CN1860529A - Method and mechanism for suspension resonance of optimization for the hard disc driver - Google Patents

Method and mechanism for suspension resonance of optimization for the hard disc driver Download PDF

Info

Publication number
CN1860529A
CN1860529A CNA2003801105250A CN200380110525A CN1860529A CN 1860529 A CN1860529 A CN 1860529A CN A2003801105250 A CNA2003801105250 A CN A2003801105250A CN 200380110525 A CN200380110525 A CN 200380110525A CN 1860529 A CN1860529 A CN 1860529A
Authority
CN
China
Prior art keywords
test slider
suspension
slider
test
slide block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801105250A
Other languages
Chinese (zh)
Other versions
CN100458917C (en
Inventor
姚明高
白石一雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAE Magnetics HK Ltd
Original Assignee
SAE Magnetics HK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAE Magnetics HK Ltd filed Critical SAE Magnetics HK Ltd
Publication of CN1860529A publication Critical patent/CN1860529A/en
Application granted granted Critical
Publication of CN100458917C publication Critical patent/CN100458917C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • G11B5/4555Arrangements for functional testing of heads; Measuring arrangements for heads by using a spin-stand, i.e. a spinning disc or simulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6082Design of the air bearing surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3173Batch fabrication, i.e. producing a plurality of head structures in one batch
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4826Mounting, aligning or attachment of the transducer head relative to the arm assembly, e.g. slider holding members, gimbals, adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

A system and method are disclosed for using a test slider to test the resonance performance of a head gimbal assembly. The test slider has a two-stripe air-bearing surface to allow the test slider to glide above a surface and a block with a mass equal to the combined mass of the electrical slider and the micro-actuator. The leading edge of the slider is tapered and has a main air groove to facilitate gliding. A back step on the side of the test slider opposite the air bearing surface maintains a parallel gap between the slider and the suspension tongue of the head gimbal assembly

