CN1877480A - Light Load Control Circuit for Buck-Boost Voltage Converter - Google Patents
Light Load Control Circuit for Buck-Boost Voltage Converter Download PDFInfo
- Publication number
- CN1877480A CN1877480A CNA200510076122XA CN200510076122A CN1877480A CN 1877480 A CN1877480 A CN 1877480A CN A200510076122X A CNA200510076122X A CN A200510076122XA CN 200510076122 A CN200510076122 A CN 200510076122A CN 1877480 A CN1877480 A CN 1877480A
- Authority
- CN
- China
- Prior art keywords
- terminal
- phase
- light load
- control circuit
- switching unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000630 rising effect Effects 0.000 claims abstract description 20
- 230000007423 decrease Effects 0.000 claims abstract description 9
- 238000012423 maintenance Methods 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims 4
- 238000010168 coupling process Methods 0.000 claims 4
- 238000005859 coupling reaction Methods 0.000 claims 4
- 238000000819 phase cycle Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 23
- 230000001360 synchronised effect Effects 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000001960 triggered effect Effects 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000013256 coordination polymer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明公开了一种轻负载控制电路,其使升降式电压转换器的切换电路交替地操作于多个阶段循环和睡眠期间。每个阶段循环具有上升阶段、下降阶段、以及维持阶段。在上升阶段中,切换电路系操作成使电感电流上升。在下降阶段中,切换电路系操作成使电感电流下降。在维持阶段中,切换电路系操作成使电感电流维持几乎固定。睡眠期间防止电感的两端分别耦合于输入电压、输出电压和地面电位中的任意两个。The present invention discloses a light load control circuit, which enables the switching circuit of a step-up/down voltage converter to alternately operate in multiple phase cycles and sleep periods. Each phase cycle has a rising phase, a falling phase, and a maintaining phase. In the rising phase, the switching circuit system is operated to increase the inductor current. In the falling phase, the switching circuit system is operated to decrease the inductor current. In the maintaining phase, the switching circuit system is operated to maintain the inductor current almost fixed. During the sleep period, the two ends of the inductor are prevented from being coupled to any two of the input voltage, the output voltage, and the ground potential.
Description
技术领域technical field
本发明涉及一种DC/DC电压转换器,尤其涉及一种升降式电压转换器的轻负载控制电路。The invention relates to a DC/DC voltage converter, in particular to a light load control circuit of a lifting voltage converter.
现有技术current technology
图1显示了现有的升降式电压转换器的电路图。参照图1,现有的升降式电压转换器包含同步切换电路10、升降式控制电路11、驱动电路12、以及轻负载控制电路13。Figure 1 shows the circuit diagram of an existing buck-boost voltage converter. Referring to FIG. 1 , the conventional up-down voltage converter includes a
升降式控制电路11基于输出电压Vout的反馈,产生一电压转换控制信号VCS。响应于电压转换控制信号VCS,驱动电路12产生四个驱动信号D1至D4,用以分别驱动切换单元S1至S4。借助于适当控制切换单元S1至S4的导通及/或不导通,以及导通时间或不导通时间的比例,输入电压Vin可有效地转换成输出电压Vout,其中输入电压Vin可以大于、等于、或小于输出电压Vout。在现有技术上已存在有许多型态的升降式控制电路11,例如美国专利第6,166,527号与第6,788,033号等技术文献中所公开的电路与方法。The up-
当负载50所需要的负载电流Iout较小时,为了提高电压转换效率,现有的升降式电压转换器会进入轻负载模式的操作中。在轻负载模式的操作中,驱动电路12不再继续响应于升降式控制电路11的电压转换控制信号VCS,而改变成另由轻负载控制电路13所控制。举例而言,Linear Technology于2001年10月所印行的LT3438“MicropowerSynchronous Buck-Boost DC/DC Converter”的产品说明书(Datasheet)第10页的图3与4公开了升降式电压转换器的现有轻负载模式。When the load current I out required by the
图2(A)显示在现有的轻负载模式中,电感电流IL的时序图。参照图2(A),现有的轻负载模式包含上升阶段与下降阶段。在上升阶段中,即从时间t1至t2,电感电流IL从零线性上升至预定的峰值Ipk。在下降阶段中,即从时间t2至t3,电感电流IL从峰值Ipk线性下降至零。Figure 2(A) shows the timing diagram of the inductor current I L in the existing light load mode. Referring to FIG. 2(A), the existing light load mode includes a rising phase and a falling phase. During the rising phase, ie from time t1 to t2, the inductor current IL rises linearly from zero to a predetermined peak value I pk . During the falling phase, ie from time t2 to t3, the inductor current IL drops linearly from the peak value Ipk to zero.
