CN1882759A - 在流动通道中提供暂时性阻隔物的方法 - Google Patents
在流动通道中提供暂时性阻隔物的方法 Download PDFInfo
- Publication number
- CN1882759A CN1882759A CNA2004800343877A CN200480034387A CN1882759A CN 1882759 A CN1882759 A CN 1882759A CN A2004800343877 A CNA2004800343877 A CN A2004800343877A CN 200480034387 A CN200480034387 A CN 200480034387A CN 1882759 A CN1882759 A CN 1882759A
- Authority
- CN
- China
- Prior art keywords
- barrier
- degradable barrier
- degradable
- flow
- described method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000037361 pathway Effects 0.000 title abstract 2
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000012065 filter cake Substances 0.000 claims abstract description 28
- 239000000047 product Substances 0.000 claims abstract description 15
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 25
- 239000003129 oil well Substances 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 10
- 239000011973 solid acid Substances 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 229920000954 Polyglycolide Polymers 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 229920002292 Nylon 6 Polymers 0.000 claims description 4
- 239000012188 paraffin wax Substances 0.000 claims description 4
- 239000004633 polyglycolic acid Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims 3
- 239000011248 coating agent Substances 0.000 abstract 3
- 238000000576 coating method Methods 0.000 abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000015556 catabolic process Effects 0.000 description 13
- 238000006731 degradation reaction Methods 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 10
- 208000005189 Embolism Diseases 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002988 biodegradable polymer Polymers 0.000 description 4
- 239000004621 biodegradable polymer Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
- E21B37/06—Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting, e.g. eliminating, the deposition of paraffins or like substances
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/086—Screens with preformed openings, e.g. slotted liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/08—Down-hole devices using materials which decompose under well-bore conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/1624—Destructible or deformable element controlled
- Y10T137/1632—Destructible element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/1624—Destructible or deformable element controlled
- Y10T137/1797—Heat destructible or fusible
- Y10T137/1804—With second sensing means
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biological Depolymerization Polymers (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
- Developing Agents For Electrophotography (AREA)
- Polyesters Or Polycarbonates (AREA)
- Lubricants (AREA)
Abstract
流动管道(10)具有至少一个位于流动源附近的孔口(12)。该流动源至少部分覆盖一种任选的暂时性包覆层或阻隔物(而且该流动源的流动被该任选的暂时性包覆层或阻隔物阻塞)。孔口与流动源之间的流动通道被可降解材料或阻隔物(18)暂时地阻塞。该材料分解(例如,在时间或温度的影响下)以任选地产生一种产物,该产物能去除阻隔物附近区域的暂时性包覆层。本方法用于一种回收烃的非限制性范围中,其中流动管道是油井的套管或衬筒,流动源是地下储层,和暂时性包覆层是滤饼。
Description
发明领域
本发明涉及用于暂时堵塞流动通道的方法和组合物,和在一个实施方案中,更具体地涉及用于在烃回收操作过程中暂时堵塞至地下岩层的流动通道的方法和组合物。
发明背景
有许多方法和应用涉及在其它的步骤或工序进行的同时形成暂时的密封或阻塞,而所述密封或阻塞之后必须被去除。当需要之后的移动或流动时,通常提供这样的密封或阻塞来暂时地阻止或堵塞流动通道、或流体或其它材料(例如,可流动的颗粒)在短时间内沿某一特定方向的移动。
从地下岩层回收烃涉及使用暂时性包覆层或阻塞的各种应用和方法,回收烃的操作必须远程进行(即,在地层深处),但设备和材料只能在一定距离内操作。一种具体的所述操作涉及射孔和/或包括将滤饼等作为暂时性包覆层的完井操作。
油井射孔使用一种特制的枪,所述枪在套管上射一些相对小的孔。在套管相对产油带的一侧形成这些孔。这些连通的通道或射孔穿透套管或衬筒以及套管或衬筒周围的粘结剂(cement)。射孔穿透套管和粘结剂并经过一段短的距离进入生产层。含油和气的地层流体流经这些射孔并进入油井。
最常用的射孔枪使用聚能射孔弹,其与用于穿甲炮弹的那些类似。高速、高压的射流穿透钢套管、粘结剂以及紧挨着粘结剂的地层。其它射孔方法包括子弹射孔、磨蚀喷射或高压流体喷射。