Description

Method and mechanism that hard disk drive suspension resonance is optimized
Background technology
The objective of the invention is to slide block is connected to head gimbals.More specifically, the present invention is relevant with the amount that slide block is coupled to the needed bonding agent of head gimbals with minimizing.
Fig. 1 has illustrated the typical disk drive design in this area.Hard disk drive 100 is general information-storing devices, is made up of a series of rotatable dishes 104 of the read-write elements access of magnetic that utilize basically.Be commonly referred to as these data transfer elements of converter, carried and be embedded in the slider body 110 by slider body 110 usually.Above the discrete data tracks that is formed on the dish, slider body 110 is remained on the very near position by the magnetic head universal suspension support assembly (HGA) that comprises the suspension 102 that links to each other with actuator arm 106, allows read/write operation to be implemented with this.Utilize voice coil motor 112HGA around pivot 108 rotations.In order suitably to place converter with respect to panel surface, the air-flow of fluidised form is being stood on the air-supported surface (ABS) that forms on slider body 110, and the air-flow of this fluidised form provides enough lift so that slide block 110 (and converter) " floats " on the dish data track.The high speed rotating of disk 104 has produced along its surface with the air-flow that is arranged essentially parallel to this dish tangential velocity direction or the stream of wind.The ABS of air-flow and slider body 110 combines, and makes slide block floating on the dish of spin.In fact, the slide block 110 that suspends is by air-supported and panel surface 104 physical separation of this self-excitation.The ABS of slide block 110 is configured on the shoe surface in the face of rotating disc 104 (vide infra) usually, and has greatly influenced slide block in the ability of floating on dish under the various states.
Fig. 2 a-d has illustrated method prior art, that be used for slide block 110 and micro-actuator 202 are coupled to the suspension 102 of actuator arm 104.Shown in Fig. 2 a, slide block 110 is coupled to micro-actuator 202.This micro-actuator 202 provides than actuator arm 104 meticulousr slide blocks and has moved the degree of control.Micro-actuator 202 has substrate 204, and this substrate 204 has two arms 206 giving prominence to from substrate 204.Piezoelectricity (PZT) material bands 208 is coupled to a side of each actuator arm 206.The electric charge that is applied to PZT band 208 can be expanded or shrink it, movement actuator arm 206.Slide block 110 joins on the actuator arm 206 at 210 places, abutment.
Shown in Fig. 2 b, micro-actuator 202 is coupled to suspension 102 via suspension protuberance (tongue) 212.Suspension 102 is coupled to substrate 214.Substrate has the hole 216 of permission substrate 214 around the pivot rotation.A series of traces (trace) 218 along the length extending of suspension 102 and suspension protuberance 212 to be electrically coupled to slide block 110 and micro-actuator 202.Trace 218 is electrically coupled to control circuit via a series of bonding pads 220 that are installed on the substrate 214.Shown in Fig. 2 c, micro-actuator 202 is positioned so that keep a gap 222 between this micro-actuator 202 and suspension protuberance 212, and extends between slide block 110 and suspension protuberance 212.
The resonance performance of suspension is the principal element of HGA resonance control.The resonance performance is optimized to improve resonance control in manufacture process.The classic method that is used to test the suspension resonance performance is to use the HGA of machinery.Shown in Fig. 2 d, actual slide block 110 by potting fully to suspension protuberance 212 to produce mechanical HGA.This mechanical HGA is loaded into resonance tester.Resonance tester can use laser doppler monitor in the mechanical vibration process of HGA substrate frequency response or to its sampling.Result based on test can proofread and correct manufacture process or design.Slide block in the present embodiment is easy to be recycled after test is finished.This method of testing becomes more difficult for the HGA that comprises micro-actuator.The micro-actuator of installation except slide block needs more high-precision erecting equipment or anchor clamps, and this erecting equipment or anchor clamps are mainly used in and keep a parallel clearance between micro-actuator and suspension protuberance.In addition, micro-actuator also is not easy to use and be recycled, because micro-actuator is frangible and its manufacture difficulty is big, cost an arm and a leg.
Description of drawings
Fig. 1 has illustrated the typical hard disk drive design in this area.
Fig. 2 a-d has illustrated method prior art, that be used for slide block and micro-actuator are coupled to the suspension of actuator arm.
Fig. 3 a-d has illustrated the test slider 302 according to the embodiment of the invention.
Fig. 4 a-b with the formal specification of curve map slide block and micro-actuator and test slider performance relatively.
Fig. 5 a-p has illustrated the process that is used to make test slider according to the embodiment of the invention.
Fig. 6 with the process flow diagram formal specification according to the process that is used to make test slider of the embodiment of the invention.
Specifically describe
The invention discloses a kind of use test slide block and test the system and method for the resonance performance of magnetic head universal suspension support assembly.In one embodiment, test slider has the air-supported surface of one two band just slides from the teeth outwards to allow test slider, and has the piece that a quality (mass) equals the combination quality of electric slide block and micro-actuator.The leading edge of slide block is taper and has main air groove so that slide.Between the suspension protuberance of slide block and magnetic head universal suspension support assembly, keep a parallel clearance with the back side step on the side of air-supported relative test slider.
In one embodiment, Ji Xie magnetic head universal suspension support assembly (HGA) is loaded into movably on the HGA mounting blocks.This piece is loaded on the resonance electromagnetic shaker of resonance tester.This resonance tester can accurately be measured the mechanical resonance of HGA.This resonance tester can use LASER DOPPLER VIBROMETER monitor in the mechanical shock process of HGA substrate frequency response or to its sampling.Resonance tester provides magnitude and the phase place output chart to frequency.In addition, resonance tester provides the amplitude of the resonance peak of being handled by the Fourier analysis device and the tabulation of frequency.This allows suspension resonance Be Controlled in design and manufacture process.If the value height of resonance frequency displacement or ratio of gains expectation then can be proofreaied and correct manufacture process or design based on test result.Correction comprises, for example revises the geometry of suspension frame structure or manufacture process is optimized.This test slider is easy to be recycled after finishing test.Fig. 3 a-d has illustrated an embodiment of test slider 302.The quality of the mechanical block of test slider 302 and profile equal the quality and the profile of slide block 110 and micro-actuator 202 combinations.The air-supported characteristic of test slider is equivalent to slide block and micro-actuator substantially.Shown in Fig. 3 a, test slider 302 has air-supported surface (ABS) 304, and it allows slide block to be positioned on the air-flow of the surface of for example coiling the hard disk that drives.In an illustrated embodiment, ABS304 has two bands.The edge 306 of each band 304 reduces gradually at the leading edge place of test slider 302, with the air on the guide shoe ABS and be convenient to take off slide block, holds magnetic head by trying hard to keep of linking up simultaneously and floats on dish.Main air groove 308 is between two ABS bands 304.Siding track (side rail) surface voids 310 is positioned on the outside of each ABS band 304.Side rail surface indentation 310 has reduced when magnetic head and has been loaded into that dish is gone up or during from the dish unloading, because the wedge angle magnetic head is to the collision of dish or the danger of impact.As shown in the embodiment of Fig. 3 b, a side of the test slider relative with ABS band 304 can have step 312.This step 312 can be positioned on the leading edge of slide block 302.Shown in Fig. 3 c, this step 312 keeps a gap 222 between test slider 302 and suspension protuberance 212.Shown in Fig. 3 d, test slider 302 is coupled to the resonance control of suspension 102 with test suspension 102.In one embodiment, before test slider 302 was installed to suspension protuberance 212, this test slider 302 was coupled to suspension 102 by the surface of local potting step 312.Epoxy resin or resin can be used to be coupled.Epoxy resin can add the leading edge of suspension protuberance 212 partly to or add on the ledge surface 312 of test slider being used for and install more reliably.
Fig. 4 a-b with the formal specification of curve map slide block and micro-actuator and test slider performance relatively.Shown in Fig. 4 a, the gain (in dB) of slide block and micro-actuator 402 and test slider 404 relatively produces much at one result to the resonance of frequency (in kHz).Shown in Fig. 4 b, the gain (in dB) of slide block and micro-actuator 406 and test slider 404 produces much at one result to the w curve ratio of apex height (in microinch).
Fig. 5 a-p has illustrated an embodiment of the process that is used to make test slider.Shown in Fig. 5 a, ceramic row bar (row bar) 502 is applied to abrasive wheel 504.This abrasive wheel 504 produces smooth air-supported surperficial 304 on row bar 502, shown in Fig. 5 b.Shown in Fig. 5 c, the leading edge of row bar 502 is applied to abrasive wheel 504.This abrasive wheel 504 row bar 502 air-supported surperficial 304 on produce tapered edge 306, shown in Fig. 5 d.Shown in Fig. 5 e, emery wheel 506 is applied to row bar 502.Emery wheel 506 generates side rail surface indentation 310, shown in Fig. 5 f.Shown in Fig. 5 g, emery wheel 506 is applied to row bar 502 once more.Emery wheel 506 crosses the row bar grinding and goes out a road, shown in Fig. 5 h.Main air groove 308 is taken in this road, shown in Fig. 5 i.Shown in Fig. 5 j, emery wheel 506 is applied to row bar 502.Emery wheel 506 produces road 508.In one embodiment, the width in road 508 is twices of side rail surface indentation 310 width.Cutting wheel 510 cuts off 508 central authorities then, thereby road 508 is divided into two siding tracks 310, shown in Fig. 5 k.On the other hand, emery wheel 506 is used in the road 508 central grinding and passes row bar 502, and road 508 is broadened to hold wideer wheel 506.The part of row bar 502 is test slider 302, shown in Figure 51.Shown in Fig. 5 m, the edge of emery wheel 512 is applied to and air-supported surperficial 304 relative sides, to produce a step 312.In another embodiment shown in Fig. 5 n, the edge of emery wheel 512 is applied to a side relative with leading edge to produce a step 312.Product is cleared up to produce the finished product test slide block 302 shown in Fig. 5 p.
Fig. 6 has illustrated an embodiment of the process that is used to make test slider 302 in the process flow diagram mode.Row bar 502 is ground to produce smooth air-supported surperficial 304 (pieces 610).Row bar 502 is ground then to produce conical surface 306 (piece 620) at the leading edge place.Side rail surface indentation 310 is ground out (piece 630) from the edge that is adjacent to row bar 502 leading edges on air-supported surperficial 304.Main air groove 308 is parallel to side rail surface indentation 310 then from row bar 502 grindings come out (piece 640) on air-supported surperficial 304.The size of second side rail surface indentation 508 is the double of first side rail surface indentation, and on air-supported surperficial 304 from row bar 502 grindings come out (piece 650).Row bar 502 then is cut open (piece 660) by the central authorities of second side rail surface indentation 508.Step 312 is ground out (piece 670) from the back side of test slider 302.Clear up test slider 302 and standby (piece 680) then.

Claims (18)

1. method may further comprise the steps:
Test slider is coupled to suspension and replaces having the slide block of micro-actuator; And
Measure the resonance and the W-curve of suspension.
2. the method for claim 1, wherein said test slider have and equal described quality with slide block of micro-actuator substantially.
3. method as claimed in claim 2, wherein said test slider have and equal described profile with slide block of micro-actuator substantially.
4. the method for claim 1, wherein said test slider have and equal described weight balancing with slide block of micro-actuator substantially.
5. the method for claim 1, wherein said test slider have and equal described air-supported characteristic with slide block of micro-actuator substantially.
6. the method for claim 1, wherein said test slider have air-supported surface and slide above the dish dielectric surface to allow described test slider.
7. method as claimed in claim 6, wherein said test slider has step to keep the gap between described test slider and suspension on a side of the piece relative with described air-supported surface.
8. method as claimed in claim 7, wherein said test slider are coupled to described suspension by local potting is bonding on the surface of described step.
9. the method for claim 1, wherein said test slider is coupled to described suspension by local potting.
10. the method for claim 1 comprises that also when the resonance of measuring exceeds preset range described suspension being carried out mechanicalness revises.11. a test slider comprises:
Quality equals to have the piece of quality of the slide block of micro-actuator substantially, to represent micro-actuator and slide block at the suspension resonance test period;
Air-supported, above the dish medium, slide to allow described.
12. test slider as claimed in claim 11, wherein said profile with the slide block that equals to have micro-actuator substantially.
13. test slider as claimed in claim 11, wherein said weight balancing with the slide block that equals to have micro-actuator substantially.
14. test slider as claimed in claim 11 also comprises the main air groove along described air-supported surface.
15. test slider as claimed in claim 11, the leading edge on wherein said air-supported surface is reduced gradually.
16. test slider as claimed in claim 11 also comprises step, described step is positioned on the described side relative with described air-supported surface, to keep the gap between described and the suspension.
17. a method comprises:
The milled ceramic row bar is to produce smooth air-supported surface; And
Described ceramic row bar is cut into and will be coupled to the test slider of suspension.
18. method as claimed in claim 17 also is included in grinding main air groove on the described air-supported surface.
19. method as claimed in claim 17 also is included on the side of the described ceramic row bar relative with described air-supported surface the grinding step to keep the gap between described test slider and described suspension.
CNB2003801105250A 2003-10-16 2003-10-16 Method and mechanism for suspension resonance of optimization for the hard disc driver Expired - Fee Related CN100458917C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2003/000868 WO2005038781A1 (en) 2003-10-16 2003-10-16 Method and mechanism of the suspension resonance optimization for the hard disk driver

Publications (2)

Publication Number Publication Date
CN1860529A true CN1860529A (en) 2006-11-08
CN100458917C CN100458917C (en) 2009-02-04

Family

ID=34438170

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801105250A Expired - Fee Related CN100458917C (en) 2003-10-16 2003-10-16 Method and mechanism for suspension resonance of optimization for the hard disc driver

Country Status (3)

Country Link
US (2) US7377190B2 (en)
CN (1) CN100458917C (en)
WO (1) WO2005038781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108520762A (en) * 2018-03-21 2018-09-11 西安交通大学 Batch hard disk accelerated degradation test method and device under a kind of vibration environment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458917C (en) * 2003-10-16 2009-02-04 新科实业有限公司 Method and mechanism for suspension resonance of optimization for the hard disc driver
US7701675B2 (en) 2005-12-16 2010-04-20 Sae Magnetics (H.K.) Ltd. Micro-actuator mounting structure capable of maintaining a substantially constant gap between a top support of a micro-actuator and a suspension during use
JP4847140B2 (en) * 2006-01-20 2011-12-28 日本発條株式会社 Head, gimbal assembly vibration characteristics measuring device
US8169745B2 (en) * 2007-07-25 2012-05-01 Sae Magnetics (H.K.) Ltd. Head gimbal assembly having balanced weight, and disk drive unit with the same

