CN1872663A - Technique for preparing synthesis gas from coke oven gas - Google Patents
Technique for preparing synthesis gas from coke oven gas Download PDFInfo
- Publication number
- CN1872663A CN1872663A CNA2006100128636A CN200610012863A CN1872663A CN 1872663 A CN1872663 A CN 1872663A CN A2006100128636 A CNA2006100128636 A CN A2006100128636A CN 200610012863 A CN200610012863 A CN 200610012863A CN 1872663 A CN1872663 A CN 1872663A
- Authority
- CN
- China
- Prior art keywords
- gas
- coke oven
- methane
- synthesis gas
- oven gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000571 coke Substances 0.000 title abstract description 32
- 230000015572 biosynthetic process Effects 0.000 title abstract description 24
- 238000003786 synthesis reaction Methods 0.000 title abstract description 24
- 238000000034 method Methods 0.000 title abstract description 16
- 239000007789 gas Substances 0.000 abstract description 101
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 76
- 238000006243 chemical reaction Methods 0.000 abstract description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 19
- 239000001257 hydrogen Substances 0.000 abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 19
- 239000012528 membrane Substances 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 11
- 238000004939 coking Methods 0.000 abstract description 8
- 238000003912 environmental pollution Methods 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000008014 freezing Effects 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241001465382 Physalis alkekengi Species 0.000 description 2
- 239000003034 coal gas Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- LIXXICXIKUPJBX-UHFFFAOYSA-N [Pt].[Rh].[Pt] Chemical compound [Pt].[Rh].[Pt] LIXXICXIKUPJBX-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种焦炉气制合成气工艺,具体来讲是将焦化厂的焦炉气用有机膜分离富集其中的甲烷和氢气,然后将所得富甲烷气用高温碳载部分氧化制取不同H2/CO比例的合成气。该工艺富集纯度氢气可达92%,甲烷可达65%,富甲烷气采取高温碳载部分氧化制取合成气,甲烷转化率可达98%,合成气产率可达90%,H2/CO比例可任意调节。本发明利用焦化厂生产过程中外排放的焦炉气,有效地制备了合成气,既利用了能源,又解决了环境的污染问题,是一种实用的焦炉气制合成气的新工艺。The invention discloses a process for producing synthesis gas from coke oven gas. Specifically, organic membranes are used to separate and enrich methane and hydrogen in coke oven gas in a coking plant, and then the obtained methane-rich gas is produced by high-temperature carbon-loaded partial oxidation. Syngas with different H2 /CO ratios were taken. The process enriches hydrogen up to 92% and methane up to 65%. The methane-enriched gas adopts high-temperature carbon-loaded partial oxidation to produce synthesis gas. The conversion rate of methane can reach 98%, and the yield of synthesis gas can reach 90%. H 2 /CO ratio can be adjusted arbitrarily. The invention utilizes the coke oven gas discharged during the production process of the coking plant to effectively prepare synthesis gas, which not only utilizes energy, but also solves the problem of environmental pollution, and is a new practical coke oven gas production synthesis gas process.
Description
技术领域technical field
本发明涉及一种焦炉气制合成气的方法,具体来讲是一种焦炉煤气用有机膜分离除氢及渗余富含甲烷气高温碳载部分氧化制合成气的方法。The invention relates to a method for producing synthesis gas from coke oven gas, in particular to a method for producing synthesis gas through high-temperature carbon-supported partial oxidation of coke oven gas with organic membrane separation to remove hydrogen and residual methane.
技术背景technical background
我国是焦炭生产大国,2004年中国的焦炭产量已达到2.09亿吨,占世界焦炭总产量的49%,但焦炉煤气无法有效利用,“点天灯”放空的每年约有290~300亿Nm3,相当于国家西气东送年输气量的2倍,造成严重的环境污染和资源浪费,而目前从天然气到下游液体产品如甲醇、燃料油等产品的整个生产链中,60%~70%的生产成本是合成气的生产过程,为了有效利用大量的焦炉煤气资源及降低合成气生产成本,本课题研究出一种从焦炉气制合成气的工艺。China is a big country of coke production. In 2004, China's coke production reached 209 million tons, accounting for 49% of the world's total coke production. However, coke oven gas cannot be effectively utilized, and about 29 billion to 30 billion Nm are emptied every year by "lighting sky lanterns". 3. It is equivalent to twice the annual gas transmission volume of the country's West-to-East Gas Transmission, causing serious environmental pollution and waste of resources. At present, in the entire production chain from natural gas to downstream liquid products such as methanol and fuel oil, 60%~ 70% of the production cost is the production process of synthesis gas. In order to effectively utilize a large amount of coke oven gas resources and reduce the production cost of synthesis gas, this subject researches a process of producing synthesis gas from coke oven gas.
