CN1888384A - Well drilling slope level azimuth angle error compensating method based on neural network - Google Patents

Well drilling slope level azimuth angle error compensating method based on neural network Download PDF

Info

Publication number
CN1888384A
CN1888384A CN 200610088866 CN200610088866A CN1888384A CN 1888384 A CN1888384 A CN 1888384A CN 200610088866 CN200610088866 CN 200610088866 CN 200610088866 A CN200610088866 A CN 200610088866A CN 1888384 A CN1888384 A CN 1888384A
Authority
CN
China
Prior art keywords
neural network
angle
azimuth angle
azimuth
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200610088866
Other languages
Chinese (zh)
Inventor
郦吉臣
房建成
张延顺
李红
王群威
俞文伯
刘百奇
杨胜
李金涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 200610088866 priority Critical patent/CN1888384A/en
Publication of CN1888384A publication Critical patent/CN1888384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

一种基于神经网络的钻井测斜仪方位角误差补偿方法,包括有如下四个基本步骤:1)根据钻井测斜方位角输出信号的特点确定神经网络的结构模型;2)获取神经网络的训练样本;3)进行神经网络训练,得到最优的神经网络模型参数;4)根据倾斜角、初步计算的方位角、工具面角来计算真实方位角。神经网络具有分布并行处理,非线性映射,鲁棒容错和泛化能力强等特性,使得它在智能信息处理方面有广泛的应用。训练后的神经网络能很高精度地逼近钻井测斜仪系统输入与输出间的非线性关系且具有很强的泛化能力,能在整个测量范围内补偿钻井测斜仪的系统误差。本发明对计算的方位角进行较正,克服了不同方位角、倾斜角、工具面角带来的系统测量误差,输出准确的方位角。本发明的方法也可用于其它传感器输出信号的建模与补偿。

A method for compensating the azimuth angle error of a drilling inclinometer based on a neural network includes the following four basic steps: 1) determining the structural model of the neural network according to the characteristics of the output signal of the azimuth angle of the drilling inclinometer; 2) obtaining the neural network training 3) Perform neural network training to obtain optimal neural network model parameters; 4) Calculate the real azimuth angle according to the inclination angle, the initially calculated azimuth angle, and the tool face angle. Neural network has the characteristics of distributed parallel processing, nonlinear mapping, robust fault tolerance and strong generalization ability, which makes it widely used in intelligent information processing. The trained neural network can approach the nonlinear relationship between the input and output of the drilling inclinometer system with high precision and has strong generalization ability, and can compensate the systematic error of the drilling inclinometer in the whole measurement range. The invention corrects the calculated azimuth angle, overcomes the system measurement errors caused by different azimuth angles, inclination angles and tool face angles, and outputs accurate azimuth angles. The method of the invention can also be used for modeling and compensation of output signals of other sensors.

Description

一种基于神经网络的钻井测斜仪方位角误差补偿方法A Neural Network Based Azimuth Error Compensation Method for Drilling Inclinometer

技术领域technical field

本发明涉及一种钻井测斜仪,特别涉及一种钻井测斜仪系统误差补偿方法,属于惯性技术应用领域,适用于定向钻井、井迹测量等。The invention relates to a drilling inclinometer, in particular to a system error compensation method of the drilling inclinometer, which belongs to the application field of inertia technology and is suitable for directional drilling, well trace measurement and the like.