图2(B)显示同步切换电路10在上升阶段中的操作状态示意图。参照图2(B),切换单元S1与S4都导通而切换单元S2与S3都不导通,使得电感L的第一端La耦合至输入电压Vin而第二端Lb耦合至地面电位。因此,电感电流IL以(Vin/L)的速率线性上升。FIG. 2(B) shows a schematic diagram of the operation state of the
图2(C)显示同步切换电路10在下降阶段中的操作状态示意图。参照图2(C),切换单元S1与S4都不导通而切换单元S2与S3都导通,使得电感L的第一端La耦合至地面电位而第二端Lb耦合至输出电压Vout。因此,电感电流IL以(Vout/L)的速率线性下降。FIG. 2(C) shows a schematic diagram of the operation state of the
在现有的轻负载模式中,所能提供的负载电流的最大平均值可由下列方程式(1)计算而得:In the existing light load mode, the maximum average value of the load current that can be provided can be calculated by the following equation (1):
如果负载电流Iout超过方程式(1)所表示的最大轻负载平均输出电流Iout_ave(max),则现有的升降式电压转换器会离开轻负载模式,使其操作重新回到升降式控制电路11的控制下。If the load current I out exceeds the maximum light-load average output current I out_ave(max) represented by equation (1), the existing buck-boost voltage converter will leave the light-load mode and its operation will return to the buck-
如前所述,不论输入电压Vin大于、等于、或小于输出电压Vout,升降式电压转换器都可将输入电压Vin转换成预定的输出电压Vout。即,升降式电压转换器可应用于具有宽广范围的输入电压Vin。然而,输入电压Vin的变化会影响到轻负载模式的最大轻负载平均输出电流Iout_ave(max)。具体而言,考虑将方程式(1)对于输入电压Vin进行偏微分运算,则可获得下列方程式(2):As mentioned above, regardless of whether the input voltage V in is greater than, equal to, or less than the output voltage V out , the buck-boost voltage converter can convert the input voltage V in into a predetermined output voltage V out . That is, the buck-boost voltage converter can be applied to a wide range of input voltages V in . However, the change of the input voltage V in will affect the maximum light-load average output current I out_ave(max) in the light-load mode. Specifically, considering the partial differential operation of equation (1) with respect to the input voltage V in , the following equation (2) can be obtained:
由于方程式(2)输入电压Vin的一函数,因而对于不同的输入电压Vin,轻负载控制电路13造成升降式电压转换器在不同的最大轻负载平均输出电流Iout_ave(max)下离开轻负载模式。Since Equation (2) is a function of the input voltage V in , for different input voltages V in , the light
然而,人们所期望的是一种轻负载控制电路,可对于宽广范围的输入电压Vin,稳定地控制升降式电压转换器的轻负载模式的启动与终止。However, what is desired is a light load control circuit that can stably control the initiation and termination of the light load mode of the buck-boost converter for a wide range of input voltage V in .
发明内容Contents of the invention
有鉴于前述问题,本发明的一个目的在于提供一种轻负载控制电路,可对于宽广范围的输入电压,稳定地控制升降式电压转换器的轻负载模式的启动与终止。In view of the aforementioned problems, an object of the present invention is to provide a light load control circuit that can stably control the start and end of the light load mode of the buck-boost converter for a wide range of input voltages.
本发明的另一目的在于提供一种轻负载控制电路,可有效地降低输入电压的变化对于最大轻负载平均输出电流所造成的影响性。Another object of the present invention is to provide a light load control circuit that can effectively reduce the impact of input voltage changes on the maximum light load average output current.
依据本发明的一方面,提供一种轻负载控制电路,用以控制升降式电压转换器的切换电路。切换电路具有输入切换单元和输出切换单元。输入切换单元选择性耦合电感的第一端至输入电压与地面电位。输出切换单元选择性耦合电感的第二端至输出电压与地面电位。According to an aspect of the present invention, a light load control circuit is provided for controlling a switching circuit of a buck-boost voltage converter. The switching circuit has an input switching unit and an output switching unit. The input switching unit selectively couples the first end of the inductor to the input voltage and the ground potential. The output switching unit selectively couples the second end of the inductor to the output voltage and the ground potential.
轻负载控制电路具有阶段控制单元与睡眠控制单元。阶段控制单元使切换电路操作于多个阶段循环。每一个阶段循环具有上升阶段、下降阶段、以及维持阶段。在上升阶段中,切换电路系操作成使流经该电感的电感电流上升。或者,切换电路系操作成使跨于电感的第一端与第二端间的电位差具有第一极性。在下降阶段中,切换电路系操作成使电感电流下降。或者,切换电路系操作成使跨于电感的第一端与第二端间的电位差具有第二极性。第二极性系相反于第一极性。在维持阶段中,切换电路系操作成使电感电流维持几乎固定。或者,切换电路系操作成使跨于电感的第一端与第二端间的电位差实质上为零。The light load control circuit has a stage control unit and a sleep control unit. The phase control unit makes the switching circuit operate in multiple phase cycles. Each phase cycle has an ascending phase, a descending phase, and a sustaining phase. During the ramp-up phase, the switching circuit operates to ramp up the inductor current flowing through the inductor. Alternatively, the switching circuit is operative to cause a potential difference across the first end and the second end of the inductor to have the first polarity. During the ramp-down phase, the switching circuit operates to ramp down the inductor current. Alternatively, the switching circuit is operative to cause the potential difference across the first end and the second end of the inductor to have the second polarity. The second polarity is opposite to the first polarity. During the sustain phase, the switching circuit operates to maintain the inductor current nearly constant. Alternatively, the switching circuit is operated such that the potential difference across the first terminal and the second terminal of the inductor is substantially zero.