发明内容Contents of the invention
本发明利用焦化厂生产过程中外排放的焦炉气制合成气,以利用能源并解决能源的浪费问题和环境的污染问题,其目的是提供一种焦炉气制合成气工艺。The invention utilizes coke oven gas discharged during the production process of a coking plant to produce synthesis gas to utilize energy and solve the problem of energy waste and environmental pollution, and aims to provide a process for producing synthesis gas from coke oven gas.
本发明基于上述问题和目的,提出了一种焦炉气制合成气工艺,该工艺是将焦炉气净化后,用有机膜分离富集其中的甲烷和氢气,然后将所得富甲烷气高温碳载部分氧化制取合成气。Based on the above problems and objectives, the present invention proposes a coke oven gas synthesis gas process, which is to use organic membranes to separate and enrich the methane and hydrogen in the coke oven gas after purification, and then convert the obtained methane-enriched gas to high-temperature carbon Partial oxidation to produce synthesis gas.
其中,该工艺过程中将所制得的富氢气可以用于调节合成气中的H2/CO比例。Wherein, the hydrogen-rich gas produced during the process can be used to adjust the ratio of H 2 /CO in the synthesis gas.
实现本发明的具体工艺步骤如下:Realize the concrete process step of the present invention as follows:
首先,将焦炉气储存后,加压并保持压力为2~4MPa,然后以0.1~100L/min流量净化,并冷冻结晶焦炉气中的萘,冷冻温度为-15℃~-28℃,后过滤、吸附,使焦炉气中的萘含量<30mg/Nm3,苯含量<10g/Nm3。Firstly, after storing the coke oven gas, pressurize and keep the pressure at 2-4MPa, then purify at a flow rate of 0.1-100L/min, and freeze and crystallize the naphthalene in the coke oven gas, the freezing temperature is -15℃~-28℃, After filtration and adsorption, the naphthalene content in the coke oven gas is <30 mg/Nm 3 and the benzene content is <10 g/Nm 3 .
其次,将净化后的焦炉气以0.1~1.4MPa的压力送入有机膜分离器中,并将分离出的富氢气储存,再将分离出的富甲烷气与反应后的气体换热后,送入甲烷转化器中,空速在2~200min-1,富甲烷气和氧气比在0.8~7间,温度在800℃~1200℃下进行再次反应,即得H2/CO比介于0.2~2可调节的合成气,甲烷转化率为85%~98%。Secondly, the purified coke oven gas is sent to the organic membrane separator at a pressure of 0.1-1.4 MPa, and the separated hydrogen-rich gas is stored, and then the separated methane-rich gas is exchanged with the reacted gas, Send it to the methanator, the space velocity is 2-200min -1 , the ratio of methane-rich gas and oxygen is between 0.8-7, and the temperature is 800℃-1200℃ for another reaction, that is, the H 2 /CO ratio is between 0.2 ~2 Adjustable syngas with methane conversion rate of 85%~98%.
本发明一种焦炉气制合成气的工艺方法,利用焦化厂生产过程中外排放“点天灯”浪费掉的焦炉煤气有效地制备了合成气,既利用了能源,又解决了资源的浪费问题,更主要的是解决了环境的污染问题。我国每年“点天灯”放空的焦炉煤气约有290~300亿Nm3,相当于国家西气东送年输气量的2倍,造成了严重的资源浪费和环境污染问题,因此,本发明具有实质性特点和显著的进步,也具有重大的现实意义。The present invention is a coke oven gas synthesis gas process method, which effectively prepares synthesis gas by using the coke oven gas wasted in the production process of the coking plant by "lighting sky lanterns", which not only utilizes energy, but also solves the waste of resources problems, and more importantly, to solve the problem of environmental pollution. About 29 to 30 billion Nm 3 of coke oven gas is vented every year in China, which is equivalent to twice the annual gas transmission volume of the country’s West-to-East Gas Transmission Project, causing serious resource waste and environmental pollution. Therefore, this The invention has substantive features and significant progress, and also has great practical significance.