背景技术Background technique

陀螺测斜仪就是能在油田生产中起着开窗侧钻、测量井迹的一种仪器,该仪器可在井下通过陀螺测量出待开窗的方位,这样可在旧井、老井下按实际油层方向实际开窗,使旧井、老井得到二次开发,不但节约了开支,而且也大大节省了人力物力。当前应用较为广泛的钻井测斜仪由一个双自由度的挠性陀螺和两个石英加速度计所组成,采用陀螺罗盘的工作方式,由加速度计的输出计算出井孔倾斜角和工具面角,在此基础上,再根据陀螺的输出可计算出方位角。在组成钻井测斜仪前对陀螺和加速度计都进行建模、测试与标定工作,提高惯性器件的测量精度从而提高钻井测斜仪输出倾斜角、工具面角和方位角的精度。在实际应用时为工程实现方便采用了较简单的惯性器件模型,忽略了惯性器件输出误差中的高阶项,在测斜仪安装时会引入安装误差,这些都会引起测斜仪输出倾斜角、工具面角和方位角的系统误差。特别是在倾斜角、方位角和工具面角变化时,方位角的计算误差是不同的。当测斜仪的机械安装与电气调试完成后此部分系统误差基本确定,且重复性较好。为补偿这部分系统误差,目前方法通常采用查表法,即事先通过试验建立测斜仪系统误差表,把实际输出数据与表中数据比对,得到此时输出数据对应的系统误差,然后把查表得到的系统误差补偿掉。目前,测斜仪系统误差表建立的方法是:通过工装夹具把陀螺测斜仪固定在位置转台上,把工具面角固定。在某一倾斜角下不变的情况,转动方位角,根据精度要求在360度范围内均匀选取一些方位角做为测试点,得出不同测试点的方位角误差,在不同倾斜角下重复进行以上试验。最终建立起测斜仪倾斜角、方位角与方位角误差的对应关系,形成表格。建立误差表格时是选取一些离散的测试点,实际补偿时采用插值的方法。测试点选取过多会增加建表的时间,测试点选取太少又会影响补偿的精度。目前采用的查表法忽略了工具面角对方位角的影响,如果把测斜仪倾斜角、方位角与工具面角同时变化的情况下方位角的输出建立表格,一是建立表格的工作量将会很大,二是在三变量的情况下插值算法的实现有一定困难,补偿精度不高。The gyro inclinometer is an instrument that can be used for sidetracking and measuring well tracks in oilfield production. The window is actually opened in the direction of the oil layer, so that the old wells and old wells can be redeveloped, which not only saves expenses, but also greatly saves manpower and material resources. The currently widely used drilling inclinometer is composed of a two-degree-of-freedom flexible gyroscope and two quartz accelerometers. It adopts the working mode of the gyro compass and calculates the borehole inclination angle and tool face angle from the output of the accelerometer. On this basis, the azimuth angle can be calculated according to the output of the gyroscope. Before forming the drilling inclinometer, the gyroscope and accelerometer are modeled, tested and calibrated to improve the measurement accuracy of the inertial device and thus improve the accuracy of the output inclination angle, tool face angle and azimuth angle of the drilling inclinometer. In practical application, a simpler inertial device model is used for the convenience of engineering realization, ignoring the high-order items in the output error of the inertial device, and the installation error will be introduced when the inclinometer is installed, which will cause the output inclination angle of the inclinometer, Systematic error of tool face angle and azimuth. Especially when the inclination angle, azimuth angle and tool face angle change, the calculation error of the azimuth angle is different. After the mechanical installation and electrical debugging of the inclinometer are completed, the system error of this part is basically determined, and the repeatability is good. In order to compensate this part of the system error, the current method usually adopts the look-up table method, that is, the inclinometer system error table is established through experiments in advance, the actual output data is compared with the data in the table, and the system error corresponding to the output data at this time is obtained, and then The system error obtained by looking up the table is compensated. At present, the method of establishing the error table of the inclinometer system is: fix the gyro inclinometer on the position turntable through the fixture, and fix the tool face angle. In the case of a certain inclination angle, rotate the azimuth angle, and select some azimuth angles evenly within 360 degrees as the test points according to the accuracy requirements, and obtain the azimuth error of different test points, and repeat it at different inclination angles. above test. Finally, the corresponding relationship between inclination angle, azimuth angle and azimuth angle error of the inclinometer is established to form a table. When establishing the error table, some discrete test points are selected, and the method of interpolation is used for actual compensation. Selecting too many test points will increase the time to build the table, and selecting too few test points will affect the accuracy of compensation. The table look-up method currently used ignores the impact of the tool face angle on the azimuth angle. If the inclination angle, azimuth angle and tool face angle of the inclinometer change simultaneously to create a table for the output of the azimuth angle, the first is the workload of creating the table. It will be very large. Second, it is difficult to realize the interpolation algorithm in the case of three variables, and the compensation accuracy is not high.

发明内容Contents of the invention

本发明的目的:克服现有技术的不足,提出一种基于神经网络的钻井测斜仪方位角误差补偿方法,在整个测量范围内实现对钻井测斜仪方位角误差的补偿,输出准确和高精度的钻井测斜仪方位角。Purpose of the present invention: overcome the deficiencies in the prior art, propose a kind of compensation method of azimuth error of drilling inclinometer based on neural network, realize the compensation of azimuth error of drilling inclinometer in the whole measuring range, output is accurate and high Accuracy of drilling inclinometer azimuth.

本发明的技术解决方案是:一种基于神经网络的钻井测斜仪方位角误差补偿方法,其特征在于:利用神经网络的非线性映射功能,选择三输入单输出的深层前向神经网络,建立钻井测斜仪输出的倾斜角、工具面角和初步计算的方位角同真实方位角间的映射关系,主要实现步骤有:The technical solution of the present invention is: a method for compensating the azimuth angle error of a drilling inclinometer based on a neural network, which is characterized in that: using the nonlinear mapping function of the neural network, a deep forward neural network with three inputs and one output is selected to establish The mapping relationship between the inclination angle, tool face angle and preliminary calculated azimuth angle output by the drilling inclinometer and the real azimuth angle, the main realization steps are as follows:

(1)根据钻井测斜仪方位角输出信号的特点确定神经网络的结构模型,建立神经网络模型时以钻井测斜仪输出的倾斜角、工具面角和初步计算的方位角做为神经网络的输入量,真实方位角为输出量来构建三输入单输出的神经网络系统,即选择由输入层、隐层1、隐层2和输出层组成的四层结构的前向神经网络;(1) Determine the structural model of the neural network according to the characteristics of the azimuth output signal of the drilling inclinometer. When establishing the neural network model, the inclination angle, the tool face angle and the initially calculated azimuth angle output by the drilling inclinometer are used as the neural network model. The input volume, the real azimuth angle is the output volume to construct a three-input single-output neural network system, that is, select a forward neural network with a four-layer structure composed of the input layer, hidden layer 1, hidden layer 2 and output layer;

神经网络理论证明可以用一个三层前向网络来逼近任意一个非线性映射,但对于比较复杂的函数用深层前向网络时会取得更好的效果。因此,本发明选择四层(即输入层、隐层1、隐层2、输出层)结构的前向神经网络。对于钻井测斜仪来说,钻井测斜仪的倾斜角、方位角和工具面角对方位角的计算都有影响,会产生方位角计算误差。因此,选择初步计算的的倾斜角、方位角和工具面角作为神经网络的输入,修正补偿后的方位角作为神经网络的输出,即神经网络输入层节点数为3,输出层节点数为1,隐层1节点数可选为4~8,隐层2节点数可选为4~8。The neural network theory proves that a three-layer forward network can be used to approximate any nonlinear mapping, but for more complex functions, a deep forward network will achieve better results. Therefore, the present invention selects a forward neural network with four layers (ie input layer, hidden layer 1, hidden layer 2, output layer) structure. For the drilling inclinometer, the inclination angle, azimuth angle and tool face angle of the drilling inclinometer all have an influence on the calculation of the azimuth angle, which will cause an error in the calculation of the azimuth angle. Therefore, the initially calculated inclination angle, azimuth angle, and tool face angle are selected as the input of the neural network, and the corrected and compensated azimuth angle is used as the output of the neural network, that is, the number of nodes in the input layer of the neural network is 3, and the number of nodes in the output layer is 1 , the number of nodes in hidden layer 1 can be selected from 4 to 8, and the number of nodes in hidden layer 2 can be selected from 4 to 8.