在该输出电压达到预定的睡眠参考电压之后,睡眠控制单元使切换电路操作于睡眠期间而防止电感的第一端与第二端分别耦合于输入电压、输出电压、与地面电位中的任两者。在睡眠期间中,负载电流的供应系单独藉由输出电容的放电而达成。After the output voltage reaches a predetermined sleep reference voltage, the sleep control unit makes the switching circuit operate during sleep to prevent the first end and the second end of the inductor from being coupled to any two of the input voltage, the output voltage, and the ground potential, respectively. . During the sleep period, the supply of load current is achieved solely by discharging the output capacitor.
借着轻负载控制电路所提供的维持阶段的操作,最大轻负载平均输出电流由输出电压所引起的变化率因而受到抑制。所以,对于宽广范围的输入电压而言,依据本发明的轻负载控制电路可稳定地控制升降式电压转换器的轻负载模式的启动与终止。The rate of change of the maximum light load average output current due to the output voltage is suppressed by the maintenance phase operation provided by the light load control circuit. Therefore, for a wide range of input voltages, the light load control circuit according to the present invention can stably control the startup and termination of the light load mode of the buck-boost voltage converter.
附图说明Description of drawings
图1显示现有的升降式电压转换器的电路图;Figure 1 shows a circuit diagram of an existing boost-boost voltage converter;
图2(A)显示在现有的轻负载模式中电感电流的时序图;Figure 2(A) shows the timing diagram of the inductor current in the existing light load mode;
图2(B)显示同步切换电路在上升阶段中的操作状态示意图;FIG. 2(B) shows a schematic diagram of the operating state of the synchronous switching circuit in the rising phase;
图2(C)显示同步切换电路在下降阶段中的操作状态示意图;FIG. 2(C) shows a schematic diagram of the operating state of the synchronous switching circuit in the falling phase;
图3显示依据本发明第一实施例的升降式电压转换器的电路图;FIG. 3 shows a circuit diagram of a boost voltage converter according to a first embodiment of the present invention;
图4显示在依据本发明第一实施例的轻负载模式中反馈电压信号与电感电流的时序图;4 shows a timing diagram of the feedback voltage signal and the inductor current in the light load mode according to the first embodiment of the present invention;
图5(A)显示同步切换电路在上升阶段中的操作状态示意图;FIG. 5(A) shows a schematic diagram of the operating state of the synchronous switching circuit in the rising phase;
图5(B)显示同步切换电路在下降阶段中的操作状态示意图;Fig. 5 (B) shows the schematic diagram of the operating state of the synchronous switching circuit in the falling phase;
图5(C)显示同步切换电路在维持阶段中的操作状态示意图;FIG. 5(C) shows a schematic diagram of the operating state of the synchronous switching circuit in the maintenance phase;
图5(D)显示同步切换电路在睡眠期间中的六种操作状态的示意图;FIG. 5(D) shows a schematic diagram of six operating states of the synchronous switching circuit during sleep;
图6显示依据本发明第一实施例的维持时间控制单元的详细电路图;FIG. 6 shows a detailed circuit diagram of the sustain time control unit according to the first embodiment of the present invention;
图7(A)显示依据本发明第二实施例的轻负载控制电路的电路图;FIG. 7(A) shows a circuit diagram of a light load control circuit according to a second embodiment of the present invention;
图7(B)显示在依据本发明第二实施例的轻负载模式中电感电流的时序图;FIG. 7(B) shows a timing diagram of the inductor current in the light load mode according to the second embodiment of the present invention;
图8(A)显示依据本发明第三实施例的轻负载控制电路的电路图;以及FIG. 8(A) shows a circuit diagram of a light load control circuit according to a third embodiment of the present invention; and
图8(B)显示在依据本发明第三实施例的轻负载模式中电感电流的时序图。FIG. 8(B) shows a timing diagram of the inductor current in the light load mode according to the third embodiment of the present invention.
主要元件符号说明Description of main component symbols
10,30 同步切换电路 11,31 升降式控制电路10, 30
12,32 驱动电路 13,33,73,83轻负载控制电路12, 32
34 电压反馈电路 35 启动单元34
36,76,86阶段控制单元 36-1,36-2 电流比较器36, 76, 86 stage control unit 36-1, 36-2 current comparator
36-3,76-3,86-3维持时间控制单元36-3, 76-3, 86-3 maintenance time control unit
37 睡眠控制单元 50 负载37
AT,AT1,AT2触发端 AO,AO1,AO2 输出端AT, AT1, AT2 trigger terminal AO, AO1, AO2 output terminal
Bm 缓冲反相器 Cout 输出电容B m buffer inverter C out output capacitance
Cm 电容 CPm 电压比较器C m capacitance CP m voltage comparator
D1~D4 驱动信号 L 电感D1~D4 Drive Signal L L Inductance
La,La 电感的两端 IL 电感电流La, La Both ends of the inductor I L inductor current
Iout 负载电流 Ipk 峰值电流I out load current I pk peak current
Ibm 谷值电流 Ith 临界电流I bm valley current I th critical current
Im 充电电流 S1~S4 切换单元I m charging current S1~S4 switching unit
Sm NMOS晶体管 Tm 维持时间S m NMOS transistor T m sustain time
Vin 输入电压 Vout 输出电压V in input voltage V out output voltage
Vfb 电压反馈信号 Vth 临界电压V fb voltage feedback signal V th threshold voltage
Vm 维持时间参考电压 Vslp 睡眠参考电压V m sustain time reference voltage V slp sleep reference voltage
Vhys 磁滞电压 VCS 电压转换控制信号V hys hysteresis voltage VCS voltage switching control signal
LM 轻负载启动信号 LX 轻负载终止信号LM Light load start signal LX Light load termination signal
RX 上升终止信号 FX 下降终止信号RX Rising stop signal FX Falling stop signal
MX,MX1,MX2维持终止信号MX, MX1, MX2 maintain termination signal
SLP 睡眠信号SLP sleep signal
具体实施方式Detailed ways
下文中的说明与附图将使本发明的前述与其他目的、特征、与优点更明显。现在将参照图式详细说明依据本发明的较佳实施例。The foregoing and other objects, features, and advantages of the present invention will be more apparent from the following description and accompanying drawings. Preferred embodiments according to the present invention will now be described in detail with reference to the accompanying drawings.
图3显示依据本发明第一实施例的升降式电压转换器的电路图。升降式电压转换器系用以转换输入电压Vin成为输出电压Vout,其中输入电压Vin可以大于、等于、或小于输出电压Vout。参照图3,升降式电压转换器包含同步切换电路30、升降式控制电路31、驱动电路32、轻负载控制电路33、以及电压反馈电路34。FIG. 3 shows a circuit diagram of a buck-boost voltage converter according to a first embodiment of the invention. The buck-boost voltage converter is used to convert the input voltage V in to an output voltage V out , wherein the input voltage V in can be greater than, equal to, or less than the output voltage V out . Referring to FIG. 3 , the boost voltage converter includes a
同步切换电路30具有输入切换单元与输出切换单元。具体而言,输入切换单元由第一切换单元S1与第二切换单元S2所构成,而输出切换单元由第三切换单元S3与第四切换单元S4所构成。第一切换单元S1设置于输入电压Vin与电感L的第一端La之间。第二切换单元S2设置于电感L的第一端La与地面电位之间。第三切换单元S3设置于电感L的第二端Lb与输出电压Vout之间。第四切换单元S4设置于电感L的第二端Lb与地面电位间。The
电压反馈电路34耦合于同步切换电路30,用以产生一电压反馈信号Vfb,以代表输出电压Vout。举例而言,电压反馈电路34由多个串联电阻所构成的分压器所实施。The voltage feedback circuit 34 is coupled to the
响应于电压反馈信号Vfb,升降式控制电路31产生电压转换控制信号VCS,用以决定同步切换电路30的切换单元S1至S4的导通或不导通,及其导通时间与不导通时间。电压转换控制信号VCS包含多个彼此独立或相互关联的子信号,用以分别控制切换单元S1至S4。电压转换控制信号VCS经由驱动电路32而具体形成四个驱动信号D1至D4,用以分别驱动切换单元S1至S4。借助于适当控制切换单元S1至S4的导通及/或不导通,以及导通时间与不导通时间的比例,输入电压Vin可有效地转换成输出电压Vout,不论输入电压Vin大于、等于、或小于输出电压Vout。由于升降式控制电路31已是本领域所属普通技术人员所周知,故此处不再赘述。请注意本发明主要涉及轻负载控制电路33,并且依据本发明的轻负载控制电路33可应用于所有目前已知或将来可能开发出的升降式电压转换器,而非仅限制于少数特定的升降式控制电路31。In response to the voltage feedback signal V fb , the up-down control circuit 31 generates a voltage conversion control signal VCS for determining the conduction or non-conduction of the switching units S1 to S4 of the
当负载50所需要的负载电流Iout较小时,为了提高电压转换效率,依据本发明的升降式电压转换器会进入轻负载模式的操作中。在轻负载模式的操作中,驱动电路32不再继续响应于升降式控制电路31所产生的电压转换控制信号VCS,而改变成另由轻负载控制电路33所控制。具体而言,轻负载控制电路33包含启动单元35、阶段控制单元36、睡眠控制单元37、以及终止单元38。When the load current I out required by the
启动单元35用以检测电感电流IL并且于电感电流IL低于一预定的临界电流Ith时受触发而产生一轻负载启动信号LM。响应于轻负载启动信号LM,驱动电路32随即改换成由轻负载控制电路33所控制,以便进行具有较高效率的轻负载模式操作。举例而言,启动单元35可由一电流比较器所实施,用以比较电感电流IL与临界电流Ith,使得当电感电流IL低于临界电流Ith时,电流比较器受到触发而产生轻负载启动信号LM。The
阶段控制单元36用以使同步切换电路30操作于多个阶段循环,其中每一个阶段循环具有上升阶段、下降阶段、以及维持阶段。如图4所示,在上升阶段中,亦即从时间t1至t2,电感电流IL从预定的谷值Ibm线性上升至预定的峰值Ipk。在下降阶段中,即从时间t2至t3,电感电流IL从峰值Ipk线性下降至谷值Ibm。在维持阶段中,即从时间t3至t4,电感电流IL维持于几乎固定的状态,亦即维持于时间t3的谷值Ibm。The phase control unit 36 is used to make the
阶段控制单元36设置有电流比较器36-1,用以比较电感电流IL与预定的峰值电流Ipk。当电感电流IL线性上升达到峰值电流Ipk时,电流比较器36-1受到触发而产生上升终止信号RX,使得驱动电路32终止同步切换电路30的上升阶段操作。The phase control unit 36 is provided with a current comparator 36-1 for comparing the inductor current I L with a predetermined peak current I pk . When the inductor current I L rises linearly to reach the peak current I pk , the current comparator 36 - 1 is triggered to generate a rising end signal RX, so that the driving circuit 32 terminates the rising phase operation of the