本发明与现有技术相比,现有技术是采用变压吸附或深度冷冻分离煤气中的氢气,本发明用有机膜分离经济性比变压吸附和深度冷冻方法要好。甲烷转化制合成气现有技术一般采用镍基及其它复合催化剂催化转化(包括水蒸气重整、二氧化碳重整或部分氧化),而本发明为碳载部分氧化转化,有效利用了焦化厂大量的焦粉资源,也解决了焦粉对环境的污染问题,增加了企业的效益。Compared with the prior art, the present invention adopts pressure swing adsorption or deep freezing to separate hydrogen in coal gas, and the present invention uses organic membrane to separate and has better economy than pressure swing adsorption and deep freezing methods. The existing technology of methane conversion to synthesis gas generally uses nickel-based and other composite catalysts for catalytic conversion (including steam reforming, carbon dioxide reforming or partial oxidation), while the present invention is carbon-supported partial oxidation conversion, which effectively utilizes a large amount of coking plant Coke powder resources also solve the environmental pollution problem of coke powder and increase the benefits of enterprises.
附图说明Description of drawings
图1是本发明的工艺流程示意图Fig. 1 is a schematic diagram of the process flow of the present invention
图中:1:煤气柜 2:压缩机 3:煤气储罐 4、5、6和7:净化器8:膜分离器 9:换热器 10:甲烷转化反应器In the figure: 1: gas cabinet 2: compressor 3:
具体实施方式Detailed ways
下面结合附图和实施例子对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and implementation examples.
实施例1Example 1
本发明一种焦炉气制合成气的工艺,其所用原料为焦化厂回收净化后的焦炉气、焦粉、氧气等;所用附属设备为冷冻设备、净化器、三通阀、煤气压缩机、煤气储罐、膜分离器、固定床反应器等。该方法对以一般焦化厂净化后的焦炉煤气用有机膜分离富集其中的甲烷和氢气,然后将所得富甲烷气用固定床高温碳载部分氧化制取合成气,将所得富氢气用于调节合成气中的H2/CO比例。The invention discloses a process for producing synthesis gas from coke oven gas. The raw materials used are recovered and purified coke oven gas, coke powder, oxygen, etc. in a coking plant; the auxiliary equipment used are refrigeration equipment, purifiers, three-way valves, and gas compressors. , gas storage tanks, membrane separators, fixed bed reactors, etc. In this method, organic membranes are used to separate and enrich methane and hydrogen in coke oven gas purified by general coking plants, and then the obtained methane-enriched gas is partially oxidized with fixed-bed high-temperature carbon to produce synthesis gas, and the obtained hydrogen-enriched gas is used for Adjust the H2 /CO ratio in the syngas.
本发明具体的工艺实施步骤如下:Concrete process implementation steps of the present invention are as follows:
如图1,将焦化厂煤气柜1中的体积为3~5m3的焦炉气用压缩机2,(型号:ZW-0.2/1-30)打入煤气储罐3(煤气储罐:φ800mm,H=1500mm,可装3m3煤气,最高压力4MPa)中,保持煤气储罐3压力为2~4MPa,然后将煤气储罐3中的煤气以0.1~100L/min流量分别经过净化器4、5、6和7四级净化,其中,4为冰柜(冰柜,最低温度-28℃,净化器,尺寸φ70mm,H=400mm),冷冻结晶煤气中的萘,冷冻温度-15℃~-28℃。5为玻璃棉阻挡煤气中粉尘及部分焦油雾。6为硅胶吸附煤气中的水。7为分子筛吸附煤气中苯等杂质,使煤气中萘含量为<30mg/Nm3左右,苯含量<10g/Nm3。然后将净化后的焦炉气以0.1~1.4MPa的进口压力进入有机膜分离器8(膜分离器,型号prism。)中,富氢气接到氢气储柜,富甲烷气在三通放空一部分后,剩余的气体进入换热器9(蛇管换热器,φ100×500mm)换热后进入甲烷转化器10(甲烷转化反应器,刚玉管φ25×500mm,硅碳管加热,铂铑-铂热电偶控温。),空速为2~200min-1,富甲烷气和氧气比例在0.8~7之间,温度在800℃~1200℃下进行反应,反应后即为H2/CO介于0.2~2的合成气,甲烷转化率介于85%~98%,氢气储柜中的氢根据合成气的用途适量补入合成气中,调节合成气的H2/CO比例。As shown in Figure 1, the coke oven gas compressor 2 (model: ZW-0.2/1-30) with a volume of 3 to 5 m3 in the
实施例1中的主要成分及参数如下:Main component and parameter in
在甲烷转化反应器空速为166.7min-1,富甲烷气和氧气比例为3∶1,管中填充1~15mm粒度焦粉,反应温度为800℃焦炉气进膜分离器入口压力为0.2MPa,出口富氢气及富甲烷气流量为1∶1的组成如表1,按照GB12205-90测试气体组成,以下同。The space velocity of the methane conversion reactor is 166.7min -1 , the ratio of methane-enriched gas and oxygen is 3:1, the tube is filled with coke powder with a particle size of 1-15mm, and the reaction temperature is 800°C. The coke oven gas enters the membrane separator and the inlet pressure is 0.2 MPa, the composition of outlet hydrogen-rich gas and methane-rich gas flow rate of 1:1 is shown in Table 1, and the gas composition is tested according to GB12205-90, the same below.
表1入口压力0.2MPa下膜分离效果
在甲烷转化反应器空速为3.1min-1,富甲烷气和氧气比例为6.5∶1,管中填充3~10mm粒度焦粉,反应温度为1200℃,其反应结果见表2。The space velocity of the methane conversion reactor was 3.1min -1 , the ratio of methane-enriched gas and oxygen was 6.5:1, the tube was filled with coke powder with a particle size of 3-10mm, and the reaction temperature was 1200°C. The reaction results are shown in Table 2.
表2富甲烷气转化结果
实施例2Example 2
按照实施例1的工艺方法,实施例2的主要成分及参数如下:According to the processing method of
焦炉气进膜分离器进口压力为0.8Mpa,出口富氢气及富甲烷气流量为1∶1的组成如表3。The inlet pressure of the coke oven gas into the membrane separator is 0.8Mpa, and the outlet flow rate of hydrogen-rich gas and methane-rich gas is 1:1, as shown in Table 3.
表3入口压力0.8MPa下膜分离效果
在甲烷转化反应器空速为2.46min-1,富甲烷气和氧气比例为4.9∶1,管中填充3~10mm粒度焦粉,反应温度为1200℃,其反应结果见表4。The space velocity of the methane conversion reactor was 2.46min -1 , the ratio of methane-enriched gas and oxygen was 4.9:1, the tube was filled with coke powder with a particle size of 3-10mm, and the reaction temperature was 1200°C. The reaction results are shown in Table 4.
表4富甲烷气转化结果
实施例3Example 3
按照实施例1的工艺方法,实施例3的主要成分及参数如下:According to the processing method of
焦炉气进膜分离器进口压力为1.3Mpa,出口富氢气及富甲烷气流量为1∶1的组成如表5。The inlet pressure of the coke oven gas into the membrane separator is 1.3Mpa, and the outlet flow rate of hydrogen-rich gas and methane-rich gas is 1:1, as shown in Table 5.
表5入口压力1.3MPa下膜分离效果
在甲烷转化反应器空速为166.7min-1,富甲烷气和氧气比例为3∶1,管中填充1~15mm粒度焦粉,反应温度为800℃,其反应结果见表6。The space velocity of the methane conversion reactor was 166.7min -1 , the ratio of methane-enriched gas and oxygen was 3:1, the tube was filled with coke powder with a particle size of 1~15mm, and the reaction temperature was 800°C. The reaction results are shown in Table 6.
表6富甲烷气转化结果
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100128636A CN1872663A (en) | 2006-06-24 | 2006-06-24 | Technique for preparing synthesis gas from coke oven gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100128636A CN1872663A (en) | 2006-06-24 | 2006-06-24 | Technique for preparing synthesis gas from coke oven gas |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1872663A true CN1872663A (en) | 2006-12-06 |
Family
ID=37483294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100128636A Pending CN1872663A (en) | 2006-06-24 | 2006-06-24 | Technique for preparing synthesis gas from coke oven gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1872663A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101575540A (en) * | 2009-06-01 | 2009-11-11 | 中国科学院理化技术研究所 | A method for simultaneous production of liquefied natural gas and methanol |
CN101434379B (en) * | 2008-12-15 | 2011-07-13 | 四川天一科技股份有限公司 | Coke-oven gas transform processing method |
CN101747132B (en) * | 2008-12-12 | 2013-01-23 | 中国科学院理化技术研究所 | Method for extracting methane from coke oven gas by utilizing membrane separation and low-temperature rectification |
CN113562695A (en) * | 2021-08-11 | 2021-10-29 | 大连理工大学 | Coke oven gas membrane separation, steam reforming and pressure swing adsorption combined hydrogen production method |
-
2006
- 2006-06-24 CN CNA2006100128636A patent/CN1872663A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101747132B (en) * | 2008-12-12 | 2013-01-23 | 中国科学院理化技术研究所 | Method for extracting methane from coke oven gas by utilizing membrane separation and low-temperature rectification |
CN101434379B (en) * | 2008-12-15 | 2011-07-13 | 四川天一科技股份有限公司 | Coke-oven gas transform processing method |
CN101575540A (en) * | 2009-06-01 | 2009-11-11 | 中国科学院理化技术研究所 | A method for simultaneous production of liquefied natural gas and methanol |
CN113562695A (en) * | 2021-08-11 | 2021-10-29 | 大连理工大学 | Coke oven gas membrane separation, steam reforming and pressure swing adsorption combined hydrogen production method |
CN113562695B (en) * | 2021-08-11 | 2023-07-18 | 大连理工大学 | A coke oven gas membrane separation, steam reforming, pressure swing adsorption combined hydrogen production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1903703A (en) | Technological method of purifying hydrogen of hydrogen enriched gas source | |
KR20220064320A (en) | Method of transporting hydrogen | |
CN103407963A (en) | Coke oven gas hydrogen generation process | |
CN115417378B (en) | Method and system for recovering and purifying hydrogen from hydrogen-containing gas | |
CN102942972A (en) | Method for producing liquefied natural gas by coke oven gas | |
CN111232924A (en) | A device, method and application for purifying and recovering hydrogen from hydrogen-containing fuel gas | |
CN103359688A (en) | Method for preparing hydrogen with different purity levels by use of semi-coke coke oven gas and system thereof | |
CN104745260B (en) | A kind of methane producing quality gas and the method and its equipment stored | |
CN204211707U (en) | Utilize the device of coke-oven gas and blast furnace gas combination producing Sweet natural gas and liquefied ammonia | |
CN105061142A (en) | Technology for synthesizing low carbon alcohol and hydrogen as byproduct from coke oven gas | |
CN104388138A (en) | Method for co-producing natural gas and hydrogen by utilizing coke oven gas | |
CN1872663A (en) | Technique for preparing synthesis gas from coke oven gas | |
CN114712984B (en) | Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production | |
CN108011119B (en) | Method and system for resource utilization of hydrogen-containing exhaust gas coupled to fuel cell clean power generation | |
EP4062998A1 (en) | Installation and method for obtaining biomethane in accordance with the specific features of a transport network | |
CN109929637A (en) | A kind of method and device based on hydrate gas separation principle purifying gas | |
CN112374459B (en) | System and method for improving hydrogen recovery rate in styrene dehydrogenation tail gas of oil refinery | |
CN211770295U (en) | Device for purifying and recovering hydrogen from hydrogen-containing fuel gas | |
CN209854029U (en) | Device for preparing methanol from synthesis gas without conversion system | |
CN114045183B (en) | A system and method for producing LNG and hydrogen products using coke oven gas as raw material | |
CN215404060U (en) | Device for coproduction of liquefied natural gas and synthetic ammonia by methanation of coke oven gas | |
CN114955996A (en) | Hydrogen energy recovery and purification device in natural gas liquefaction process | |
CN103992198B (en) | A kind of take coke-oven gas as the technique of raw material production benzene | |
CN114917723A (en) | CO recovery from flue gas 2 Full temperature range pressure swing adsorption process | |
CN111378492B (en) | Heavy oil hydrogenation system and method capable of generating hydrogen by itself |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20061206 |