(2)获取神经网络的训练样本,模拟钻井测斜仪的倾斜角、工具面角和方位角是在三轴位置转台上进行的,通过三轴位置转台绕其三个转动轴的转动来模拟钻井测斜仪的倾斜角、工具面角和方位角,同时采集测斜仪输出的原始数据并计算出倾斜角和初步计算方位角,形成神经网络的学习样本。(2) Obtain the training samples of the neural network to simulate the inclination angle, tool face angle and azimuth angle of the drilling inclinometer on the three-axis position turntable, and simulate it by rotating the three-axis position turntable around its three rotation axes The inclination angle, tool face angle and azimuth angle of the drilling inclinometer, and the raw data output by the inclinometer are collected at the same time, and the inclination angle and the initial calculation azimuth angle are calculated to form the learning samples of the neural network.

采用人工神经网络解决实际问题时,主要的工作是收集样本数据。本发明中学习样本的获取是在三轴位置转台上进行的。通过三轴位置转台绕其三个转动轴的转动来模拟钻井测斜仪的倾斜角、工具面角和方位角。测试点选取规则为:When using artificial neural networks to solve practical problems, the main work is to collect sample data. In the present invention, the acquisition of learning samples is carried out on a three-axis position turntable. The inclination angle, tool face angle and azimuth angle of the drilling inclinometer are simulated by the rotation of the three-axis position turntable around its three rotation axes. The test point selection rules are:

倾斜角测试点的选取规则是在0~75度范围内选取,在接近于零时取样点密,角度接近75度时时测试取样点间隔增大,如在10度以内取的间隔小,大于10度以10度的间隔选取;方位角的测试点的选取原则是在0~360度范围内均匀选取,取样间隔根据精度和实验时间的要求选取;工具面角的测试点的选取原则是在0~360度范围内均匀选取,取样间隔根据精度和实验时间的要求选取。The selection rule of the inclination angle test point is to select within the range of 0 to 75 degrees. When the angle is close to zero, the sampling points are dense, and when the angle is close to 75 degrees, the interval of test sampling points is increased. For example, the interval taken within 10 degrees is small, greater than 10 degree is selected at an interval of 10 degrees; the selection principle of the test point for the azimuth angle is uniformly selected within the range of 0-360 degrees, and the sampling interval is selected according to the requirements of accuracy and experiment time; the selection principle for the test point of the tool face angle is 0 It is uniformly selected in the range of ~360 degrees, and the sampling interval is selected according to the requirements of precision and experiment time.

(3)进行神经网络训练,得到最优的神经网络模型参数。(3) Carry out neural network training to obtain optimal neural network model parameters.

采用步骤(1)得到的神经网络模型和步骤(2)得到的学习样本训练神经网络并得到最优权值。Using the neural network model obtained in step (1) and the learning samples obtained in step (2) to train the neural network and obtain optimal weights.

(4)根据倾斜角、初步计算的方位角、工具面角来计算真实方位角。(4) Calculate the real azimuth angle according to the inclination angle, the azimuth angle calculated initially, and the tool face angle.

本发明的原理是:本发明针对采用陀螺罗经法的钻井测斜仪,惯性测量部分由一个双轴动力调谐速率陀螺、两个石英加速度计和相应的电子线路组成。其中陀螺用来敏感地球角速度分量、加速度用来敏感重力分量。通过陀螺和加速度的输出值来计算钻井测斜仪也就是井管的方位角、倾斜角和工具面角。在表示井管的方位角、倾斜角和工具面角时采用地理坐标系XYZ(东北天)和测斜仪坐标系xyz,其中x轴、y轴是两轴陀螺和两轴加速度计的敏感轴。测斜仪坐标系xyz同测量井管的姿态是一致的,因此xyz坐标系相对XYZ坐标系的姿态便是井管的姿态,由此得到井管的轨迹。xyz坐标系相对XYZ坐标系的关系如图3所示,XYZ是东北天地理坐标系坐标轴,xyz测斜仪坐标系坐标轴。x1y1z1和x2y2z2是坐标系转换过程中的坐标系。图3中A为方位角、I为倾斜角、T为工具面角,A&、I&、T&分别为相应的角速度矢量。坐标系旋转的顺序为:先按Z轴顺时针旋转到坐标系x1y1z1,,旋转角为方位角A,然后按坐标系x1y1z1的y1轴旋转倾斜角I到坐标系x2y2z2,最后按x2y2z2坐标系的z2轴旋转测斜仪到坐标系xyzThe principle of the present invention is: the present invention is aimed at the drilling inclinometer adopting the gyrocompass method, and the inertial measurement part is composed of a dual-axis power tuning rate gyroscope, two quartz accelerometers and corresponding electronic circuits. Among them, the gyro is used to sense the earth's angular velocity component, and the acceleration is used to sense the gravity component. The azimuth, inclination and tool face angle of the drilling inclinometer, that is, the well pipe, are calculated by the output values of the gyro and acceleration. The geographic coordinate system XYZ (northeast sky) and the inclinometer coordinate system xyz are used to represent the azimuth, inclination angle and tool face angle of the well pipe, where the x-axis and y-axis are the sensitive axes of the two-axis gyroscope and the two-axis accelerometer . The coordinate system xyz of the inclinometer is consistent with the attitude of the measured well pipe, so the attitude of the xyz coordinate system relative to the XYZ coordinate system is the attitude of the well pipe, and thus the trajectory of the well pipe is obtained. The relationship between the xyz coordinate system and the XYZ coordinate system is shown in Figure 3. XYZ is the coordinate axis of the Northeast Heaven geographic coordinate system, and the xyz inclinometer coordinate system coordinate axis. x 1 y 1 z 1 and x 2 y 2 z 2 are coordinate systems in the process of coordinate system conversion. In Fig. 3, A is the azimuth angle, I is the inclination angle, T is the tool face angle, and A & , I & , T & are the corresponding angular velocity vectors respectively. The sequence of coordinate system rotation is: first rotate clockwise to the coordinate system x 1 y 1 z 1 according to the Z axis, the rotation angle is the azimuth A, and then rotate the inclination angle I according to the y 1 axis of the coordinate system x 1 y 1 z 1 to the coordinate system x 2 y 2 z 2 and finally rotate the inclinometer by the z 2 axis of the x 2 y 2 z 2 coordinate system to the coordinate system xyz

地球自转角速度和重力加速度在东北天坐标系下的投影分量为:The projection components of the earth's rotation angular velocity and gravitational acceleration in the northeast sky coordinate system are:

           ω=[0 Ωcosφ Ωsinφ]T              (1)ω=[0 Ωcosφ Ωsinφ] T (1)

                 a=[0 0 g]T                     (2)a=[0 0 g] T (2)

式中:In the formula:

Ω是地球自转角速度,φ是测量点的纬度,g是测量点的重力加速度。Ω is the angular velocity of the earth's rotation, φ is the latitude of the measuring point, and g is the gravitational acceleration of the measuring point.

经过坐标系旋转后,在测斜仪坐标系的角速度和加速度分量为:After the coordinate system is rotated, the angular velocity and acceleration components in the inclinometer coordinate system are:

ωω xx ωω ythe y ωω zz == ΩΩ coscos φφ (( sinsin AA coscos II coscos TT ++ coscos AA sinsin TT )) -- ΩΩ sinsin φφ sinsin II coscos TT ΩΩ coscos φφ (( -- sinsin AA coscos II sinsin TT ++ coscos AA coscos TT )) ++ ΩΩ sinsin φφ sinsin II sinsin TT ΩΩ coscos φφ sinsin AA sinsin II ++ ΩΩ sinsin φφ coscos II TT -- -- -- (( 33 ))

aa xx aa ythe y aa zz == gg sinsin II coscos TT -- gg sinsin II sinsin TT -- gg coscos II TT -- -- -- (( 44 ))

由(1)、(2)、(3)、(4)式可算得工具面角T、倾斜角I、方位角A为:From the equations (1), (2), (3) and (4), the tool face angle T, inclination angle I and azimuth angle A can be calculated as:

TT == -- arctanarctan aa ythe y aa xx -- -- -- (( 55 ))

II == arcsinarcsin aa 22 xx ++ aa 22 ythe y gg -- -- -- (( 66 ))

AA == arctanarctan ωω xx coscos TT -- ωω ythe y sinsin TT ++ ΩΩ sinsin φφ sinsin II (( ωω xx sinsin TT ++ ωω ythe y coscos TT )) coscos II -- -- -- (( 77 ))

以目前加速度的精度,由其计算的工具面角T、倾斜角I的误差比较小。方位角的计算式中包括了工具面角T、倾斜角I和在x轴y轴上的角速度分量,方位角的计算误差是它们共同作用的结果。当陀螺有误差和系统有安装误差时,不同姿态下引起测斜仪方位角计算误差不同,且有很好的重复性。因此,事先通过试验找到其误差的模型,并对测斜仪的方位角进行补偿,可以提高方位角的精度。从式(7)可见当倾斜角I接近于90度附近时系统计算误差会比较大,因此在采用陀螺罗盘方式时对倾斜角I进行限制,一般取倾斜角I小于75度。With the accuracy of the current acceleration, the errors of the tool face angle T and the inclination angle I calculated by it are relatively small. The calculation formula of the azimuth angle includes the tool face angle T, the inclination angle I and the angular velocity components on the x-axis and the y-axis. The calculation error of the azimuth angle is the result of their joint action. When the gyro has errors and the system has installation errors, the azimuth angle calculation errors of the inclinometer are different under different attitudes, and have good repeatability. Therefore, it is possible to improve the accuracy of the azimuth angle by finding the error model through experiments in advance and compensating the azimuth angle of the inclinometer. It can be seen from formula (7) that when the inclination angle I is close to 90 degrees, the calculation error of the system will be relatively large. Therefore, when the gyro compass method is used, the inclination angle I is limited. Generally, the inclination angle I is less than 75 degrees.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)本发明克服了建表法中把倾斜角、初步计算的方位角、工具面角做为输入变量时插值算法精度下降的缺点,实现了钻井测斜仪倾斜角、初步计算的方位角、工具面角到方位角的映射,达到对计算方位角误差补偿的效果。(1) The present invention overcomes the shortcoming that the accuracy of the interpolation algorithm decreases when the inclination angle, the initially calculated azimuth, and the tool face angle are used as input variables in the table-building method, and realizes the inclination angle of the drilling inclinometer, and the azimuth angle of the initial calculation. , The mapping from the tool face angle to the azimuth angle achieves the effect of compensating the azimuth angle error.

(2)倾斜角测试点的分段选择方法充分反映了钻井测斜仪方位角计算误差的特点,形成的学习样本更有针对性,即加快了神经网络的训练速度,又提高了其计算精度。在达到相同精度的情况下,应用神经网络方法可比查表法采取更少的测试点数,从而提高了效率。(2) The subsection selection method of the inclination angle test point fully reflects the characteristics of the calculation error of the azimuth angle of the drilling inclinometer, and the learning samples formed are more targeted, which not only speeds up the training speed of the neural network, but also improves its calculation accuracy . In the case of achieving the same precision, the application of neural network method can take fewer test points than the look-up table method, thus improving the efficiency.

