQID NO:22.
39. the method for claim 37, wherein said isolating polynucleotide encoding comprise the protein of one of SEQID NO:33,35 and 37 aminoacid sequences.
40. one kind prepares amino acid whose method by the isolating bar shaped bacteria that ferments, and comprising:
A) fermentation comprises a kind of amino acid whose bacterium of production of polynucleotide, and described polynucleotide encoding has the glucose-6-phosphate dehydrogenase (G6PD) activity, comprise the 241-246 amino acids of SEQ ID NO:22 at least or SEQ ID NO:33, the protein of 35 and 37 237-250 amino acids;
B) in the enrichment medium or the amino acid in the bacterial cell.
41. one kind prepares amino acid whose method by fermentation of coryneform bacteria, comprises the steps:
A) fermentation comprises a kind of amino acid whose bacterium of production of polynucleotide of separation or reorganization, and described polynucleotide encoding has the glucose-6-phosphate dehydrogenase (G6PD) activity, comprise the 241-246 amino acids of SEQ IDNO:22 at least or SEQ ID NO:33, the protein of 35 and 37 237-250 amino acids; With
B) in the enrichment medium or the amino acid in the bacterial cell.
42. each method of claim 34-41, wherein said amino acid is selected from L-Methionin, L-Threonine, L-Isoleucine and L-tryptophane.
43. each method of claim 34-42, it comprises and separates described L-amino acid.
44. each method of claim 40-41, wherein said protein further comprises the 1-10 amino acids of the N-terminal sequence of SEQ ID NO:10.
45. each method of claim 34-41 wherein is lowered extraly or is closed by activity in the born of the same parents of the pyruvic oxidase of poxB genes encoding.
46. each method of claim 34-41 wherein is lowered extraly or is closed by activity in the born of the same parents of the G-6-P isomerase of pgi genes encoding.
CNA200480041034XA 2004-01-29 2004-01-29 Process for the preparation of l-amino acids with amplification of the zwf gene Pending CN1906291A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/000775 WO2005075631A1 (en) 2004-01-29 2004-01-29 Process for the preparation of l-amino acids with amplification of the zwf gene

Publications (1)

Publication Number Publication Date
CN1906291A true CN1906291A (en) 2007-01-31

Family

ID=34833862

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200480041034XA Pending CN1906291A (en) 2004-01-29 2004-01-29 Process for the preparation of l-amino acids with amplification of the zwf gene

Country Status (4)

Country Link
EP (1) EP1709166A1 (en)
CN (1) CN1906291A (en)
BR (1) BRPI0418482A (en)
WO (1) WO2005075631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789341A (en) * 2014-01-23 2014-05-14 河北工业大学 Construction method of saccharomyces cerevisiae strain with high yield of isobutanol
CN109423504A (en) * 2017-08-24 2019-03-05 廊坊梅花生物技术开发有限公司 Produce the bacterial strain and purposes of L-Trp
CN114181288A (en) * 2022-02-17 2022-03-15 北京中科伊品生物科技有限公司 Process for producing L-valine, gene used therefor and protein encoded by the gene

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155505A1 (en) * 2001-11-13 2003-05-22 Basf Ag Genes that code for glucose-6-phosphate dehydrogenase proteins
DE102006026328A1 (en) * 2006-06-02 2008-01-03 Evonik Degussa Gmbh Process for the preparation of a feed additive containing L-lysine
CN113637699B (en) * 2020-04-27 2023-05-30 中国科学院分子植物科学卓越创新中心 Method for improving production capacity of amino acid producing bacteria
CN114107141B (en) * 2021-08-19 2022-07-12 中国科学院天津工业生物技术研究所 Corynebacterium glutamicum capable of producing L-proline in high yield and method for producing L-proline in high yield

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060014259A9 (en) * 1999-07-09 2006-01-19 Kevin Burke Process for the preparation of L-amino acids with amplification of the zwf gene
US20030175911A1 (en) * 2000-03-20 2003-09-18 Stephen Hans Process for the preparation of L-amino acids with amplification of the zwf gene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789341A (en) * 2014-01-23 2014-05-14 河北工业大学 Construction method of saccharomyces cerevisiae strain with high yield of isobutanol
CN103789341B (en) * 2014-01-23 2016-05-18 河北工业大学 A kind of construction method of saccharomyces cerevisiae isobutanol superior strain
CN109423504A (en) * 2017-08-24 2019-03-05 廊坊梅花生物技术开发有限公司 Produce the bacterial strain and purposes of L-Trp
CN114181288A (en) * 2022-02-17 2022-03-15 北京中科伊品生物科技有限公司 Process for producing L-valine, gene used therefor and protein encoded by the gene

Also Published As

Publication number Publication date
WO2005075631A1 (en) 2005-08-18
BRPI0418482A (en) 2007-06-19
EP1709166A1 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
CN100336901C (en) Coryneform bacteria which produce chemical compounds II
CN1161470C (en) Method for producing L-lysine
CN1210396C (en) L-amino acid-producing bacteria and process for producing L-amino acid
CN1177926C (en) Method for stick bacteria capable of producing L-glutaminic acid and producing 1-glutaminc acid
CN1159443C (en) Method for producing L-lysine
CN1246468C (en) Fermentation process for the preparation of L-amino acids using strains of the family enterobacteriaceae
CN1206342C (en) Corgnebaclerium for producing L-lysine and method for preparing L-lysine
CN1165619C (en) Process for producing L-lysine
CN1211399C (en) Method for producing L-leucine and related DNA and microorganism
CN1246470C (en) Process for preparing L-amino acids using strains of enterobascteriaceae family which contain an atteuated aspa gene
CN1539015A (en) Production of L-lysine by genetically modified corynebacterium glutamicum strains
CN101080489A (en) Alleles of the gnd-gene from coryneform bacteria
CN1748031A (en) Bacteria and process for producing chemical compounds by said bacteria
CN1231574C (en) Corynebaclerium for producing L-lysine and method for producing L-lysine
CN1934265A (en) Process for the production of l-amino acids using coryneform bacteria
CN1079836C (en) Process for producing L-lysine and L-glutamic acid by fermentation
CN1618970A (en) Method for producing L-amino acid using methylotroph
CN1639350A (en) Amino acid-producing bacteria and a process for preparing L-amino acids
CN1230525C (en) Process for producing L-amino acid and novel gene
CN1550546A (en) Method for producing L-arginine or L-lysine by fermentation
CN1289676C (en) Process for fermentative preparation of 1-amino acids with amplification of ZWF gene
CN1298019A (en) New nucleotide sequence of coded gene sucC and sucD
CN1898259A (en) Gene variants coding for proteins from the metabolic pathway of fine chemicals
CN1231591C (en) Process for the production of L-amino acids by fermentation using coryneform bacteria
CN1578834A (en) Genes coding for metabolic pathway proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication