CN1885767A - 安全高效的椭圆曲线加解密参数 - Google Patents

安全高效的椭圆曲线加解密参数 Download PDF

Info

Publication number
CN1885767A
CN1885767A CN 200610101868 CN200610101868A CN1885767A CN 1885767 A CN1885767 A CN 1885767A CN 200610101868 CN200610101868 CN 200610101868 CN 200610101868 A CN200610101868 A CN 200610101868A CN 1885767 A CN1885767 A CN 1885767A
Authority
CN
China
Prior art keywords
elliptic curve
prime
curve encryption
encryption
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200610101868
Other languages
English (en)
Inventor
陈建华
汪朝晖
胡进
胡志金
孙金龙
张家宏
阳凌怡
张丽娜
何德彪
汪玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING HUADA INFOSEC TECHNOLOGY Ltd
Original Assignee
BEIJING HUADA INFOSEC TECHNOLOGY Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING HUADA INFOSEC TECHNOLOGY Ltd filed Critical BEIJING HUADA INFOSEC TECHNOLOGY Ltd
Priority to CN 200610101868 priority Critical patent/CN1885767A/zh
Publication of CN1885767A publication Critical patent/CN1885767A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Storage Device Security (AREA)

Abstract

本发明提出一类ECC参数的选择方法及基于该方法的ECC参数,使得实现安全高效率的ECC软件和硬件更为可行。本发明的椭圆曲线加解密方法中加解密参数为:选择椭圆曲线加解密的基域为素域Fp,设素数p的长度为32m比特,其中m为大于1的任意正整数,p满足
Figure 200610101868.6_AB_0
,ki∈{-1,0,1}。此外,在素域Fp上的椭圆曲线具有Weierstrass方程:y2=x3+ax+b,a、b∈Fp,选择椭圆曲线方程参数a满足a≡-3mod p,任意选取整数b满足(4a3+27b2)mod p≠0,同时选取的b使得椭圆曲线的阶n为素数。本发明的素数均通过确定性素性检测。为保证椭圆曲线系统安全性,本发明选取的n和p通过MOV判断条件。

Description

安全高效的椭圆曲线加解密参数
技术领域
本发明涉及数据加解密,特别是利用椭圆曲线参数的特征提高公钥密码计算效率和安全性的方法。
背景技术
密码系统分对称密码系统和非对称密码系统。
对称密码也称传统密码算法,对称密码的加密密钥能够从解密密钥中推算出来,反之亦然。在大多数算法中,加密和解密使用的密钥是相同的。这类密码算法有时也称秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,协商一个密钥。对称密码的安全性依赖于密钥的秘密性,泄漏密钥就意味着任何掌握密钥的人都可以对消息进行加密和解密。一般对称密码的运算速度很快,但如何把密钥安全地分发给合法使用者却是一个问题。
在专利“密码设备和方法”(“CRYPTOGRAPHIC APPARATUSAND METHOD”,专利号:US4200770)中给出了一个可以在公开信道中交换密钥的方法,称为Diffie-Hellman密钥交换方法。该专利使得通信双方使用一个模幂函数协商和传递他们的秘密信息,攻击者要想获得传递的秘密信息,必须解决离散对数问题,而如果通信双方使用的参数足够大,则离散对数问题在计算上是不可解的。该专利奠定了公钥密码学的基本原理。
公钥密码,又称非对称密码,与只使用一个密钥的对称密码不同,它使用两个独立但又存在着某种数学联系的密钥:公钥和私钥。通信的各方保密各自的私钥,公开其公钥,发送者使用接收者的公钥加密,接收者使用只有自己知道的私钥解密。公钥密码还可以解决数字签名的问题,签名者使用只有自己知道的私钥对消息签名,验证者使用签名者的公钥可以验证签名的合法性。
专利“密码通信系统和方法”(“CRYPTOGRAPHICCOMMNICATION SYSTEM AND METHOD”,专利号:US4405829)提出了Rivest、Shamir和Adleman发明的一种公钥密码方法-RSA。RSA公钥密码方法的安全性基于大整数因子分解问题的难解性,伴随着应用对安全性要求的不断提高,RSA密钥的长度在不断增加。
椭圆曲线密码系统(Elliptic Curve Cryptosystems,简称ECC)自1985年由Neal Koblitz和Victor Miller提出以来,由于其相对于RSA的全方面的优势(更强的安全性、更高的实现效率、更省的实现代价),吸引了大批密码学工作者就其安全性和实现方法作了大量的研究,并已逐渐被国际各大标准组织采纳做为公钥密码标准(IEEE P1363、ANSI X9、ISO/IEC、和IETF等),成为主流应用的公钥密码之一。
ECC的安全性和实现性能,在很大程度上依赖于椭圆曲线参数的选取,包括基域的选取和基域上椭圆曲线方程的选取。
在ECC应用中,一般基域选择为二元扩域F2m或素域Fp(p为大于3的素数):当选择基域为F2m时,通过选择F2m中的模多项式为三项式或五项式以及用高斯正规基表示F2m中的元素等技术手段,可以很大程度上提高F2m上各种算术运算的性能,从而提高ECC的性能;当选择基域为Fp时,通过选择p为特殊的素数可以很大程度上提高Fp上各种算术运算的性能。
一般Fp上的椭圆曲线具有Weierstrass方程:y2=x3+ax+b,a、b∈Fp,选择特殊的a可以提高椭圆曲线点乘的运算效率。
椭圆曲线方程的选取决定了椭圆曲线的阶(即椭圆曲线上点的个数,记为n),在ECC应用中,出于安全性的考虑一般要求n含有大素数因子,最佳选择是当基域为Fp时,n本身就是大素数。
发明内容
本发明提出一类ECC参数的选择方法及基于该方法的ECC参数,使得实现安全高效率的ECC软件和硬件更为可行。
根据本发明的一个方面,提供一种椭圆曲线加解密方法,其中加解密参数为:选择椭圆曲线加解密的基域为素域Fp,设素数p的长度为32m比特,其中m为大于1的任意正整数,p满足 p = 2 32 m + Σ i = 0 m - 1 2 32 i k i , ki∈{-1,0,1}.
根据本发明的一个实施例,在素域fp上的椭圆曲线具有Weierstrass方程:y2=x3+ax+b,a、b∈Fp,选择椭圆曲线方程参数a满足a≡-3mod p,任意选取整数b满足(4a3+27b2)mod p≠0,同时选取的b使得椭圆曲线的阶n为素数。
具体实施方式
以下将对本发明进行详细说明
1、参数选择
根据本发明的椭圆曲线加解密方法,其中加解密参数选择为:选择椭圆曲线加解密的基域为素域Fp,设素p的长度为32m比特,其中m为大于1的任意正整数,p满足 p = 2 32 m + Σ i = 0 m - 1 2 32 i k i , ki∈{-1,0,1},p所具备的特点使得对p取模运算可以通过为数不多的加法和减法操作完成,从而可以设计高效的模乘软件和硬件实现算法。
在素域Fp上的椭圆曲线具有Weierstrass方程:y2=x3+ax+b,a、b∈Fp,为提高椭圆曲线点乘效率,本发明选取的椭圆曲线方程参数a满足a≡-3mod p,任意选取整数b满足(4a3+27b2)mod p≠0,同时为满足安全性本发明选取的b使得椭圆曲线的阶n为素数。
根据本发明的椭圆曲线加解密方法,其中素数p具体可选择为以下其中的一个:
当m=6时素数p为如下其中的一个:
p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
当m=8时素数p为如下其中的一个:
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000
100000001
p=0xFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFF0000
000000000001
p=0xFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFF
FFFFFFFFFFF
p=0xFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF00000000FFFFFF
FEFFFFFFFF
p=0xFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFFFFFFFFFFFFF00000
00100000001
p=0xFFFFFFFFFFFFFFFEFFFFFFFF00000000FFFFFFFFFFFFFFFF00000
00100000001
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFF
FFFFFFFFFFF
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFF
FFF00000001
p=0xFFFFFFFF0000000000000001000000010000000100000000000000000
0000001
p=0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFF
FFFFFFFFF
p=0xFFFFFFFF00000000FFFFFFFFFFFFFFFF0000000100000000FFFFFF
FFFFFFFFFF
p=0xFFFFFFFF0000000100000000FFFFFFFEFFFFFFFEFFFFFFFF000000
0100000001
p=0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF000000000000000
000000001
p=0xFFFFFFFF00000000FFFFFFFEFFFFFFFEFFFFFFFF00000001000000
00FFFFFFFF
p=0xFFFFFFFEFFFFFFFF0000000000000000FFFFFFFFFFFFFFFFFFFFFF
FEFFFFFFFF
p=0xFFFFFFFEFFFFFFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFF
FFFF00000001
p=0xFFFFFFFEFFFFFFFF00000000FFFFFFFFFFFFFFFFFFFFFFFF00000
00100000001
p=0xFFFFFFFEFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF000000
00FFFFFFFF
p=0xFFFFFFFEFFFFFFFEFFFFFFFF00000000FFFFFFFF00000000000000
0000000001
p=0xFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFF00000000FFFFFFFF00000
00100000001
根据本发明的椭圆曲线加解密方法,其中加解密参数具体可选择为以下各组中的一组:
当m=6时,素域Fp上192位ECC参数可以是
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x9FCABCD826AE1D60CE5068C4FEAB2854C11A1D5652D7A1F
n=0xFFFFFFFF0000000000000000E4E8DFB4D59E58D97F26D5D7
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x7ABE825463428724FBFFA6CAF1CC2B77756B40A93A83BDD2
n=0xFFFFFFFEFFFFFFFFFFFFFFFE564CBA1EC2AA664CB2B7E94F
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0xD0AC1463B5B7B0BEE817774BCD6E874B1585B0A6409E3B1C
n=0xFFFFFFFF00000000000000007A563BC26E67D4BBAAA6347F
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x9AA18BB42495DD0DA5B635AE3843ADFE7D122191EDBAF170
n=0xFFFFFFFEFFFFFFFFFFFFFFFD84DE30358151E8EF7CA28249
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x5C197F2F0AA07D87DA3B5C5823317BAF7949A660E010F6A7
n=0xFFFFFFFEFFFFFFFFFFFFFFFF7940B371E3581580460208FB
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x23113DA07BB09BAA0A839379D8128C814AC3F0E6BBADB7B7
n=0xFFFFFFFF00000000000000001D6C4190C18A77FB0537FD85当m=8时,素域Fp上256位ECC参数可以是
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0xA50B198D9FFA965FF7FB955C27ABE0CCC0F1E0748025ACCCA8C62
7388D088B19
n=0xFFFFFFFF000000000000000000000001EF6CA6269CB9360D98D9CBA4
991B1CD5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0xCCB51F034BA3FB7DBCF6C1C958E9F4157ED877C18B6143FDBE6433
9BFD6D47D4
n=0xFFFFFFFF000000000000000000000000AAAD130A161E5BF1B5BFC69E
2F46A4C9
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0x65F1CFCEB2378CB0E69DA6027F9287E1480C2DB1C8BE08255CDE35
26C29EBD12
n=0xFFFFFFFF00000000000000000000000027A414BDD1317369D27251D2D
9C061A3
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCB
D414D940E93
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40
939D54123
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0x6C50029623EFC02DE2DA4DAAB0F4777EF5DB537C8BB0635AE99B2
EC9DB6A8AA7
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFEA4552FEB7DFDDD5CF51F6
FDF47B67CC5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0xE0F0EBB116CB9ECB51225941D0EBE70A5B8BC5E0B9F35252717FC7
F1B8AC2F4F
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFEDFD42527EE682EBDACB4A
158AE8EB9A5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0xD7CFCE0160025A8B21B418CC5241ADDD92B8ABC980588128230771
EBCE6B332C
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF586382EEABF94C5477490C5
45ECF904B
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFF
FFFFFFFFC
b=0x8F3225CE7BF40B648A27DE5BB759A299BAAC8172811C1A41E47E76
D9C39DE2F5
n=0xFFFFFFFF00000000000000000000000051B2847C1330D064F01F1CDA5
D8E5509
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100
000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FF
FFFFFE
b=0x481A15C879B8B61EB350AA9AB999F8C61CEF1220D03A723245B3247
774395399
n=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001851FADA977F600C3EA76C6B
18D12A3F1
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100
000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FF
FFFFFE
b=0x5E40E5F0872E95ED70A3F25EB2EAA3D5F2D06A7B585E387004B3C09
1CCBD3FF2
n=0xFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF488387B29148034CFC98A7D
9D5E0EEA7
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100
000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FF
FFFFFE
b=0x5E979587965D3FAD8946BA907A76C43C386678A355F9E83D7C287957
CC11A3D2
n=0xFFFFFFFFFFFFFFFFFFFFFFFF000000000D3F4C196169FD138A2C7299
249E471F
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100
000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FF
FFFFFE
b=0xE560C0A6BFBC6984FD3772D150F3192FDFF1E04B6E2B143625B1D52
1E6800C56
n=0xFFFFFFFFFFFFFFFFFFFFFFFF000000026DFA64C67491708A16AF7865
25CDDB1D
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100
000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FF
FFFFFE
b=0x70C013C24D52626CD0114E242B8076D774A184FB22077BF10998022A
8C2A688E
n=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001DD5339A0B680627F4D339E00
BF3E97BB
本发明的素数均通过确定性素性检测。为保证椭圆曲线系统安全性,本发明选取的n和p通过MOV判断条件。

Claims (6)

1.一种椭圆曲线加解密方法,椭圆曲线加解密基域为素域Fp,设素数p的长度为32m比特,其中m为大于1的任意正整数,p满足 p = 2 32 n + Σ i = 0 m - 1 2 32 i k i , Ki∈{-1,0,1}。
2.如权利要求1的椭圆曲线加解密方法,在素域Fp上的椭圆曲线具有Weierstrass方程:y2=x3+ax+b,a、b∈Fp,选择椭圆曲线方程参数a满足a≡-3 mod p,任意选取整数b满足(4a3+27b2)mod p≠0,同时选取的b使得椭圆曲线的阶n为素数。
3.如权利要求1的椭圆曲线加解密方法,当m=6时素数p为如下其中的一个:
p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
4.如权利要求1的椭圆曲线加解密方法,当m=8时素数p为如下其中的一个:
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
p=0xFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFF0000000000000001
p=0xFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFFFFFFFFFFFFF
p=0xFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFFFFF
p=0xFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFFFFFFFFFFFFF0000000100000001
p=0xFFFFFFFFFFFFFFFEFFFFFFFF00000000FFFFFFFFFFFFFFFF0000000100000001
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFEFFFFFFFF00000001
p=0xFFFFFFFF00000000000000010000000100000001000000000000000000000001
p=0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
p=0xFFFFFFFF00000000FFFFFFFFFFFFFFFF0000000100000000FFFFFFFFFFFFFFFF
p=0xFFFFFFFF0000000100000000FFFFFFFEFFFFFFFEFFFFFFFF0000000100000001
p=0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF000000000000000000000001
p=0xFFFFFFFF00000000FFFFFFFEFFFFFFFEFFFFFFFF0000000100000000FFFFFFFF
p=0xFFFFFFFEFFFFFFFF0000000000000000FFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF
p=0xFFFFFFFEFFFFFFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF00000001
p=0xFFFFFFFEFFFFFFFF00000000FFFFFFFFFFFFFFFFFFFFFFFF0000000100000001
p=0xFFFFFFFEFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF
p=0xFFFFFFFEFFFFFFFEFFFFFFFF00000000FFFFFFFF000000000000000000000001
p=0xFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFF00000000FFFFFFFF0000000100000001
5.如权利要求2的椭圆曲线加解密方法,当m=6时,素域Fp上192位ECC参数为下列各组中的一组:
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x9FCABCD826AE1D60CE5068C4FEAB2854C11A1D5652D7A1F
n=0xFFFFFFFF0000000000000000E4E8DFB4D59E58D97F26D5D7
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x7ABE825463428724FBFFA6CAF1CC2B77756B40A93A83BDD2
n=0xFFFFFFFEFFFFFFFFFFFFFFFE564CBA1EC2AA664CB2B7E94F
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0xD0AC1463B5B7B0BEE817774BCD6E874B1585B0A6409E3B1C
n=0xFFFFFFFF00000000000000007A563BC26E67D4BBAAA6347F
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x9AA18BB42495DD0DA5B635AE3843ADFE7D122191EDBAF170
n=0xFFFFFFFEFFFFFFFFFFFFFFFD84DE30358151E8EF7CA28249
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x5C197F2F0AA07D87DA3B5C5823317BAF7949A660E010F6A7
n=0xFFFFFFFEFFFFFFFFFFFFFFFF7940B371E3581580460208FB
p=0xFFFFFFFEFFFFFFFFFFFFFFFF000000010000000100000001
a=0xFFFFFFFEFFFFFFFFFFFFFFFF0000000100000000FFFFFFFE
b=0x23113DA07BB09BAA0A839379D8128C814AC3F0E6BBADB7B7
n=0xFFFFFFFF00000000000000001D6C4190C18A77FB0537FD85
6.如权利要求2的椭圆曲线加解密方法,当m=8时,素域Fp上256位ECC参数为下列各组中的一组:
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0xA50B198D9FFA965FF7FB955C27ABE0CCC0F1E0748025ACCCA8C627388D088B19
n=0xFFFFFFFF000000000000000000000001EF6CA6269CB9360D98D9CBA4991B1CD5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0xCCB51F034BA3FB7DBCF6C1C958E9F4157ED877C18B6143FDBE64339BFD6D47D4
n=0xFFFFFFFF000000000000000000000000AAAD130A161E5BF1B5BFC69E2F46A4C9
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0x65F1CFCEB2378CB0E69DA6027F9287E1480C2DB1C8BE08255CDE3526C29EBD12
n=0xFFFFFFFF00000000000000000000000027A414BDD1317369D27251D2D9C061A3
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0x6C50029623EFC02DE2DA4DAAB0F4777EF5DB537C8BB0635AE99B2EC9DB6A8AA7
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFEA4552FEB7DFDDD5CF51F6FDF47B67CC5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0xE0F0EBB116CB9ECB51225941D0EBE70A5B8BC5E0B9F35252717FC7F1B8AC2F4F
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFEDFD42527EE682EBDACB4A158AE8EB9A5
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0xD7CFCE0160025A8B21B418CC5241ADDD92B8ABC980588128230771EBCE6B332C
n=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF586382EEABF94C5477490C545ECF904B
p=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC
b=0x8F3225CE7BF40B648A27DE5BB759A299BAAC8172811C1A41E47E76D9C39DE2F5
n=0xFFFFFFFF00000000000000000000000051B2847C1330D064F01F1CDA5D8E5509
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FFFFFFFE
b=0x481A15C879B8B61EB350AA9AB999F8C61CEF1220D03A723245B3247774395399
n=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001851FADA977F600C3EA76C6B18D12A3F1
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FFFFFFFE
b=0x5E40E5F0872E95ED70A3F25EB2EAA3D5F2D06A7B585E387004B3C091CCBD3FF2
n=0xFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF488387B29148034CFC98A7D9D5E0EEA7
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FFFFFFFE
b=0x5E979587965D3FAD8946BA907A76C43C386678A355F9E83D7C287957CC11A3D2
n=0xFFFFFFFFFFFFFFFFFFFFFFFF000000000D3F4C196169FD138A2C7299249E471F
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FFFFFFFE
b=0xE560C0A6BFBC6984FD3772D150F3192FDFF1E04B6E2B143625B1D521E6800C56
n=0xFFFFFFFFFFFFFFFFFFFFFFFF000000026DFA64C67491708A16AF786525CDDB1D
p=0xFFFFFFFFFFFFFFFFFFFFFFFF0000000100000001000000000000000100000001
a=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000000000000FFFFFFFE
b=0x70C013C24D52626CD0114E242B8076D774A184FB22077BF10998022A8C2A688E
n=0xFFFFFFFFFFFFFFFFFFFFFFFF00000001DD5339A0B680627F4D339E00BF3E97BB
CN 200610101868 2006-07-12 2006-07-12 安全高效的椭圆曲线加解密参数 Pending CN1885767A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610101868 CN1885767A (zh) 2006-07-12 2006-07-12 安全高效的椭圆曲线加解密参数

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610101868 CN1885767A (zh) 2006-07-12 2006-07-12 安全高效的椭圆曲线加解密参数

Publications (1)

Publication Number Publication Date
CN1885767A true CN1885767A (zh) 2006-12-27

Family

ID=37583764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610101868 Pending CN1885767A (zh) 2006-07-12 2006-07-12 安全高效的椭圆曲线加解密参数

Country Status (1)

Country Link
CN (1) CN1885767A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378321B (zh) * 2008-09-26 2011-09-28 北京数字太和科技有限责任公司 一种安全处理的方法和装置
CN102546162A (zh) * 2010-12-29 2012-07-04 北京数字太和科技有限责任公司 一种数据安全处理方法
CN101567783B (zh) * 2008-04-24 2012-08-22 深圳市同洲电子股份有限公司 一种基于ⅱ型高斯基域的椭圆曲线加解密方法和装置
CN104717060A (zh) * 2015-03-10 2015-06-17 大唐微电子技术有限公司 一种攻击椭圆曲线加密算法的方法和攻击设备
CN106778333A (zh) * 2016-11-29 2017-05-31 江苏蓝深远望科技股份有限公司 文件加密方法及装置
CN108512665A (zh) * 2017-02-28 2018-09-07 塞尔蒂卡姆公司 在椭圆曲线密码系统中生成椭圆曲线点

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567783B (zh) * 2008-04-24 2012-08-22 深圳市同洲电子股份有限公司 一种基于ⅱ型高斯基域的椭圆曲线加解密方法和装置
CN101378321B (zh) * 2008-09-26 2011-09-28 北京数字太和科技有限责任公司 一种安全处理的方法和装置
CN102546162A (zh) * 2010-12-29 2012-07-04 北京数字太和科技有限责任公司 一种数据安全处理方法
CN104717060A (zh) * 2015-03-10 2015-06-17 大唐微电子技术有限公司 一种攻击椭圆曲线加密算法的方法和攻击设备
CN104717060B (zh) * 2015-03-10 2017-11-17 大唐微电子技术有限公司 一种攻击椭圆曲线加密算法的方法和攻击设备
CN106778333A (zh) * 2016-11-29 2017-05-31 江苏蓝深远望科技股份有限公司 文件加密方法及装置
CN106778333B (zh) * 2016-11-29 2019-10-25 江苏蓝深远望科技股份有限公司 文件加密方法及装置
CN108512665A (zh) * 2017-02-28 2018-09-07 塞尔蒂卡姆公司 在椭圆曲线密码系统中生成椭圆曲线点

Similar Documents

Publication Publication Date Title
CN101079701A (zh) 高安全性的椭圆曲线加解密方法和装置
CN1251715A (zh) 有限域离散对数密码系统的割圆多项式结构
CN1885767A (zh) 安全高效的椭圆曲线加解密参数
CN1870499A (zh) 产生新的多变量公钥密码系统的方法
CN1868163A (zh) 加密通信系统和通信装置
CN1282325C (zh) 能快速解密的密码系统与方法
CN1177245A (zh) 加密方法,解密方法和确认方法
CN1568597A (zh) 加密、解码及无线通信装置
CN1324831C (zh) 加密/解密系统和加密/解密方法
CN1338166A (zh) 公用与专用密钥加密方法
CN1905438A (zh) 一种基于标识的组合密钥管理方法和系统
CN1871810A (zh) 认证系统和远隔分散保存系统
CN1496048A (zh) 数据变换装置及数据变换方法
CN1364284A (zh) 数据变换装置和数据变换方法以及记录用以在计算机上执行数据变换方法的程序的计算机可读取存储媒体
CN1859081A (zh) 一种即时消息加密传输方法和系统
CN1909023A (zh) 发送/接收系统和方法、发送/接收装置和方法及所用程序
CN1345495A (zh) 实现椭圆曲线类型公共密钥加密算法的电子部件中的对策方法
CN1902560A (zh) 内容分发系统,许可证分发方法和终端设备
CN1235446A (zh) 椭圆曲线变换装置、利用装置和利用系统
CN1859090A (zh) 一种基于身份的密码方法和系统
CN1806410A (zh) 加密通信系统
CN1342376A (zh) 无线通讯装置及无线通讯方法
CN1465162A (zh) 共享数据精化装置及共享数据精化方法
CN1505306A (zh) 椭圆曲线加密解密方法和装置
CN1967469A (zh) 高效模乘方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20061227