附图说明Description of drawings

图1为本发明的神经网络的示意图;Fig. 1 is the schematic diagram of neural network of the present invention;

图2为本发明获取神经网络学习样本的流程图;Fig. 2 is the flow chart that the present invention obtains neural network learning sample;

图3为本发明的测斜仪坐标系与地理系间的位置关系图。Fig. 3 is a position relation diagram between the coordinate system of the inclinometer of the present invention and the geographic system.

具体实施方式:Detailed ways:

针对以上提出的技术方案,采取以下几个步骤实现本发明:For the technical scheme proposed above, take the following steps to realize the present invention:

(1)建立神经网络模型(1) Establish a neural network model

本发明取钻井测斜仪的倾斜角、工具面角和初步计算的方位角作为神经网络的输入变量,真实方位角作为神经网络的输出变量,选取四层(即输入层、隐层1、隐层2、输出层)结构的前向神经网络。神经网络输入层节点数为3,输出层节点数为1。考虑到钻井测斜仪的倾斜与方位对方位角的影响比较复杂,隐层1节点数选为8,隐层2节点数选为8,神经网络结构如图1所示,其中X1、X2、X3是神经网络的输入变量分别对应钻井测斜仪输出的倾斜角、工具面角和初步计算的方位角,Y对应校正后的方位角,是神经网络的输出变量。The present invention takes the inclination angle of the drilling inclinometer, the tool face angle and the azimuth angle of preliminary calculation as the input variable of the neural network, and the real azimuth angle is used as the output variable of the neural network, and four layers (i.e. input layer, hidden layer 1, hidden layer 1, hidden layer 1) are selected. Layer 2, output layer) structure of the forward neural network. The number of nodes in the input layer of the neural network is 3, and the number of nodes in the output layer is 1. Considering that the influence of inclination and azimuth of the drilling inclinometer on the azimuth is more complicated, the number of hidden layer 1 nodes is selected as 8, and the number of hidden layer 2 nodes is selected as 8. The neural network structure is shown in Figure 1, where X1, X2, X3 is the input variable of the neural network corresponding to the inclination angle, the tool face angle and the initially calculated azimuth angle output by the drilling inclinometer, and Y corresponds to the corrected azimuth angle, which is the output variable of the neural network.

(2)确定钻井测斜仪的倾斜角和方位角的测试点(2) Determine the test points of the inclination angle and azimuth angle of the drilling inclinometer

钻井测斜仪测试点的选取即要覆盖钻井测斜仪的测量范围又要反映出钻井测斜仪输出数据的特点。倾斜角的测试点在0~75度范围内取样,取样点为3度、5度、10度、15度、25度、35度、45度、55度、65度、75度。方位角的测试点在0~360度范围内均匀取样,取样间隔视精度要求而定。由于神经网络具有泛化能力,取样间隔可比查表法放宽,本发明中取样间隔为30度。工具面角的测试点在0~360度范围内均匀取样,取样间隔为30度。The selection of the test points of the drilling inclinometer should not only cover the measuring range of the drilling inclinometer, but also reflect the characteristics of the output data of the drilling inclinometer. The test points of the inclination angle are sampled within the range of 0-75 degrees, and the sampling points are 3 degrees, 5 degrees, 10 degrees, 15 degrees, 25 degrees, 35 degrees, 45 degrees, 55 degrees, 65 degrees, and 75 degrees. The azimuth test points are uniformly sampled within the range of 0 to 360 degrees, and the sampling interval depends on the accuracy requirements. Because the neural network has the generalization ability, the sampling interval can be relaxed compared with the look-up table method, and the sampling interval is 30 degrees in the present invention. The test points of the tool face angle are uniformly sampled within the range of 0 to 360 degrees, and the sampling interval is 30 degrees.

(3)获取神经网络学习样本(3) Obtain neural network learning samples

在(2)所确定测试点处采集钻井测斜仪输出的倾斜角、初步计算方位角和工具面角作为学习样本的输入值,三轴位置转台模拟的方位角作为学习样本的期望输出值。具体操作是先把倾斜角、方位角、工具面角转到零位,然后顺序转动倾斜角、方位角、工具面角,转遍全部测试点,同时采集测斜仪输出数据,形成覆盖整个测量范围的神经网络的学习样本。学习样本获取流程如图2所示,测试点个数Ni(i=1,2,3)分别表示倾斜角、方位角、工具面角的测试点个数,可根据系统精度要求确定。At the test point determined in (2), the inclination angle output by the drilling inclinometer, the preliminary calculation azimuth angle and the tool face angle are collected as the input value of the learning sample, and the azimuth angle simulated by the three-axis position turntable is used as the expected output value of the learning sample. The specific operation is to first turn the inclination angle, azimuth angle, and tool face angle to zero, and then turn the inclination angle, azimuth angle, and tool face angle in sequence, and turn all the test points, and collect the output data of the inclinometer at the same time to form a measurement that covers the entire measurement. Range of learning samples for the neural network. The learning sample acquisition process is shown in Figure 2. The number of test points N i (i=1, 2, 3) respectively represents the number of test points for inclination angle, azimuth angle, and tool face angle, which can be determined according to the system accuracy requirements.