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416144A (en) * 1982-04-21 1983-11-22 Sperry Corporation Apparatus for evaluating slider flying dynamics
JPH05109058A (en) * 1991-10-16 1993-04-30 Nec Corp Device and method for evaluation test of durability of magnetic disk
US5606359A (en) * 1994-06-30 1997-02-25 Hewlett-Packard Company Video on demand system with multiple data sources configured to provide vcr-like services
JP3752694B2 (en) * 1995-04-07 2006-03-08 ソニー株式会社 COMPRESSED VIDEO SIGNAL EDITING DEVICE, EDITING METHOD, AND DECODING DEVICE
JP3481754B2 (en) * 1995-11-22 2003-12-22 富士通株式会社 Test method for assurance of flying of magnetic disk
US5828370A (en) * 1996-07-01 1998-10-27 Thompson Consumer Electronics Inc. Video delivery system and method for displaying indexing slider bar on the subscriber video screen
KR100356101B1 (en) * 1996-12-04 2003-01-14 우릴크 로보우 Method for disinfection or sterilization of foods such as meat and vegetable products or produce, of feeding stuffs, machinery and equipment for foods and feeding stuff production, and a technical plant designed to carry out the method
DE69833848T2 (en) * 1997-01-06 2006-11-23 Philips Intellectual Property & Standards Gmbh DEVICE FOR READING AN IMAGE SENSOR MATRIX
US6222979B1 (en) * 1997-02-18 2001-04-24 Thomson Consumer Electronics Memory control in trick play mode
US6201927B1 (en) * 1997-02-18 2001-03-13 Mary Lafuze Comer Trick play reproduction of MPEG encoded signals
US6201668B1 (en) * 1997-07-03 2001-03-13 Seagate Technology Llc Gimbal-level piezoelectric microactuator
US5979249A (en) * 1998-06-09 1999-11-09 Samsung Electronics Co., Ltd. Actuator resonance tester for a disk drive
FR2782437B1 (en) * 1998-08-14 2000-10-13 Thomson Multimedia Sa MPEG STREAM SWITCHING METHOD
JP2000268517A (en) * 1999-03-15 2000-09-29 Nec Corp Magnetic disk device and its slider mechanism
US20060093045A1 (en) * 1999-06-29 2006-05-04 Roger Anderson Method and apparatus for splicing
US7027713B1 (en) * 1999-11-30 2006-04-11 Sharp Laboratories Of America, Inc. Method for efficient MPEG-2 transport stream frame re-sequencing
US6658199B1 (en) * 1999-12-16 2003-12-02 Sharp Laboratories Of America, Inc. Method for temporally smooth, minimal memory MPEG-2 trick play transport stream construction
US6549020B2 (en) * 2000-02-24 2003-04-15 Seagate Technology Llc Cartridge screening technique by using the electrical dynamic bearing resistance
GB0007868D0 (en) * 2000-03-31 2000-05-17 Koninkl Philips Electronics Nv Methods and apparatus for editing digital video recordings and recordings made by such methods
JP3675315B2 (en) 2000-08-24 2005-07-27 Tdk株式会社 Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
JP2002074871A (en) 2000-08-31 2002-03-15 Tdk Corp Head gimbals assembly equipped with actuator for fine positioning, disk device equipped with head gimbals assembly, and manufacturing method for head gimbals assembly
JP4007767B2 (en) 2001-01-18 2007-11-14 日本碍子株式会社 Piezoelectric / electrostrictive device and manufacturing method thereof
JP2002298526A (en) * 2001-04-02 2002-10-11 Shinka Jitsugyo Kk Actuator for finely positioning head element, head gimbal assembly provided with the actuator, and method for manufacturing the head gimbal assembly
JP3975688B2 (en) * 2001-04-23 2007-09-12 新科實業有限公司 Head element micropositioning actuator, head gimbal assembly provided with the actuator, and method of manufacturing the actuator
US20030093800A1 (en) * 2001-09-12 2003-05-15 Jason Demas Command packets for personal video recorder
US7398005B2 (en) * 2001-12-19 2008-07-08 Thomson Licensing Trick mode playback of recorded video
US7274857B2 (en) * 2001-12-31 2007-09-25 Scientific-Atlanta, Inc. Trick modes for compressed video streams
EP1361577A1 (en) * 2002-05-08 2003-11-12 Deutsche Thomson-Brandt Gmbh Appliance-guided edit-operations in advanced digital video recording systems
US20050022245A1 (en) * 2003-07-21 2005-01-27 Ramesh Nallur Seamless transition between video play-back modes
CN100458917C (en) * 2003-10-16 2009-02-04 新科实业有限公司 Method and mechanism for suspension resonance of optimization for the hard disc driver
WO2005071970A1 (en) * 2004-01-16 2005-08-04 General Instrument Corporation Method and apparatus for determining timing information from a bit stream
ATE524924T1 (en) * 2004-04-28 2011-09-15 Panasonic Corp FLOW GENERATING APPARATUS, FLOW GENERATING METHOD, ENCODING APPARATUS, ENCODING APPARATUS, RECORDING MEDIUM AND PROGRAM THEREOF
US20060222319A1 (en) * 2005-04-05 2006-10-05 Scientific-Atlanta, Inc. Pre-recorded dvd ad insertion
US7477692B2 (en) * 2005-12-16 2009-01-13 Tut Systems, Inc. Video encoding for seamless splicing between encoded video streams
US20090180546A1 (en) * 2008-01-09 2009-07-16 Rodriguez Arturo A Assistance for processing pictures in concatenated video streams
EP2213097A2 (en) * 2007-10-16 2010-08-04 Cisco Technology, Inc. Conveyance of concatenation properties and picture orderness in a video stream
US8416858B2 (en) * 2008-02-29 2013-04-09 Cisco Technology, Inc. Signalling picture encoding schemes and associated picture properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108520762A (en) * 2018-03-21 2018-09-11 西安交通大学 Batch hard disk accelerated degradation test method and device under a kind of vibration environment