阶段控制单元36还设置有另一电流比较器36-2,用以比较电感电流IL与预定的谷值电流Ibm。当电感电流IL线性下降达到谷值电流Ibm时,电流比较器36-2受到触发而产生下降终止信号FX,使得驱动电路32终止同步切换电路30的下降阶段操作。举例而言,谷值电流Ibm可设定为零。The phase control unit 36 is also provided with another current comparator 36-2 for comparing the inductor current I L with a predetermined valley current I bm . When the inductor current I L drops linearly to reach the valley current I bm , the current comparator 36 - 2 is triggered to generate the falling termination signal FX, so that the driving circuit 32 terminates the falling phase operation of the
阶段控制单元36还设置有维持时间控制单元36-3,用以决定维持阶段所占的维持时间Tm长短。维持时间控制单元36-3具有触发端AT与输出端AO。当触发端AT接收到下降终止信号FX时,维持时间控制单元36-3开始计算时间。一旦经过预定的维持时间Tm之后,维持时间控制单元36-3的输出端AO产生维持终止信号MX,使得驱动电路32终止同步切换电路30的维持阶段操作。The phase control unit 36 is also provided with a maintenance time control unit 36-3 for determining the length of the maintenance time T m occupied by the maintenance phase. The hold time control unit 36-3 has a trigger terminal AT and an output terminal AO. When the trigger terminal AT receives the falling end signal FX, the sustain time control unit 36-3 starts to count the time. Once the predetermined sustain time T m elapses, the output terminal AO of the sustain time control unit 36 - 3 generates a sustain termination signal MX, so that the driving circuit 32 terminates the sustain phase operation of the
如图5(A)所示,在上升阶段中,切换单元S1与S4都导通而切换单元S2与S3都不导通,使得电感L的第一端La耦合至输入电压Vin而第二端Lb耦合至地面电位。因此,电感电流IL以(Vin/L)的速率线性上升。As shown in FIG. 5(A), in the rising phase, both the switching units S1 and S4 are turned on and neither the switching units S2 nor S3 are turned on, so that the first end La of the inductor L is coupled to the input voltage Vin and the second end La is coupled to the input voltage Vin . Terminal Lb is coupled to ground potential. Therefore, the inductor current IL increases linearly at a rate of (V in /L).
如图5(B)所示,在下降阶段中,切换单元S1与S4都不导通而切换单元S2与S3都导通,使得电感L的第一端La耦合至地面电位而第二端Lb耦合至输出电压Vout。因此,电感电流IL以(Vout/L)的速率线性下降。As shown in FIG. 5(B), in the falling phase, the switching units S1 and S4 are both conducting and the switching units S2 and S3 are both conducting, so that the first end La of the inductor L is coupled to the ground potential and the second end Lb coupled to the output voltage V out . Therefore, the inductor current IL decreases linearly at a rate of (V out /L).
如图5(C)所示,在维持阶段中,切换单元S1与S3都不导通而切换单元S2与S4都导通,使得电感L的第一端La与第二端Lb都耦合至地面电位。由于电感L的第一端La与第二端Lb间的电位差为零,故电感电流IL自由地流动于一封闭回路中而维持于几乎固定的状态(如果略电感L以及切换单元S2与S4所具有的电阻系数)。As shown in FIG. 5(C), in the maintenance phase, the switching units S1 and S3 are both turned on and the switching units S2 and S4 are both turned on, so that both the first end La and the second end Lb of the inductor L are coupled to the ground potential. Since the potential difference between the first end La and the second end Lb of the inductor L is zero, the inductor current IL freely flows in a closed loop and maintains an almost fixed state (if the inductor L and the switching unit S2 and S4 has a resistivity).
回头参照图3与4,在前述多个阶段循环的操作中,当电压反馈信号Vfb达到预定的睡眠参考电压Vslp时,睡眠控制单元37被触发而产生睡眠信号SLP。响应于睡眠信号SLP,驱动电路32使切换电路操作于睡眠期间而防止电感L的第一端La与第二端Lb分别耦合于输入电压Vin、输出电压Vout、与地面电位中的任意两个。Referring back to FIGS. 3 and 4 , in the aforementioned multiple stages of operation, when the voltage feedback signal V fb reaches the predetermined sleep reference voltage V slp , the
举例而言,如图5(D)所示,同步切换电路30在睡眠期间中可处于六种操作状态的其中任一种。就例子1而言,第一切换单元S1导通而第二至第四切换单元S2至S4都不导通,使得电感L的第一端La耦合至输入电压Vin,而电感L的第二端Lb处于浮置状态。就例子2而言,第二切换单元S2导通而第一、第三、与第四切换单元S1、S3、与S4都不导通,使得电感L的第一端La耦合至地面电位,而电感L的第二端Lb处于浮置状态。就例子3而言,第三切换单元S3导通而第一、第二、与第四切换单元S1、S2、与S4都不导通,使得电感L的第一端La处于浮置状态,而电感L的第二端Lb耦合至输出电压Vout。就例子4而言,第四切换单元S4导通而第一至第三切换单元S1至S3都不导通,使得电感L的第一端La处于浮置状态,而电感L的第二端Lb耦合至地面电位。就例子5而言,第二与第四切换单元S2与S4都导通而第一与第三切换单元S1与S3都不导通,使得电感L的第一端La与第二端Lb都耦合至地面电位。就例子6而言,第一至第四切换单元S1至S4都不导通,使得电感L的第一端La与第二端Lb都处于浮置状态。For example, as shown in FIG. 5(D), the
在睡眠期间中,负载电流Iout的供应单独借助于输出电容Cout的放电而实现。由于轻负载模式所需的负载电流Iout极小,故输出电容Cout的放电不会造成输出电压Vout发生剧烈变化。举例而言,睡眠控制单元37得由一具有磁滞效应的电压比较器所实施。在睡眠期间开始进行(例如图4的时间t5)之后,一旦电压反馈信号Vfb因输出电容Cout的放电而从睡眠参考电压Vslp下降了一预定的磁滞电压Vhys(例如图4的时间t6),则终止睡眠期间而恢复成由阶段控制单元36所控制的阶段循环。During the sleep period, the supply of the load current I out takes place solely by means of the discharge of the output capacitor C out . Since the load current I out required by the light load mode is extremely small, the discharge of the output capacitor C out will not cause a sharp change in the output voltage V out . For example, the
在轻负载模式中,当最大轻负载平均输出电流Iout_ave(max)仍然无法满足实际负载电流Iout的需求时,终止单元38产生轻负载终止信号LX。响应于轻负载终止信号LX,驱动电路32随即改换成由升降式控制电路31所控制,恢复至一般的升降式电压转换操作。举例而言,终止单元38得由一电压比较器所实施,用以比较电压反馈信号Vfb与一预定的临界电压Vth。当最大轻负载平均输出电流Iout_ave(max)仍然无法满足实际负载电流Iout的需求时,电压反馈信号Vfb会逐渐下降。因此,可适当设定一临界电压Vth,使得当电压反馈信号Vfb下降至低于临界电压Vth时,终止单元38的电压比较器受到触发而产生轻负载终止信号LX。应注意此临界电压Vth必须设定成小于睡眠参考电压Vslp减去磁滞电压Vhys的差。In the light load mode, when the maximum light load average output current I out_ave(max) still cannot meet the requirement of the actual load current I out , the
在依据本发明的由上升阶段、下降阶段、以及维持阶段所构成的阶段循环中,假设谷值电流Ibm系设定为零,则所能提供的最大轻负载平均输出电流Iout_ave(max)可由下列方程式(3)计算而得:In the stage cycle consisting of the rising stage, the falling stage, and the maintaining stage according to the present invention, assuming that the valley current Ibm is set to zero, the maximum light-load average output current Iout_ave(max) that can be provided It can be calculated by the following equation (3):
如前所述,不论输入电压Vin系大于、等于、或小于输出电压Vout,升降式电压转换器都可将输入电压Vin转换成一预定的输出电压Vout。即,升降式电压转换器可应用于具有宽广范围的输入电压Vin。然而,输入电压Vin的变化会影响到轻负载模式的最大轻负载平均输出电流Iout_ave(max)。具体而言,考虑将方程式(3)对于输入电压Vin进行偏微分运算,则可获得下列方程式(4):As mentioned above, no matter whether the input voltage V in is greater than, equal to, or less than the output voltage V out , the buck-boost voltage converter can convert the input voltage V in into a predetermined output voltage V out . That is, the buck-boost voltage converter can be applied to a wide range of input voltages V in . However, the change of the input voltage V in will affect the maximum light-load average output current I out_ave(max) in the light-load mode. Specifically, considering the partial differential operation of equation (3) with respect to the input voltage V in , the following equation (4) can be obtained:
比较方程式(2)与方程式(4)可知,在依据本发明的轻负载模式中,最大轻负载平均输出电流Iout_ave(max)的变化率因着维持时间Tm的存在而下降。换而言之,依据本发明的维持阶段有效地达成增强最大轻负载平均输出电流Iout_ave(max)稳定性的效果。对于宽广范围的输入电压Vin而言,依据本发明第一实施例的轻负载控制电路33可稳定地控制升降式电压转换器的轻负载模式的启动与终止。Comparing Equation (2) with Equation (4), it can be seen that in the light load mode according to the present invention, the rate of change of the maximum light load average output current I out_ave(max) decreases due to the existence of the maintenance time T m . In other words, the maintenance phase according to the present invention effectively achieves the effect of enhancing the stability of the maximum light-load average output current I out_ave(max) . For a wide range of input voltages Vin , the light load control circuit 33 according to the first embodiment of the present invention can stably control the startup and termination of the light load mode of the buck-boost voltage converter.
请注意在本发明中,维持时间Tm不限于固定值而亦得由一可控制的变化值所实施。现在假设维持时间Tm设定成正比于输入电压Vin,即:Please note that in the present invention, the maintenance time T m is not limited to a fixed value but can also be implemented by a controllable variable value. Now assume that the hold time T m is set proportional to the input voltage V in , namely:
Tm=k·Vin (5)T m =k·V in (5)
其中k为一比例常数,则依据本发明的最大轻负载平均输出电流Iout_ave(max)可由下列方程式(6)计算而得:Where k is a proportional constant, then the maximum light-load average output current Iout_ave(max) according to the present invention can be calculated by the following equation (6):
因此,考虑将方程式(6)对于输入电压Vin进行偏微分运算,则可获得下列方程式(7):Therefore, considering the partial differential operation of equation (6) with respect to the input voltage V in , the following equation (7) can be obtained:
由方程式(7)可知,当输入电压Vin满足下列方程式(8)时:It can be known from equation (7) that when the input voltage V in satisfies the following equation (8):
最大轻负载平均输出电流Iout_ave(max)将不受到输入电压Vin变动的影响。因此,适当地选择比例常数k使得方程式(8)的值位于输入电压Vin的操作范围的中间点,则可有效降低输入电压Vin的变动对于最大轻负载平均输出电流Iout_ave(max)所造成的影响。The maximum light-load average output current I out_ave(max) will not be affected by changes in the input voltage V in . Therefore, properly selecting the proportionality constant k so that the value of equation (8) is at the middle point of the operating range of the input voltage Vin can effectively reduce the impact of the variation of the input voltage Vin on the maximum light-load average output current I out_ave(max) impact.
图6显示依据本发明第一实施例的维持时间控制单元36-3的详细电路图。参照图6,维持时间控制单元36-3可得包含电压比较器CPm、电流源Im、电容Cm、NMOS晶体管Sm、以及缓冲反相器Bm。NMOS晶体管Sm的栅极作为维持时间控制单元36-3的触发端AT,用以经由缓冲反相器Bm而接收下降终止信号FX。电压比较器CPm的输出端作为维持时间控制单元36-3的输出端AO,用以提供维持终止信号MX。在下降阶段结束时,亦即电感电流IL下降至谷值电流Ibm时,下降终止信号FX从低电平转态成高电平。因此,NMOS晶体管Sm从导通状态转变成不导通状态,使得电流源Im开始对于电容Cm充电。一旦跨于电容Cm两端的电位差线性增加到超出预定的维持时间参考电压Vm,电压比较器CPm被触发而使维持终止信号MX从低电平转态成高电平。因此,维持时间Tm的长短可由维持时间控制单元36-3所决定。FIG. 6 shows a detailed circuit diagram of the sustain time control unit 36-3 according to the first embodiment of the present invention. Referring to FIG. 6 , the sustain time control unit 36-3 may include a voltage comparator CP m , a current source I m , a capacitor C m , an NMOS transistor S m , and a buffer inverter B m . The gate of the NMOS transistor S m serves as the trigger terminal AT of the sustain time control unit 36 - 3 for receiving the falling termination signal FX via the buffer inverter B m . The output terminal of the voltage comparator CP m serves as the output terminal AO of the sustain time control unit 36-3 for providing the sustain termination signal MX. At the end of the falling phase, that is, when the inductor current I L drops to the valley current I bm , the falling termination signal FX changes from a low level to a high level. Therefore, the NMOS transistor S m turns from a conducting state to a non-conducting state, so that the current source Im begins to charge the capacitor C m . Once the potential difference across the capacitor C m increases linearly beyond the predetermined sustain time reference voltage V m , the voltage comparator CP m is triggered to make the sustain termination signal MX transition from low to high. Therefore, the length of the maintenance time T m can be determined by the maintenance time control unit 36-3.
图7(A)显示依据本发明第二实施例的轻负载控制电路73的电路图。第二实施例不同于第一实施例的处在于第二实施例的维持时间控制单元76-3由上升终止信号RX所触发而开始计算维持时间Tm。因此,在第二实施例的轻负载模式中,维持阶段系接续在上升阶段之后发生。参照图7(B)所示,在上升阶段中,即从时间t1至t2,电感电流IL从谷值Ibm线性上升至峰值Ipk。在维持阶段中,即从时间t2至t3,电感电流IL维持于几乎固定的状态,即维持于时间t2的峰值Ipk。在下降阶段中,亦即从时间t3至t4,电感电流IL从峰值Ipk线性下降至谷值Ibm。FIG. 7(A) shows a circuit diagram of a light load control circuit 73 according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in that the sustaining time control unit 76 - 3 of the second embodiment is triggered by the rising end signal RX to start calculating the sustaining time T m . Therefore, in the light load mode of the second embodiment, the sustain phase occurs successively after the ramp-up phase. Referring to FIG. 7(B), in the rising phase, that is, from time t1 to t2, the inductor current IL increases linearly from the valley value I bm to the peak value I pk . In the maintaining phase, ie from time t2 to t3, the inductor current IL is maintained at a nearly constant state, ie at the peak value I pk at time t2. In the falling phase, ie from time t3 to t4, the inductor current I L linearly decreases from the peak value I pk to the valley value I bm .
图8(A)显示依据本发明第三实施例的轻负载控制电路83的电路图。第三实施例不同于第一实施例的处在于第三实施例的维持时间控制单元86-3具有第一触发端AT1与第二触发端AT2以及第一输出端AO1与第二输出端AO2。第一触发端AT1由上升终止信号RX所触发,而开始计算第一维持时间Tm1。经过第一维持时间Tm1之后,第一输出端AO1输出第一维持终止信号MX1。因此,在第三实施例的轻负载模式中,第一维持阶段系接续在上升阶段之后发生。第二触发端AT2系由下降终止信号FX所触发,而开始计算第二维持时间Tm2。经过第二维持时间Tm2之后,第二输出端AO2输出第二维持终止信号MX2。因此,在第三实施例的轻负载模式中,第二维持阶段系接续在下降阶段之后发生。FIG. 8(A) shows a circuit diagram of a light
参照图8(B),在上升阶段中,即从时间t1至t2,电感电流IL从谷值Ibm线性上升至峰值Ipk。在第一维持阶段中,即从时间t2至t3,电感电流IL维持于几乎固定的状态,即维持于时间t2的峰值Ipk。在下降阶段中,即从时间t3至t4,电感电流IL从峰值Ipk线性下降至谷值Ibm。在第二维持阶段中,即从时间t4至t5,电感电流IL维持于几乎固定的状态,即维持于时间t4的谷值Ibm。Referring to FIG. 8(B), in the rising phase, that is, from time t1 to t2, the inductor current IL increases linearly from the valley value I bm to the peak value I pk . In the first sustaining phase, ie from time t2 to t3, the inductor current IL is maintained at a nearly constant state, ie at the peak value I pk at time t2. In the falling phase, ie from time t3 to t4, the inductor current I L linearly decreases from the peak value I pk to the valley value I bm . In the second maintaining phase, ie from time t4 to t5, the inductor current IL is maintained at a nearly constant state, ie at the valley value I bm at time t4.
虽然本发明已经由较佳实施例作为例示加以说明,应该理解:本发明不限于此所揭露的实施例。相反地,本发明意欲涵盖对于本领域所属技术人员而言明显的各种修改与相似配置。因此,全力要求的范围应根据最广的诠释,以包容所有此类修改与相似配置。While the present invention has been described by way of illustration of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, the invention is intended to cover various modifications and similar arrangements apparent to those skilled in the art. Accordingly, the scope of the full claims shall be construed in the broadest way to encompass all such modifications and similar configurations.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200510076122XA CN1877480A (en) | 2005-06-08 | 2005-06-08 | Light Load Control Circuit for Buck-Boost Voltage Converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200510076122XA CN1877480A (en) | 2005-06-08 | 2005-06-08 | Light Load Control Circuit for Buck-Boost Voltage Converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1877480A true CN1877480A (en) | 2006-12-13 |
Family
ID=37509940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200510076122XA Pending CN1877480A (en) | 2005-06-08 | 2005-06-08 | Light Load Control Circuit for Buck-Boost Voltage Converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1877480A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103314515A (en) * | 2011-01-25 | 2013-09-18 | 西门子公司 | Method for regulating a buck/boost converter |
-
2005
- 2005-06-08 CN CNA200510076122XA patent/CN1877480A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103314515A (en) * | 2011-01-25 | 2013-09-18 | 西门子公司 | Method for regulating a buck/boost converter |
US9112403B2 (en) | 2011-01-25 | 2015-08-18 | Siemens Aktiengesellschaft | Method for regulating a buck/boost converter |
CN103314515B (en) * | 2011-01-25 | 2015-11-25 | 西门子公司 | Regulate method and the buck-boost transducer of buck-boost transducer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1060298C (en) | Interleaved switching converter circuit and switching converter controlling method | |
CN100342629C (en) | Frequency conversion pulse width modulation controller circuit and its control method | |
US9433047B2 (en) | Single inductor multiple LED string driver | |
JP4347249B2 (en) | DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter | |
CN101064473A (en) | Gleichstrom/gleichstrom-wandler vom typ mit multiausgang | |
CN1956306A (en) | DC-DC converter and method for controlling a DC-DC converter | |
JP2010259257A (en) | Switching regulator and operation control method thereof | |
CN101065891A (en) | Switching power supply and its control circuit, and electronic apparatus employing such switching power supply | |
CN1829055A (en) | DC-DC converter, control device and method, power supply device and electronic equipment | |
US9287777B2 (en) | Average current controller, average current control method and buck converter using the average current controller | |
CN1578090A (en) | Circuit and method for controlling synchronous rectifiers in power converters | |
WO2013168376A1 (en) | Light emitting diode drive apparatus and semiconductor device | |
CN1812235A (en) | Electronic component for power supply and a power supply device | |
CN1691481A (en) | Switching regulator and method for changing output voltages thereof | |
US20070262763A1 (en) | Power supply circuit device and electronic apparatus provided therewith | |
CN1449097A (en) | On-off regulator having two or more outputs | |
CN1866711A (en) | Constant-voltage circuit, semiconductor apparatus including constant-voltage circuit, and control method of constant-voltage circuit | |
CN1871762A (en) | Switching burst method and apparatus for reducing standby power and improving load regulation in a DC-DC converter | |
JP2009201247A (en) | Boosting dc-dc converter | |
CN1534854A (en) | Multiple Output DC-DC Converters | |
CN101583216A (en) | Driving circuit and driving method of light emitting diode | |
CN1619932A (en) | DC-DC converter | |
CN1434561A (en) | Switch power supply device | |
CN103516203A (en) | DC-DC controller and operation method thereof | |
CN1367573A (en) | Electric source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20090109 Address after: Hsinchu City, Taiwan, China Applicant after: Global Mixed-mode Technology Inc. Address before: Taiwan, China Applicant before: Yuanchuang Science and Technology Co., Ltd. |
|
ASS | Succession or assignment of patent right |
Owner name: ZHIXIN TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: YUANCHUANG TECHNOLOGY CO., LTD. Effective date: 20090109 |
|
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20061213 |