(4)进行神经网络训练,得到最优的神经网络模型参数(4) Perform neural network training to obtain optimal neural network model parameters

在前面(1)、(2)、(3)步确定的神经网络模型和学习样本的基础上,采用BP算法对网络进行训练。在训练过程中,首先给出一组模型参数,以此参数计算神经网络的输出,再对神经网络的输出和真实值进行比较得到计算误差。然后根据误差,按BP算法修改模型参数,使网络朝向能正确响应的方向不断发展,直到网络的输出与期望的输出之差在允许的范围之内。此时的模型参数便是最优的网络模型参数,也就是神经元间的连接权值及神经元的阈值。权值修改过程如下。On the basis of the neural network model and learning samples determined in the previous steps (1), (2), and (3), the network is trained using the BP algorithm. In the training process, first a set of model parameters is given, and the output of the neural network is calculated with these parameters, and then the output of the neural network is compared with the real value to obtain the calculation error. Then according to the error, modify the model parameters according to the BP algorithm, so that the network will continue to develop in the direction of correct response until the difference between the output of the network and the expected output is within the allowable range. The model parameters at this time are the optimal network model parameters, that is, the connection weights between neurons and the thresholds of neurons. The weight modification process is as follows.

定义误差函数为 e p = 1 2 ( t p - y p ) 2 , 其中tp是神经网络的期望输出值,yp是神经网络计算值。按 ΔW = - η δe p δW 去修改神经元间连接权值,最终达到ep最小,确定此时参数为最优参数。Define the error function as e p = 1 2 ( t p - the y p ) 2 , Among them, t p is the expected output value of the neural network, and y p is the calculated value of the neural network. according to ΔW = - η δ e p δW To modify the connection weights between neurons, and finally reach the minimum e p , and determine that the parameter is the optimal parameter at this time.

(5)根据倾斜角、工具面角和初步计算的方位角来计算真实方位角由 A = arctan ω x cos T - ω y sin T + Ω sin φ sin I ( ω x sin T + ω y cos T ) cos I 式可见,方位角的计算式中包括了工具面角T、倾斜角I和在x轴y轴上的角速度分量,方位角的计算误差是它们共同作用的结果。当陀螺有误差和系统有安装误差时,不同姿态下引起测斜仪方位角计算误差不同,且有很好的重复性。(5) Calculate the true azimuth angle according to the inclination angle, the tool face angle and the initially calculated azimuth angle by A = arctan ω x cos T - ω the y sin T + Ω sin φ sin I ( ω x sin T + ω the y cos T ) cos I It can be seen from the formula that the calculation formula of the azimuth angle includes the tool face angle T, the inclination angle I and the angular velocity components on the x-axis and the y-axis, and the calculation error of the azimuth angle is the result of their joint action. When the gyro has errors and the system has installation errors, the azimuth angle calculation errors of the inclinometer are different under different attitudes, and have good repeatability.

在第(4)步中得到了最优参数,也就是建立了初步计算出的工具面角、倾斜角、方位角与真实方位角间的非线性映射关系,即向神经网络输入初步计算出的工具面角、倾斜角、方位角,神经网络便会输出真实方位角。In step (4), the optimal parameters are obtained, that is, the nonlinear mapping relationship between the initially calculated tool face angle, inclination angle, azimuth angle and the real azimuth angle is established, that is, the initially calculated Tool face angle, inclination angle, azimuth angle, the neural network will output the real azimuth angle.

在计算中,前一层神经元的输出作为下一层神经元的输入。设神经网络输入信号:初步计算出的工具面角、倾斜角、方位角分别为x1,x2,x3,输出信号为y。下面是由x1,x2,x3求出y的过程。In computation, the output of neurons in the previous layer serves as the input to the neurons in the next layer. Suppose the input signal of the neural network: the initially calculated tool face angle, inclination angle and azimuth angle are x 1 , x 2 , x 3 respectively, and the output signal is y. The following is the process of finding y from x 1 , x 2 , and x 3 .

第一隐层神经元输入为:The input of the first hidden layer neuron is:

II 11 ii == ΣΣ jj == 11 nno ww 11 ii ,, jj xx jj ++ θθ 11 jj (( ii == 1,21,2 ,, L mL m 11 )) -- -- -- (( 88 ))

上式中n是输入神经元的个数,在此n=3,m1是输入神经元的个数,在此m1=8,w1i,j为第一隐层神经元i与输入神经元间的连接权值,θ1j为第一隐层神经元的阈值。In the above formula, n is the number of input neurons, here n=3, m1 is the number of input neurons, here m1=8, w1 i, j is the distance between the first hidden layer neuron i and the input neuron The connection weight of , θ1 j is the threshold of the first hidden layer neuron.

第一隐层神经元输出为:The output of the neurons in the first hidden layer is:

                   O1i=f(I1i)                            (9)O1 i =f(I1 i ) (9)

第二隐层中共有m2个神经元,各神经元的输入是:There are m2 neurons in the second hidden layer, and the input of each neuron is:

II 22 ii == ΣΣ jj == 11 mm 11 ww 22 ii ,, jj xx jj ++ θθ 22 jj (( ii == 1,21,2 ,, L mL m 22 )) -- -- -- (( 1010 ))

上式中m2=8,w2i,j为第二隐层神经元与第一隐层神经元间的连接权值,θ2j为第二隐层神经元的阈值。In the above formula, m2=8, w2 i, j are the connection weights between the neurons of the second hidden layer and the neurons of the first hidden layer, and θ2 j is the threshold of the neurons of the second hidden layer.

第二隐层神经元输出为:The output of the neurons in the second hidden layer is:

                    O2i=f(I2i)                          (11)O2 i =f(I2 i ) (11)

取输出神经元的阈值为零,取线性函数为输出层神经元的激发函数,则输出神经元的输出(也就是整个网络的输出)为:Take the threshold value of the output neuron as zero, and take the linear function as the activation function of the neuron in the output layer, then the output of the output neuron (that is, the output of the entire network) is:

ythe y == ΣΣ ii == 11 mm 22 vv ii Oo 22 ii -- -- -- (( 1212 ))

上式中vi为输出神经元与第二隐层神经元的连接权值,由式(12)求出的y便是补偿后真实的方位角。In the above formula, v i is the connection weight between the output neuron and the second hidden layer neuron, and y calculated by formula (12) is the real azimuth angle after compensation.