Also Published As

Publication number Publication date
US20080295621A1 (en) 2008-12-04
US7377190B2 (en) 2008-05-27
WO2005038781A1 (en) 2005-04-28
US7870798B2 (en) 2011-01-18
US20050081368A1 (en) 2005-04-21
CN100458917C (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US7525769B2 (en) Micro-actuator having swing support to allow horizontal swinging movement of slider support
US7215495B1 (en) System and method for determining head-disk contact in a magnetic recording disk drive
US6751069B2 (en) Method and apparatus for improved attachment of a micro-actuator to a slider device
JP2004522239A (en) Disk drive with improved head pitch adjustment
US7283329B2 (en) Head shock resistance and head load/unload protection for reducing disk errors and defects, and enhancing data integrity of disk drives
US6346809B1 (en) Method and apparatus for testing disk drive read/write heads by oscillating a recordable medium
US6980399B2 (en) Air bearing sliders with a pressure cavity or cavities
CN100458917C (en) Method and mechanism for suspension resonance of optimization for the hard disc driver
WO2001043130A2 (en) Method and apparatus for improved roll static angle adjustment
US20050122607A1 (en) Method for testing a micro-actuator in a magnetic tester
US7605998B2 (en) Settling judgment method for positioning control device, positioning control device and disk apparatus
US6530258B2 (en) Disk drive laser melt bump disk for accurate glide calibration and certification processing
US7304817B1 (en) Jerk controlled seek system
GUO et al. MCK-1 CONTROL STRATEGIES FOR WRITING SERVO TRACKS NARROWER THAN 5 MICRO INCHES
US7119991B2 (en) System and method for preventing computer storage media surface contaminant accumulation and for preventing impact-related head/slider damage
US7248442B1 (en) Integrated recording head micropositioner using off-axis flexure bending
US20040012893A1 (en) Aerodynamic actuator assembly
US7596859B2 (en) Method for maintaining alignment of a hard disk micro-actuator and magnetic head with respect to a drive arm's suspension during the curing process of a bonding agent used in their coupling
US11881239B1 (en) Determining fly height using readback signal distortion
US20060274454A1 (en) Stainless steel framework for changing the resonance frequency range of a flexure nose portion of a head gimbal assembly
US7259931B2 (en) Slider design for high fly write immunity
US20010040765A1 (en) Megnetic head having protrusion on medium opposing surface and magnetic recording apparatus
US20040125511A1 (en) Method and apparatus for fine tuning read/write head on hard disk drive and integrated fabrication process
JP2000276724A (en) Method and manufacturing equipment or jig for adjusting attitude angle of magnetic head
US20090072660A1 (en) Slider That Utilizes Surface Acoustic Waves

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20121016