连通路径(射孔)的特性和位置会对油井的产率有显著的影响。因此,坚固的设计和施工过程之后应确保有效地获得具有适宜的数量、大小和取向的射孔。组装有适合聚能射孔炸药的构造和用于检验或比较适宜的射孔深度的装置的射孔枪可以装配在钢缆、管或挠性管上
理想的是在其它操作进行的同时能够暂时地堵塞、填充或阻塞射孔的连通路径,如果射孔保留开口会带来许多问题。这些问题包括,但不必须限于,不希望的工作流体泄露进入地层和可能损害地层。
发明概述
因此,本发明的一个目的是提供一种用于暂时地堵塞流动通道的方法,其中暂时性阻隔物能够易于去除。
本发明的另一个目的是提供一种双组分暂时性阻隔物和包覆层,其中第一组分或阻隔物分解或降解为一种产物,所述产物去除第二阻隔物或包覆层。
在实现本发明的这些和其它目的时,在一种形式中,提供了一种用于暂时地堵塞流动通道的方法,其包括在流动源或流动目标的附近提供流动管道,其中该流动管道在其中有至少一个孔口。在孔口与流动源或流动目标之间提供可降解阻隔物。可降解阻隔物被降解,从而在孔口和流动源或流动目标之间形成通道。在一些实施方案中,在提供可降解阻隔物和降解该阻隔物之间进行另一操作、步骤或方法。
在本发明的另一个非限制性实施方案中,用于暂时地堵塞流动通道的方法包括在流动源或流动目标(例如,地下储层)的附近提供流动管道(例如,油井套管或衬筒),其中该流动管道在其中有至少一个孔口(例如,由射孔枪形成的孔口)。在提供流动管道之前或之后,将暂时性包覆层(例如,滤饼)放置在流动源或流动目标(例如,储层的井筒表面)的至少一部分上。可降解阻隔物(例如,可生物降解的聚合物或其它可去除的材料)被提供或放置于孔口与在流动源或流动目标上的暂时性包覆层之间。随后,在孔口和流动源或流动目标之间至少部分围绕阻隔物形成通道。可降解阻隔物被降解为一种产物(例如,反应性酸)。最终,通过该产物的作用去除在可降解阻隔物以前位置附近的暂时性包覆层。在烃回收操作或注水操作的情况中,当流体来自地下储层时,地下储层是流动源。在注水操作中,储层是流动目标。
在本发明的另一个可选的非限制性实施方案中,提供了一种用于暂时地堵塞装置的方法,其包括在装置的至少一部分上形成可降解阻隔物,远程放置该堵塞或保护的装置,和使阻隔物降解。该装置可以是井下工具,和该远程可以是地下储层的井下。可降解阻隔物可用于保护井下工具敏感的、易碎的或精密的部分。井下工具可以是防砂过滤网。
附图简述
图1是井筒中的油井套管或管道的示意性截面图,其有两个阻隔物、套筒或筒管,在套管的每一侧各有一个,每一个从套管中的孔口一直到达井壁上的滤饼处;和
图2是井筒中的油井套管的示意性截面图,在其每一侧各有一个流动通道,其阻隔物、套筒或筒管已经分解或降解,并且储层附近的井壁上的滤饼已去除。
发明详述
在一个非限制性实施方案中,本发明使用可生物降解的聚合物或其它可降解或反应性材料作为暂时性阻隔物和钻井液(drill-influid)滤饼破坏剂(breaker)用于油井、气井或注水井的完井方法。然而,如在本文其它地方所注意到的,本发明的方法不限于这一具体的实施方案。在完井方法的一个实施方案中,阻隔物、套环(collar)、套筒、栓塞或筒管(可能含有特定尺寸的砾石填充材料并下入在套管或衬筒上的合适位置)被放置在井壁上的滤饼或其它类型的包覆层或膜与在套管中的孔口之间,并被适当地粘结。一旦适当地被粘结,为了进行开采,或者如果井是注水井,则为了进行注水,需要去除滤饼。开采或注水包括流体流过套环、套筒、栓塞或筒管和流过套管或衬筒。或者,开采或注水的进行将经过替代阻隔物、套环、套筒、栓塞或筒管的通道,例如由粘结剂形成的。典型的方法是泵送化学物质通过或接近阻隔物、套环、套筒、栓塞或筒管以溶解滤饼或密封膜。即,套环、套筒、栓塞、筒管或阻隔物被留在原地以瓦解或分解,而不是整个地被去除。该过程中的影响因素包括,但不必须限于,化学物质无能力自己到达滤饼处、滤饼或密封膜表面的不完全的覆盖、通过打开的通道损失了一些或所有化学物质进入地层、和在储层内或储层上损害性残余物的形成。但与现在使用的方法相比,本发明的方法极大地减少了这些影响因素。
在本发明一个非限制性实施方案中,套筒、筒管或阻隔物包含或至少部分由可降解材料制成,该可降解材料降解或分解为又将套筒或筒管和井壁之间的滤饼或膜去除的产物或物质。该方法将进一步消除和/或将上述众多问题减至最少。将进一步认识到当阻隔物在合适的位置实施其堵塞功能时,并不严格地需要阻隔物为有效地实施其功能而密封或液封流动通道。
合适的用于套筒、筒管或阻隔物的可降解材料包括,但不必须限于降解为酸的可生物降解的聚合物。一种所述聚合物是PLA(聚交酯)聚合物4060D(来自NatureWorksTM,Cargill Dow LLC的一个部门)。在一定时间和温度内这种聚合物分解为乳酸,其不仅溶解夹在套筒、筒管或阻隔物和井壁间的滤饼,也可刺激地层的近流动通道区域。TLF-6267聚乙醇酸(来自DuPont Specialty Chemicals)是另一种聚合物,其降解为具有相同官能度(functionality)的乙醇酸。其它的聚酯材料像聚己内酰胺和PLA与PGA的混合物以相似的方式降解,并可提供相似的滤饼去除用官能度。在非限制性的例子中,与蜡或其它合适的粘合剂材料结合在一起的固体酸(例如,氨基磺酸、三氯乙酸和柠檬酸)也是适用的。在存在液体和/或加温时,粘合剂将溶解或熔融以及固体酸颗粒将液化,并在适当的位置局部接触和从井筒表面去除滤饼,而且酸刺激流动通道当地的部分地层。聚乙烯均聚物和石蜡也是本发明方法中的可降解阻隔物可期望使用的材料。由阻隔物的降解得到的产物包括,但不必须限于,酸、碱、醇、二氧化碳及其结合物等。与全部被去除相比,可以理解这些暂时性阻隔物被适当地降解或分解。在此处的暂时性阻隔物不应当与油井中使用的常规的粘结剂或聚合物栓塞混淆。
还有其它类型的材料可起到阻隔物或栓塞的作用并可受控地被去除。聚环氧烷(例如,聚环氧乙烷)和聚亚烷基二醇(例如,聚乙二醇)是在其它内容中被最广泛使用的一些材料。这些聚合物缓慢地溶于水中。溶解速率或速度由这些聚合物的分子量决定。可接受的溶解速率可在分子量范围为100,000-7,0000,000内获得。因此,可采用适宜分子量或混合分子量设计对于温度范围为50℃-200℃的溶解速率。
在本发明的一个非限制性实施方案中,可降解材料在约1-约240小时的时间内降解。在一个可选的非限制性实施方案中,该时间范围为约1-约120小时,可选地为1-72小时。在本发明的另一个非限制性实施方案中,可降解材料的降解温度范围为约50℃-约200℃。在一个可选的非限制性实施方案中,温度范围为约50℃-约150℃。或者,温度范围的下限可以是约80℃。当然,能够理解时间和温度可以同时对材料的降解起作用。并且当然如常用于钻井液或完井液的水,或其它一些化学物质,可单独使用或与时间和/或温度一起作用以使材料降解。其它可使用的流体或化学物质包括,但不必须限于醇、互溶溶剂、燃料油例如柴油等。在本发明的上下文中,如果至少一半的阻隔物可溶于其中或溶解于其中,则认为可降解阻隔物基本上可溶于该流体中。
可以理解如果可降解材料充分分解或降解产生的产物将去除足够的滤饼以允许流体通过通道,则认为本发明的方法是成功的。即,即使不是全部的可降解材料分解、降解、溶解或被取代和/或不是全部的穿过流体通道的滤饼被去除,本发明的方法仍可认为是有效的。在一个可选的非限制性实施方案中,如果至少50%的可降解材料被分解和/或至少50%的穿过或在流体通道内的滤饼被去除,和在仍然另一个本发明的非限制性实施方案中,如果至少90%的在流动通道中的材料被分解、去除或取代,则认为本发明是成功的。这些去除率中的任何一个可在本发明上下文中被看作“基本上去除”。
现在将参照附图更详细的描述本发明,其中图1示出垂直定向的圆柱形套管或衬筒10(在文中也可称作流动管道)的截面图,在其两侧各有一个孔口12。孔口可通过射孔枪、在先的将套管插入到油井中的机械、或其它合适的技术形成。套管10被置入穿过地下储层20(文中也称为流动源,但在注水等操作的实施方案中也可看作流动目标)的带有井壁16的井筒14中。井壁16上有滤饼22,滤饼可通过钻井流体(drilling fluid)、或更通常的钻井液的沉积形成。滤饼22的沉积是本领域众所周知的现象。滤饼22(也称为暂时性包覆层)阻挡液体的流动并必须在来自地下岩层20的烃流动之前被去除,或在将水注入地层20之前被去除。
套环、套筒、阻隔物或筒管18置于孔口12和滤饼22之间。这些套筒、筒管或栓塞18由可降解的阻隔物材料制成。在图1和图2中示出的非限制性实施方案中,可降解阻隔物18是中空的。在本发明的另一个非限制性实施方案中,这些中空的套筒可至少部分填有特定尺寸的砾石填充材料。在一个本发明可选的非限制性实施方案中,可降解阻隔物18是实心的和非中空的。可以预期为了易于制造,阻隔物、套环、套筒或筒管18的形状通常是圆柱形的并有圆形的截面,但这不是本发明的必要条件或关键。套筒18被引入油井环带26中的粘结剂24包围并适当地固定(不是永久的)。粘结剂24(或其它合适的刚性材料,例如与可降解阻隔物18不同的不可生物降解的聚合物)在每一个阻隔物18周围形成一个通道是可以理解的,一旦阻隔物18被去除这将变得更明显。
在图1和图2之间,套环、阻隔物、套筒或筒管18的可降解材料通过一种机理例如加热、经过足够长的时间(例如,数小时)、或两者的结合而被降解或分解。如上所述,可降解阻隔物18降解或分解为至少一种产物,例如酸或其它试剂,该产物又将去除阻隔物18以前位置附近的滤饼22。由此产生的结构示意性地与图2相似,其中留下了在孔口12和地层20之间的穿过粘结剂24的流动通道28。之后,油井准备开采(烃从地层20流过通道28进入套管10),或油井准备进行注水,沿着从套管10通过流动通道28进入地层20的方向。
尽管阻隔物或套筒18能够通过应用液体(例如,酸或其它化学物质)而被降解,但可以理解的是这样做的一个困难在于使液体有效地分布于套管的整个长度。本发明方法的一个重要优点是当阻隔物18降解时,产物就地生成并在沿着井筒14长度的许多位置直接运送。如果液体例如酸或其它试剂被送至井下来溶解或降解阻隔物18,与阻隔物18相邻的滤饼22也很可能被去除,然后液体将自由地泄漏进入地层10,而不是继续沿着套管10到达随后的阻隔物18。该技术是对试图从地面运送酸或其它试剂均匀地沿着井筒分布在许多位置处的改进。一般,运送的试剂的量随距离而递减。
除了在本文中最充分讨论的完成的实施方案之外,可降解阻隔物的概念可有益地用于其它应用中。例如,可降解阻隔物可作为井下工具精密或敏感部分的保护层使用。包覆层可用于其表面上并作为包覆层一直到其被适宜地放置于井中。然后启动去除机理使工具开始运转。例如,防砂网和其它井下过滤工具可被包覆以防止在孔眼中运转时阻塞,从而增加了砾石的设置以防止形成孔隙并溶解在裸眼井筒上的滤饼。
正如前面讨论的,去除机理包括但不必须限于,加热、时间、化学物质(例如,水)的应用等。这些类型的包覆层可用来控制化学物质的释放或启动井下开关,例如当水注入采出液中时。该技术可用于在孔口中放置暂时性栓塞,孔口保持闭合直到水(或其它试剂)将栓塞溶解或降解。井下液压管路也可出于“智能”完井的目的而建造。通常,这些聚合物和其它暂时性可降解材料可用于任何需要将某处与油井流体隔离的情况中,直到已知或预定的情况出现将其去除。
人们将会意识到是,暂时性阻隔物能够在除地下储层之外的远程装置之上或之内发现用途。这样的其它远程包括,但不必须限于,远程管路的内部、海底、极地、宇宙飞船、人造卫星、地球外的行星、月球和小行星、和生物体(例如,人类)内部等。
在上面的说明书中,本发明已经参照具体实施方案进行了描述,并且如期望的那样已经证实了本发明有效地提供了一种促进烃流动或将水(或其它液体)注入地下岩层的方法。但是,显而易见的是,可以在不偏离如所附的权利要求所述的较宽的精神和范围的情况下对本发明进行各种修改和改变。因此,本说明书被认为是说明性的而不是限制性的。例如,落在本发明请求保护的参数范围内、但并未在特定的组成中或具体条件下进行具体地验证或试验的可降解材料、降解的产物、滤饼材料、降解机理和其它组分的具体的组合都预期在本发明的范围内。
Claims (24)
1、一种用于暂时地堵塞流动通道的方法,其包括:
在流动源或流动目标的附近提供流动管道,其中该流动管道在其中有至少一个孔口;
在孔口与流动源或流动目标之间提供可降解阻隔物;
使可降解阻隔物降解,从而在孔口与流动源或流动目标之间形成通道。
2、如权利要求1所述的方法,其中该可降解阻隔物是可生物降解的。
3、如权利要求1所述的方法,其中在将可降解阻隔物加热至50-200℃的温度时,该可降解阻隔物基本上被去除。
4、如权利要求1所述的方法,其中通过使阻隔物与一种流体接触而使可降解阻隔物基本上被去除,其中该可降解阻隔物基本上溶于所述流体。
5、如上述任一项权利要求所述的方法,其中在经过1-240小时后,该可降解阻隔物基本上被去除。
6、如权利要求1或5所述的方法,其中该可降解阻隔物选自聚乳酸、聚己内酰胺、聚乙醇酸、聚乙烯醇、聚环氧烷、聚亚烷基二醇、聚乙烯均聚物、包含固体酸的石蜡、包含固体酸颗粒的材料、和它们的结合物。
7、如上述任一项权利要求所述的方法,其中该流动管道是油井套管或衬筒,该流动源是地下岩层和该方法是烃回收操作。
8、一种用于暂时地堵塞流动通道的方法,其包括:
在流动源或流动目标的附近提供流动管道,其中该流动管道在其中有至少一个孔口;
在流动源或流动目标的至少一部分上设置暂时性包覆层;
在孔口与流动源或流动目标上的暂时性包覆层之间提供可降解阻隔物;
在孔口与流动源或流动目标之间围绕阻隔物形成通道;
使可降解阻隔物降解为至少一种产物;和
通过该产物的作用去除可降解阻隔物以前位置附近的暂时性包覆层。
9、如权利要求8所述的方法,其中该可降解阻隔物是可生物降解的。
10、如权利要求8所述的方法,其中在将可降解阻隔物加热至50-200℃的温度时,该可降解阻隔物基本上被去除。
11、如权利要求8所述的方法,其中通过使阻隔物与一种流体接触而使可降解阻隔物基本上被去除,其中该可降解阻隔物基本上溶于所述流体。
12、如权利要求8-11中任一项所述的方法,其中在经过1-240小时后,该可降解阻隔物基本上被去除。
13、如权利要求8-12中任一项所述的方法,其中该产物是酸。
14、如权利要求8-13中任一项所述的方法,其中该可降解阻隔物选自聚乳酸、聚己内酰胺、聚乙醇酸、聚乙烯醇、聚乙烯均聚物、包含固体酸的石蜡、包含固体酸颗粒的材料、和它们的结合物。
15、如权利要求8-14中任一项所述的方法,其中该流动管道是油井套管或衬筒,该流动源或流动目标是地下岩层,该暂时性包覆层是滤饼和该方法是烃回收操作。
16、一种用于暂时地堵塞装置的方法,其包括:
在装置的至少一部分上形成可降解阻隔物;
在远程放置该堵塞的装置;和
使阻隔物降解。
17、如权利要求16所述的方法,其中该装置是井下工具。
18、如权利要求17所述的方法,其中该井下工具是井下过滤工具。
19、如权利要求16-17中任一项所述的方法,其中该可降解阻隔物是可生物降解的。
20、如权利要求16-17中任一项所述的方法,其中在将可降解阻隔物加热至50-200℃的温度时,该可降解阻隔物基本上被去除。
21、如权利要求16-17中任一项所述的方法,其中通过使阻隔物与一种流体接触而使可降解阻隔物基本上被去除,其中该可降解阻隔物基本上溶于所述流体。
22、如权利要求16-21中任一项所述的方法,其中在经过1-240小时后,该可降解阻隔物基本上被去除。
23、如权利要求16-18和22中任一项所述的方法,其中该可降解阻隔物选自聚乳酸、聚己内酰胺、聚乙醇酸、聚乙烯醇、包含固体酸颗粒的熔融材料、聚环氧烷、聚亚烷基二醇、聚乙烯均聚物、包含固体酸的石蜡、包含固体酸颗粒的熔融材料、和它们的结合物。
24、如权利要求16-23中任一项所述的方法,其中该方法选自从地下储层回收烃和将流体注入地下储层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51342503P | 2003-10-22 | 2003-10-22 | |
US60/513,425 | 2003-10-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1882759A true CN1882759A (zh) | 2006-12-20 |
CN100564792C CN100564792C (zh) | 2009-12-02 |
Family
ID=34549276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800343877A Expired - Fee Related CN100564792C (zh) | 2003-10-22 | 2004-10-21 | 在流动通道中提供暂时性阻隔物的方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US7461699B2 (zh) |
CN (1) | CN100564792C (zh) |
AU (1) | AU2004286216B2 (zh) |
BR (1) | BRPI0415835B1 (zh) |
CA (1) | CA2543408C (zh) |
GB (1) | GB2423325B (zh) |
NO (1) | NO330477B1 (zh) |
RU (1) | RU2372470C2 (zh) |
WO (1) | WO2005042915A1 (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102812205A (zh) * | 2010-03-15 | 2012-12-05 | 贝克休斯公司 | 具有伸缩流动管路技术的用于支撑剂破裂的方法和材料 |
CN103154428A (zh) * | 2010-09-21 | 2013-06-12 | 哈利伯顿能源服务公司 | 对通过井筛的流动的选择性控制 |
CN103688014A (zh) * | 2011-07-28 | 2014-03-26 | 贝克休斯公司 | 选择性水力压裂工具及其方法 |
CN103874826A (zh) * | 2011-10-14 | 2014-06-18 | 哈利伯顿能源服务公司 | 具有延伸过滤器的井筛 |
CN104563978A (zh) * | 2014-12-26 | 2015-04-29 | 中国石油天然气股份有限公司 | 用于水力压裂物理模拟实验的射孔装置及方法 |
CN104684997A (zh) * | 2012-10-11 | 2015-06-03 | 株式会社吴羽 | 聚乙醇酸树脂组合物及其制造方法 |
CN105683330A (zh) * | 2013-09-11 | 2016-06-15 | 沙特阿拉伯石油公司 | 用于非常规储层的使用固体酸的碳酸盐基浆料压裂 |
CN105888638A (zh) * | 2014-12-23 | 2016-08-24 | 陈爱民 | 定时滑套压裂管柱 |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9631138B2 (en) | 2011-04-28 | 2017-04-25 | Baker Hughes Incorporated | Functionally gradient composite article |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US9802250B2 (en) | 2011-08-30 | 2017-10-31 | Baker Hughes | Magnesium alloy powder metal compact |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
CN109779567A (zh) * | 2019-03-10 | 2019-05-21 | 辽宁石油化工大学 | 一种用于油气井的完井装置 |
US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
CN110023583A (zh) * | 2016-11-01 | 2019-07-16 | 国际壳牌研究有限公司 | 用于密封围绕井套管的固化水泥护层中或附近的空腔的方法 |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
CN110374568A (zh) * | 2019-07-18 | 2019-10-25 | 中国石油集团渤海钻探工程有限公司 | 一种智能底段压裂滑套 |
US10697266B2 (en) | 2011-07-22 | 2020-06-30 | Baker Hughes, A Ge Company, Llc | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
CN108952622B (zh) * | 2018-07-09 | 2020-07-10 | 北京泰利新能源科技发展有限公司 | 一种地热井潜孔钻进快速堵漏防塌工艺 |
US11090719B2 (en) | 2011-08-30 | 2021-08-17 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
US8342240B2 (en) * | 2003-10-22 | 2013-01-01 | Baker Hughes Incorporated | Method for providing a temporary barrier in a flow pathway |
GB2412389A (en) * | 2004-03-27 | 2005-09-28 | Cleansorb Ltd | Process for treating underground formations |
US20050241835A1 (en) * | 2004-05-03 | 2005-11-03 | Halliburton Energy Services, Inc. | Self-activating downhole tool |
US7422071B2 (en) * | 2005-01-31 | 2008-09-09 | Hills, Inc. | Swelling packer with overlapping petals |
US7661471B2 (en) * | 2005-12-01 | 2010-02-16 | Baker Hughes Incorporated | Self energized backup system for packer sealing elements |
US7552777B2 (en) * | 2005-12-28 | 2009-06-30 | Baker Hughes Incorporated | Self-energized downhole tool |
US7392841B2 (en) * | 2005-12-28 | 2008-07-01 | Baker Hughes Incorporated | Self boosting packing element |
US7387158B2 (en) * | 2006-01-18 | 2008-06-17 | Baker Hughes Incorporated | Self energized packer |
EP2004954B1 (en) * | 2006-03-22 | 2011-08-03 | Itrec B.V. | Pre-assembly of a subsea base and pipeline |
US7341105B2 (en) * | 2006-06-20 | 2008-03-11 | Holcim (Us) Inc. | Cementitious compositions for oil well cementing applications |
US7441596B2 (en) * | 2006-06-23 | 2008-10-28 | Baker Hughes Incorporated | Swelling element packer and installation method |
US7552767B2 (en) * | 2006-07-14 | 2009-06-30 | Baker Hughes Incorporated | Closeable open cell foam for downhole use |
US7562704B2 (en) * | 2006-07-14 | 2009-07-21 | Baker Hughes Incorporated | Delaying swelling in a downhole packer element |
US7464764B2 (en) | 2006-09-18 | 2008-12-16 | Baker Hughes Incorporated | Retractable ball seat having a time delay material |
US7726406B2 (en) * | 2006-09-18 | 2010-06-01 | Yang Xu | Dissolvable downhole trigger device |
US7909088B2 (en) * | 2006-12-20 | 2011-03-22 | Baker Huges Incorporated | Material sensitive downhole flow control device |
US7467664B2 (en) * | 2006-12-22 | 2008-12-23 | Baker Hughes Incorporated | Production actuated mud flow back valve |
US7942215B2 (en) * | 2007-01-23 | 2011-05-17 | Baker Hughes Incorporated | Drilling fluids for oil and gas reservoirs with high carbonate contents |
US7527103B2 (en) * | 2007-05-29 | 2009-05-05 | Baker Hughes Incorporated | Procedures and compositions for reservoir protection |
US8127847B2 (en) | 2007-12-03 | 2012-03-06 | Baker Hughes Incorporated | Multi-position valves for fracturing and sand control and associated completion methods |
US7775286B2 (en) | 2008-08-06 | 2010-08-17 | Baker Hughes Incorporated | Convertible downhole devices and method of performing downhole operations using convertible downhole devices |
US7900696B1 (en) | 2008-08-15 | 2011-03-08 | Itt Manufacturing Enterprises, Inc. | Downhole tool with exposable and openable flow-back vents |
US8267177B1 (en) | 2008-08-15 | 2012-09-18 | Exelis Inc. | Means for creating field configurable bridge, fracture or soluble insert plugs |
US8342094B2 (en) * | 2009-10-22 | 2013-01-01 | Schlumberger Technology Corporation | Dissolvable material application in perforating |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US20110132613A1 (en) * | 2009-12-09 | 2011-06-09 | Baker Hughes Incorporated | Multiple Port Crossover Tool with Port Selection Feature |
US8424610B2 (en) * | 2010-03-05 | 2013-04-23 | Baker Hughes Incorporated | Flow control arrangement and method |
US8646523B2 (en) * | 2010-03-15 | 2014-02-11 | Baker Hughes Incorporated | Method and materials for proppant flow control with telescoping flow conduit technology |
US8967176B2 (en) | 2010-05-12 | 2015-03-03 | Blayne A. Connor | Fume blocking drain cap |
EP2404883A1 (en) | 2010-05-19 | 2012-01-11 | Services Pétroliers Schlumberger | Apparatus and methods for completing subterranean wells |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US8579023B1 (en) | 2010-10-29 | 2013-11-12 | Exelis Inc. | Composite downhole tool with ratchet locking mechanism |
US20120189466A1 (en) * | 2011-01-25 | 2012-07-26 | Baker Hughes Incorporated | Well Deployed Heat Fin For ESP Motor |
US8668018B2 (en) | 2011-03-10 | 2014-03-11 | Baker Hughes Incorporated | Selective dart system for actuating downhole tools and methods of using same |
US8668006B2 (en) | 2011-04-13 | 2014-03-11 | Baker Hughes Incorporated | Ball seat having ball support member |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US8770276B1 (en) | 2011-04-28 | 2014-07-08 | Exelis, Inc. | Downhole tool with cones and slips |
US8479808B2 (en) | 2011-06-01 | 2013-07-09 | Baker Hughes Incorporated | Downhole tools having radially expandable seat member |
US9145758B2 (en) | 2011-06-09 | 2015-09-29 | Baker Hughes Incorporated | Sleeved ball seat |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9038719B2 (en) * | 2011-06-30 | 2015-05-26 | Baker Hughes Incorporated | Reconfigurable cement composition, articles made therefrom and method of use |
US9181781B2 (en) | 2011-06-30 | 2015-11-10 | Baker Hughes Incorporated | Method of making and using a reconfigurable downhole article |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US8622141B2 (en) | 2011-08-16 | 2014-01-07 | Baker Hughes Incorporated | Degradable no-go component |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
US9004091B2 (en) | 2011-12-08 | 2015-04-14 | Baker Hughes Incorporated | Shape-memory apparatuses for restricting fluid flow through a conduit and methods of using same |
US8857513B2 (en) | 2012-01-20 | 2014-10-14 | Baker Hughes Incorporated | Refracturing method for plug and perforate wells |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9016388B2 (en) | 2012-02-03 | 2015-04-28 | Baker Hughes Incorporated | Wiper plug elements and methods of stimulating a wellbore environment |
CA2864293A1 (en) | 2012-02-13 | 2013-08-22 | Absolute Completion Technologies Ltd. | Apparatus for treating a wellbore screen and method |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US8997859B1 (en) | 2012-05-11 | 2015-04-07 | Exelis, Inc. | Downhole tool with fluted anvil |
US9068411B2 (en) | 2012-05-25 | 2015-06-30 | Baker Hughes Incorporated | Thermal release mechanism for downhole tools |
JP6084609B2 (ja) | 2012-06-07 | 2017-02-22 | 株式会社クレハ | 炭化水素資源回収ダウンホールツール用部材 |
WO2014010267A1 (ja) | 2012-07-10 | 2014-01-16 | 株式会社クレハ | 炭化水素資源回収ダウンホールツール用部材 |
US9644453B2 (en) | 2012-08-08 | 2017-05-09 | Kureha Corporation | Ball sealer for hydrocarbon resource collection as well as production method therefor and downhole treatment method using same |
GB2514785A (en) * | 2013-06-03 | 2014-12-10 | Wellstream Int Ltd | Flexible pipe body layer and method of producing same |
US9677349B2 (en) | 2013-06-20 | 2017-06-13 | Baker Hughes Incorporated | Downhole entry guide having disappearing profile and methods of using same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US9410413B2 (en) * | 2013-10-18 | 2016-08-09 | Baker Hughes Incorporated | Well system with annular space around casing for a treatment operation |
US10030472B2 (en) | 2014-02-25 | 2018-07-24 | Halliburton Energy Services, Inc. | Frangible plug to control flow through a completion |
US20170101572A1 (en) * | 2014-06-02 | 2017-04-13 | Schlumberger Technology Corporation | Degradation agent encapsulation |
CN105446793B (zh) * | 2014-08-28 | 2018-08-28 | 国际商业机器公司 | 迁移虚拟资产的方法和设备 |
US9856411B2 (en) | 2014-10-28 | 2018-01-02 | Baker Hughes Incorporated | Methods of using a degradable component in a wellbore and related systems and methods of forming such components |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
GB2573967B (en) | 2015-02-03 | 2020-02-19 | Weatherford Tech Holdings Llc | Temporarily impermeable sleeve for running a well component in hole |
US9845658B1 (en) | 2015-04-17 | 2017-12-19 | Albany International Corp. | Lightweight, easily drillable or millable slip for composite frac, bridge and drop ball plugs |
US9879492B2 (en) | 2015-04-22 | 2018-01-30 | Baker Hughes, A Ge Company, Llc | Disintegrating expand in place barrier assembly |
US9885229B2 (en) | 2015-04-22 | 2018-02-06 | Baker Hughes, A Ge Company, Llc | Disappearing expandable cladding |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
US10253590B2 (en) | 2017-02-10 | 2019-04-09 | Baker Hughes, A Ge Company, Llc | Downhole tools having controlled disintegration and applications thereof |
US10597965B2 (en) | 2017-03-13 | 2020-03-24 | Baker Hughes, A Ge Company, Llc | Downhole tools having controlled degradation |
WO2020016169A1 (en) | 2018-07-20 | 2020-01-23 | Shell Internationale Research Maatschappij B.V. | Method of remediating leaks in a cement sheath surrounding a wellbore tubular |
CN109630072B (zh) * | 2019-01-22 | 2021-04-27 | 西安石油大学 | 一种井下自力式强制涡流排水采气装置 |
US11293252B2 (en) * | 2020-04-16 | 2022-04-05 | Halliburton Energy Services, Inc. | Fluid barriers for dissolvable plugs |
RU2757383C1 (ru) * | 2020-12-10 | 2021-10-14 | Общество с ограниченной ответственностью "ЛУКОЙЛ - Западная Сибирь" | Способ заканчивания скважин |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB728197A (en) | 1953-07-14 | 1955-04-13 | Solis Myron Zandmer | Method of and apparatus for sealing a casing in a bore hole |
US3057405A (en) | 1959-09-03 | 1962-10-09 | Pan American Petroleum Corp | Method for setting well conduit with passages through conduit wall |
US3880233A (en) | 1974-07-03 | 1975-04-29 | Exxon Production Research Co | Well screen |
US5224556A (en) | 1991-09-16 | 1993-07-06 | Conoco Inc. | Downhole activated process and apparatus for deep perforation of the formation in a wellbore |
US5287923A (en) * | 1992-07-28 | 1994-02-22 | Atlantic Richfield Company | Sand control installation for deep open hole wells |
US5320178A (en) * | 1992-12-08 | 1994-06-14 | Atlantic Richfield Company | Sand control screen and installation method for wells |
CN1103131A (zh) * | 1993-11-23 | 1995-05-31 | 吉林省油田管理局钻采工艺研究院 | 一种油层化学生热解堵方法 |
US6218342B1 (en) | 1996-08-02 | 2001-04-17 | M-I Llc | Oil-based drilling fluid |
US6059032A (en) | 1997-12-10 | 2000-05-09 | Mobil Oil Corporation | Method and apparatus for treating long formation intervals |
US6818594B1 (en) | 1999-11-12 | 2004-11-16 | M-I L.L.C. | Method for the triggered release of polymer-degrading agents for oil field use |
US7360593B2 (en) | 2000-07-27 | 2008-04-22 | Vernon George Constien | Product for coating wellbore screens |
US6394185B1 (en) | 2000-07-27 | 2002-05-28 | Vernon George Constien | Product and process for coating wellbore screens |
US6543545B1 (en) * | 2000-10-27 | 2003-04-08 | Halliburton Energy Services, Inc. | Expandable sand control device and specialized completion system and method |
US6543539B1 (en) | 2000-11-20 | 2003-04-08 | Board Of Regents, The University Of Texas System | Perforated casing method and system |
CN1429963A (zh) * | 2001-12-30 | 2003-07-16 | 中国石油天然气股份有限公司 | 注水井硝酸粉末酸液体系及酸化工艺 |
US20040231845A1 (en) | 2003-05-15 | 2004-11-25 | Cooke Claude E. | Applications of degradable polymers in wells |
-
2004
- 2004-10-19 US US10/968,534 patent/US7461699B2/en active Active
- 2004-10-21 GB GB0608003A patent/GB2423325B/en not_active Expired - Fee Related
- 2004-10-21 AU AU2004286216A patent/AU2004286216B2/en not_active Ceased
- 2004-10-21 RU RU2006117365A patent/RU2372470C2/ru active
- 2004-10-21 CA CA 2543408 patent/CA2543408C/en not_active Expired - Fee Related
- 2004-10-21 WO PCT/US2004/034698 patent/WO2005042915A1/en active Application Filing
- 2004-10-21 CN CNB2004800343877A patent/CN100564792C/zh not_active Expired - Fee Related
- 2004-10-21 BR BRPI0415835A patent/BRPI0415835B1/pt not_active IP Right Cessation
-
2006
- 2006-05-18 NO NO20062241A patent/NO330477B1/no not_active IP Right Cessation
-
2008
- 2008-12-04 US US12/328,449 patent/US7762342B2/en not_active Expired - Lifetime
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US10669797B2 (en) | 2009-12-08 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Tool configured to dissolve in a selected subsurface environment |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
CN102812205A (zh) * | 2010-03-15 | 2012-12-05 | 贝克休斯公司 | 具有伸缩流动管路技术的用于支撑剂破裂的方法和材料 |
US9033044B2 (en) | 2010-03-15 | 2015-05-19 | Baker Hughes Incorporated | Method and materials for proppant fracturing with telescoping flow conduit technology |
CN102812205B (zh) * | 2010-03-15 | 2016-03-23 | 贝克休斯公司 | 具有伸缩流动管路技术的用于支撑剂破裂的方法和材料 |
CN103154428A (zh) * | 2010-09-21 | 2013-06-12 | 哈利伯顿能源服务公司 | 对通过井筛的流动的选择性控制 |
US9631138B2 (en) | 2011-04-28 | 2017-04-25 | Baker Hughes Incorporated | Functionally gradient composite article |
US10697266B2 (en) | 2011-07-22 | 2020-06-30 | Baker Hughes, A Ge Company, Llc | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
CN103688014B (zh) * | 2011-07-28 | 2016-12-28 | 贝克休斯公司 | 选择性水力压裂工具及其方法 |
CN103688014A (zh) * | 2011-07-28 | 2014-03-26 | 贝克休斯公司 | 选择性水力压裂工具及其方法 |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
US11090719B2 (en) | 2011-08-30 | 2021-08-17 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US9802250B2 (en) | 2011-08-30 | 2017-10-31 | Baker Hughes | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
CN103874826A (zh) * | 2011-10-14 | 2014-06-18 | 哈利伯顿能源服务公司 | 具有延伸过滤器的井筛 |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
CN104684997A (zh) * | 2012-10-11 | 2015-06-03 | 株式会社吴羽 | 聚乙醇酸树脂组合物及其制造方法 |
CN105683330A (zh) * | 2013-09-11 | 2016-06-15 | 沙特阿拉伯石油公司 | 用于非常规储层的使用固体酸的碳酸盐基浆料压裂 |
US11613952B2 (en) | 2014-02-21 | 2023-03-28 | Terves, Llc | Fluid activated disintegrating metal system |
US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US12031400B2 (en) | 2014-02-21 | 2024-07-09 | Terves, Llc | Fluid activated disintegrating metal system |
US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
CN105888638A (zh) * | 2014-12-23 | 2016-08-24 | 陈爱民 | 定时滑套压裂管柱 |
CN104563978B (zh) * | 2014-12-26 | 2017-03-08 | 中国石油天然气股份有限公司 | 用于水力压裂物理模拟实验的射孔装置及方法 |
CN104563978A (zh) * | 2014-12-26 | 2015-04-29 | 中国石油天然气股份有限公司 | 用于水力压裂物理模拟实验的射孔装置及方法 |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
CN110023583B (zh) * | 2016-11-01 | 2021-10-15 | 国际壳牌研究有限公司 | 用于密封围绕井套管的固化水泥护层中或附近的空腔的方法 |
CN110023583A (zh) * | 2016-11-01 | 2019-07-16 | 国际壳牌研究有限公司 | 用于密封围绕井套管的固化水泥护层中或附近的空腔的方法 |
US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
US11898223B2 (en) | 2017-07-27 | 2024-02-13 | Terves, Llc | Degradable metal matrix composite |
CN108952622B (zh) * | 2018-07-09 | 2020-07-10 | 北京泰利新能源科技发展有限公司 | 一种地热井潜孔钻进快速堵漏防塌工艺 |
CN109779567B (zh) * | 2019-03-10 | 2021-06-15 | 辽宁石油化工大学 | 一种用于油气井的完井装置 |
CN109779567A (zh) * | 2019-03-10 | 2019-05-21 | 辽宁石油化工大学 | 一种用于油气井的完井装置 |
CN110374568A (zh) * | 2019-07-18 | 2019-10-25 | 中国石油集团渤海钻探工程有限公司 | 一种智能底段压裂滑套 |
Also Published As
Publication number | Publication date |
---|---|
RU2006117365A (ru) | 2007-12-10 |
BRPI0415835B1 (pt) | 2016-01-26 |
AU2004286216B2 (en) | 2010-06-10 |
CA2543408C (en) | 2008-12-30 |
WO2005042915A1 (en) | 2005-05-12 |
GB2423325A (en) | 2006-08-23 |
NO330477B1 (no) | 2011-04-26 |
US7461699B2 (en) | 2008-12-09 |
GB0608003D0 (en) | 2006-05-31 |
AU2004286216A1 (en) | 2005-05-12 |
BRPI0415835A (pt) | 2007-01-02 |
US20050092363A1 (en) | 2005-05-05 |
NO20062241L (no) | 2006-06-02 |
CA2543408A1 (en) | 2005-05-12 |
US7762342B2 (en) | 2010-07-27 |
US20090078408A1 (en) | 2009-03-26 |
CN100564792C (zh) | 2009-12-02 |
RU2372470C2 (ru) | 2009-11-10 |
GB2423325B (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100564792C (zh) | 在流动通道中提供暂时性阻隔物的方法 | |
RU2431037C2 (ru) | Способ и система для обработки подземной формации с использованием отклонения обрабатывающих текучих сред (варианты) | |
US8342240B2 (en) | Method for providing a temporary barrier in a flow pathway | |
CN103352683B (zh) | 可降解材料辅助的导流或隔离 | |
US20120227962A1 (en) | Non-intrusive flow indicator | |
US10030473B2 (en) | Method for remediating a screen-out during well completion | |
US7775278B2 (en) | Degradable material assisted diversion or isolation | |
US9074453B2 (en) | Method and system for hydraulic fracturing | |
EP1509675B1 (en) | Method for construction and completion of injection wells | |
US10017995B2 (en) | Penetrating a subterranean formation | |
Bist et al. | Diverting agents in the oil and gas industry: A comprehensive analysis of their origins, types, and applications | |
CA2848205C (en) | Method and system for hydraulic fracturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091202 Termination date: 20211021 |