Claims (3)

1、一种基于神经网络的钻井测斜仪方位角误差补偿方法,其特征在于:利用神经网络的非线性映射功能,选择三输入单输出的深层前向神经网络,建立钻井测斜仪输出的倾斜角、工具面角和初步计算的方位角同真实方位角间的映射关系,主要实现步骤有:1, a kind of drilling inclinometer azimuth error compensation method based on neural network, it is characterized in that: utilize the nonlinear mapping function of neural network, select the deep layer forward neural network of three input single output, set up the output of drilling inclinometer The mapping relationship between the inclination angle, the tool face angle and the initially calculated azimuth angle and the real azimuth angle, the main realization steps are as follows: (1)根据钻井测斜仪方位角输出信号的特点确定神经网络的结构模型,建立神经网络模型时以钻井测斜仪输出的倾斜角、工具面角和初步计算的方位角做为神经网络的输入量,真实方位角为输出量来构建三输入单输出的神经网络系统,即选择由输入层、隐层1、隐层2和输出层组成的四层结构的前向神经网络;(1) Determine the structural model of the neural network according to the characteristics of the azimuth output signal of the drilling inclinometer. When establishing the neural network model, the inclination angle, the tool face angle and the initially calculated azimuth angle output by the drilling inclinometer are used as the neural network model. The input volume, the real azimuth angle is the output volume to construct a three-input single-output neural network system, that is, select a forward neural network with a four-layer structure composed of the input layer, hidden layer 1, hidden layer 2 and output layer; (2)获取神经网络的训练样本,模拟钻井测斜仪的倾斜角、工具面角和方位角是在三轴位置转台上进行的,通过三轴位置转台绕其三个转动轴的转动来模拟钻井测斜仪的倾斜角、工具面角和方位角;(2) Obtain the training samples of the neural network to simulate the inclination angle, tool face angle and azimuth angle of the drilling inclinometer on the three-axis position turntable, and simulate it by rotating the three-axis position turntable around its three rotation axes The inclination angle, tool face angle and azimuth angle of the drilling inclinometer; (3)进行神经网络训练,得到最优的神经网络模型参数;(3) Neural network training is carried out to obtain optimal neural network model parameters; (4)根据倾斜角、初步计算的方位角、工具面角来计算真实方位角。(4) Calculate the real azimuth angle according to the inclination angle, the azimuth angle calculated initially, and the tool face angle. 2、根据权利要求1所述的一种基于神经网络的钻井测斜仪方位角误差补偿方法,其特征在于:所述步骤(1)中选择四层结构的前向神经网络的输入层节点为3,隐层1节点为4~8,隐层2节点为4~8,输出层节点为1。2, a kind of neural network-based drilling inclinometer azimuth error compensation method according to claim 1, is characterized in that: the input layer node of the forward neural network that selects four-layer structure in the described step (1) is 3. Nodes in the hidden layer 1 are 4 to 8, nodes in the hidden layer 2 are 4 to 8, and nodes in the output layer are 1. 3、根据权利要求1所述的一种基于神经网络的钻井测斜仪方位角误差补偿方法,其特征在于:所述步骤(2)中钻井测斜仪的倾斜角、工具面角和方位角测试点的选取规则为:倾斜角的测试点在0~75度范围内取样;方位角的测试点在0~360度范围内均匀取样;工具面角的测试点在0~360度范围内均匀取样。3. A method for compensating the azimuth angle error of the drilling inclinometer based on neural network according to claim 1, characterized in that: the inclination angle, the tool face angle and the azimuth angle of the drilling inclinometer in the step (2) The selection rules of the test points are: the test points of the inclination angle are sampled within the range of 0-75 degrees; the test points of the azimuth angle are sampled uniformly within the range of 0-360 degrees; sampling.
CN 200610088866 2006-07-21 2006-07-21 Well drilling slope level azimuth angle error compensating method based on neural network Pending CN1888384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610088866 CN1888384A (en) 2006-07-21 2006-07-21 Well drilling slope level azimuth angle error compensating method based on neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610088866 CN1888384A (en) 2006-07-21 2006-07-21 Well drilling slope level azimuth angle error compensating method based on neural network

Publications (1)

Publication Number Publication Date
CN1888384A true CN1888384A (en) 2007-01-03

Family

ID=37577672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610088866 Pending CN1888384A (en) 2006-07-21 2006-07-21 Well drilling slope level azimuth angle error compensating method based on neural network

Country Status (1)

Country Link
CN (1) CN1888384A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105126B (en) * 2007-08-03 2010-09-15 重庆邮电大学 Error Compensation Method for Azimuth Measurement While Drilling Based on Micro-quartz Angular Rate Sensor
CN101894296A (en) * 2010-07-05 2010-11-24 湖南大学 A Neural Network Method for Fault Diagnosis of Analog Circuits Based on Standard Deviation and Skewness
CN101435329B (en) * 2008-12-08 2012-05-23 北京航空航天大学 Error rate test system based on Bayes theorem
CN101265804B (en) * 2008-05-06 2012-07-04 上海神开石油化工装备股份有限公司 Well drilling high precision gradient meter sensor perpendicular installation error compensation process
CN104234696A (en) * 2014-08-22 2014-12-24 北京市普利门电子科技有限公司 Accurate calibration method for MWD (measurement while drilling) system and application of accurate calibration method
CN105443112A (en) * 2015-11-05 2016-03-30 中煤科工集团西安研究院有限公司 Whole-space error compensation method of mining inclinometer
CN107830857A (en) * 2017-10-23 2018-03-23 北京北科安地科技发展有限公司 A kind of method for determining linear object space posture
CN111980688A (en) * 2020-09-01 2020-11-24 中国石油集团渤海钻探工程有限公司 Integrated learning algorithm-based inclination angle prediction method
CN112284366A (en) * 2020-10-26 2021-01-29 中北大学 A Correction Method for Heading Angle Error of Polarized Light Compass Based on TG-LSTM Neural Network
CN113188570A (en) * 2021-04-27 2021-07-30 西南石油大学 Attitude error calibration method of inclinometer while drilling based on support vector classifier and K-proximity method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105126B (en) * 2007-08-03 2010-09-15 重庆邮电大学 Error Compensation Method for Azimuth Measurement While Drilling Based on Micro-quartz Angular Rate Sensor
CN101265804B (en) * 2008-05-06 2012-07-04 上海神开石油化工装备股份有限公司 Well drilling high precision gradient meter sensor perpendicular installation error compensation process
CN101435329B (en) * 2008-12-08 2012-05-23 北京航空航天大学 Error rate test system based on Bayes theorem
CN101894296A (en) * 2010-07-05 2010-11-24 湖南大学 A Neural Network Method for Fault Diagnosis of Analog Circuits Based on Standard Deviation and Skewness
CN101894296B (en) * 2010-07-05 2012-09-05 湖南大学 Method for realizing analogue circuit fault diagnosis based on standard deviation and skewness by neural network
CN104234696A (en) * 2014-08-22 2014-12-24 北京市普利门电子科技有限公司 Accurate calibration method for MWD (measurement while drilling) system and application of accurate calibration method
CN104234696B (en) * 2014-08-22 2017-01-11 北京市普利门电子科技有限公司 Accurate calibration method for MWD (measurement while drilling) system and application of accurate calibration method
CN105443112B (en) * 2015-11-05 2018-11-20 中煤科工集团西安研究院有限公司 The total space error compensating method of mining inclinometer
CN105443112A (en) * 2015-11-05 2016-03-30 中煤科工集团西安研究院有限公司 Whole-space error compensation method of mining inclinometer
CN107830857A (en) * 2017-10-23 2018-03-23 北京北科安地科技发展有限公司 A kind of method for determining linear object space posture
CN107830857B (en) * 2017-10-23 2020-01-14 北京北科安地科技发展有限公司 Method for determining space attitude of linear object
CN111980688A (en) * 2020-09-01 2020-11-24 中国石油集团渤海钻探工程有限公司 Integrated learning algorithm-based inclination angle prediction method
CN111980688B (en) * 2020-09-01 2021-11-23 中国石油集团渤海钻探工程有限公司 Integrated learning algorithm-based inclination angle prediction method
CN112284366A (en) * 2020-10-26 2021-01-29 中北大学 A Correction Method for Heading Angle Error of Polarized Light Compass Based on TG-LSTM Neural Network
CN112284366B (en) * 2020-10-26 2022-04-12 中北大学 A Correction Method for Heading Angle Error of Polarized Light Compass Based on TG-LSTM Neural Network
CN113188570A (en) * 2021-04-27 2021-07-30 西南石油大学 Attitude error calibration method of inclinometer while drilling based on support vector classifier and K-proximity method

Similar Documents

Publication Publication Date Title
CN1888384A (en) Well drilling slope level azimuth angle error compensating method based on neural network
CN109188026B (en) A deep learning method for automatic calibration of MEMS accelerometers
CN100541132C (en) Mooring fine alignment method for marine fiber optic gyro strapdown attitude system under large misalignment angle
CN101840529B (en) Optic fiber gyroscope random drift modeling method based on locally variable integrated neural network
CN105806363B (en) The underwater large misalignment angle alignment methods of SINS/DVL based on SRQKF
CN113847915B (en) A navigation method for strapdown inertial navigation/Doppler integrated navigation system
CN105136166B (en) A kind of SINS error model emulation mode of specified inertial navigation positional precision
CN113790737B (en) On-site rapid calibration method of array sensor
CN112181002B (en) Micro gyroscope dual-recursion disturbance fuzzy neural network fractional order sliding mode control method
CN108917788B (en) Method and system for testing dynamic precision of accelerometer of inertial platform system
CN1862229A (en) Open 100p optical fiber gyro output error compensating method based on nerve network
CN104049534A (en) Self-adaption iterative learning control method for micro-gyroscope
CN112378399A (en) Coal mine tunnel tunneling robot precise positioning and orientation method based on strapdown inertial navigation and digital total station
Lin et al. Research on the online initial value calibration method for the wheel force transducer
CN105973237B (en) Emulation dynamic trajectory based on practical flight data interpolating parses generation method
CN109974750A (en) A kind of ring laser Temperature Modeling and compensation method based on fuzzy logic system
CN115683167B (en) A dynamic solution and error compensation method for gyroscope under complex vibration
CN104697553A (en) Method for calibrating inner lever arm of accelerometer of fiber-optic gyroscope strapdown inertial navigation system
CN110487300A (en) Vibration absorber influences test method to the performance of inertial navigation system
CN111024128A (en) Method for transmitting and aligning stable state of optical axis of airborne photoelectric pod
CN107255483A (en) A kind of pyramid Inertial Measurement Unit and three axis accelerometer calibration factor self-calibrating method
CN1945210A (en) Method for online real time clearing strapdown inertial navigation system gyroscope constant value drift
CN117686000A (en) Six-position calibration method based on double-shaft turntable
CN112683304A (en) MEMS inclinometer calibration compensation method
CN1687709A (en) System for measuring motion state of automobile

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication