CN1831212A - A method for synthesizing carbon-coated germanium nanowires - Google Patents
A method for synthesizing carbon-coated germanium nanowires Download PDFInfo
- Publication number
- CN1831212A CN1831212A CN 200610049547 CN200610049547A CN1831212A CN 1831212 A CN1831212 A CN 1831212A CN 200610049547 CN200610049547 CN 200610049547 CN 200610049547 A CN200610049547 A CN 200610049547A CN 1831212 A CN1831212 A CN 1831212A
- Authority
- CN
- China
- Prior art keywords
- germanium
- catalyst
- acetylene
- carbon
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 17
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000002194 synthesizing effect Effects 0.000 title claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 9
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims abstract description 9
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 230000007062 hydrolysis Effects 0.000 claims abstract description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 abstract description 3
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种合成碳包覆锗纳米线的方法。The invention relates to a method for synthesizing carbon-coated germanium nanowires.
背景技术Background technique
金属纳米线是近年来发现的一种新型一维纳米材料。碳包覆技术不仅可以有效防止金属纳米线的氧化,而且碳包覆金属纳米线在传感器、电化学储能、纳米器件等方面具有良好的应用前景。化学气相沉积法由于其产量高,操作简单,投资少,因而也已成为当前制备纳米材料的一种流行方法。该方法通常固体催化剂,通过在固定床上裂解有机气体如甲烷、乙炔、乙烯和丙稀,最终得到产物。目前还没有利用化学气相沉积法合成碳包覆锗纳米线的报道。Metal nanowires are a new type of one-dimensional nanomaterials discovered in recent years. Carbon coating technology can not only effectively prevent the oxidation of metal nanowires, but also has good application prospects in sensors, electrochemical energy storage, and nanodevices. Due to its high output, simple operation and low investment, chemical vapor deposition has become a popular method for preparing nanomaterials. The method is usually a solid catalyst, and the final product is obtained by cracking organic gases such as methane, acetylene, ethylene and propylene on a fixed bed. There is no report on the synthesis of carbon-coated germanium nanowires by chemical vapor deposition.
发明内容Contents of the invention
本发明的目的是提供一种低成本,产量高的合成碳包覆锗纳米线的方法。The purpose of the invention is to provide a low-cost, high-yield method for synthesizing carbon-coated germanium nanowires.
本发明的合成碳包覆锗纳米线的方法在固定床气体连续流动反应装置中进行,步骤如下:The method for synthesizing carbon-coated germanium nanowires of the present invention is carried out in a fixed-bed gas continuous flow reaction device, and the steps are as follows:
以水解四氯化锗形成的氧化锗为催化剂,将催化剂放入温度为700~1000℃的固定床气体连续流动反应炉中,通入乙炔、氩气或氮气,乙炔与氩气或氮气的气体流量比为1∶5~1∶20,反应10~60分钟,收集产物。Use germanium oxide formed by hydrolyzing germanium tetrachloride as a catalyst, put the catalyst into a fixed-bed gas continuous flow reaction furnace with a temperature of 700-1000 ° C, and feed acetylene, argon or nitrogen, acetylene and argon or nitrogen gas The flow ratio is 1:5-1:20, react for 10-60 minutes, and collect the product.
上述四氯化锗的水解采用Chinese Journal of Rare Metals,1998,22,345报道的方法进行。The hydrolysis of above-mentioned germanium tetrachloride adopts the method reported in Chinese Journal of Rare Metals, 1998,22,345 to carry out.
本发明提供的方法简单,产量高,成本低,有利于工业化生产。所合成的碳包覆锗纳米线直径分布在30~90nm,长度分布在600nm~2μm。The method provided by the invention is simple, has high output and low cost, and is beneficial to industrialized production. The synthesized carbon-coated germanium nanowires have a diameter distribution of 30-90nm and a length distribution of 600nm-2μm.
附图说明Description of drawings
图1是本发明方法制得的碳包覆锗纳米线的扫描电镜(SEM)照片;Fig. 1 is the scanning electron microscope (SEM) photograph of the carbon-coated germanium nanowire that the inventive method makes;
图2是本发明方法制得的碳包覆锗纳米线的透射电镜(TEM)照片。Fig. 2 is a transmission electron microscope (TEM) photo of carbon-coated germanium nanowires prepared by the method of the present invention.
具体实施方式Detailed ways
实施例1Example 1
利用四氯化锗进行水解得到氧化锗粉末。碳包覆锗纳米线的制备在固定床气体连续流动反应炉上进行。当炉温升至1000℃后,将氧化锗催化剂放入炉中段恒温区,通入乙炔和氮气,流量比为乙炔∶氮气=1∶15,反应20分钟后制得碳包覆锗纳米线。该产品的FESEM照片如图1所示。The germanium oxide powder is obtained by hydrolyzing germanium tetrachloride. The carbon-coated germanium nanowires were prepared in a fixed-bed gas continuous flow reactor. When the temperature of the furnace rose to 1000°C, the germanium oxide catalyst was placed in the constant temperature zone in the middle of the furnace, and acetylene and nitrogen were introduced at a flow ratio of acetylene:nitrogen=1:15. Carbon-coated germanium nanowires were prepared after 20 minutes of reaction. The FESEM photo of the product is shown in Figure 1.
实施例2Example 2
利用四氯化锗进行水解得到氧化锗粉末。碳包覆锗纳米线的制备在固定床气体连续流动反应炉上进行。当炉温升至700℃后,将氧化锗催化剂放入炉中段恒温区,通入乙炔和氩气,流量比为乙炔∶氩气=1∶7,反应30分钟后制得碳包覆锗纳米线。The germanium oxide powder is obtained by hydrolyzing germanium tetrachloride. The carbon-coated germanium nanowires were prepared in a fixed-bed gas continuous flow reactor. When the furnace temperature rises to 700°C, the germanium oxide catalyst is placed in the constant temperature zone in the middle of the furnace, and acetylene and argon are introduced at a flow ratio of acetylene: argon = 1:7. After 30 minutes of reaction, carbon-coated germanium nanoparticles are prepared. Wire.
实施例3Example 3
利用四氯化锗进行水解得到氧化锗粉末。碳包覆锗纳米线的制备在固定床气体连续流动反应炉上进行。当炉温升至850℃后,将氧化锗催化剂放入炉中段恒温区,通入乙炔和氩气,流量比为乙炔∶氮气=1∶10,反应50分钟后制得碳包覆锗纳米线。图2是其TEM照片。The germanium oxide powder is obtained by hydrolyzing germanium tetrachloride. The carbon-coated germanium nanowires were prepared in a fixed-bed gas continuous flow reactor. When the furnace temperature rises to 850°C, put the germanium oxide catalyst into the constant temperature zone in the middle of the furnace, feed acetylene and argon, the flow ratio is acetylene: nitrogen = 1:10, and react for 50 minutes to prepare carbon-coated germanium nanowires . Figure 2 is its TEM photo.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100495476A CN1328417C (en) | 2006-02-20 | 2006-02-20 | Method for by composition cladding germanium nanometer wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100495476A CN1328417C (en) | 2006-02-20 | 2006-02-20 | Method for by composition cladding germanium nanometer wire |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1831212A true CN1831212A (en) | 2006-09-13 |
CN1328417C CN1328417C (en) | 2007-07-25 |
Family
ID=36993700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100495476A Expired - Fee Related CN1328417C (en) | 2006-02-20 | 2006-02-20 | Method for by composition cladding germanium nanometer wire |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1328417C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101176915B (en) * | 2006-11-09 | 2010-05-26 | 南京大学 | A kind of preparation method of carbon-coated nano metal nickel particle material |
CN103540995A (en) * | 2013-10-15 | 2014-01-29 | 东华大学 | Method used for liquid phase synthesis of germanium nanowires |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1177351C (en) * | 2002-07-17 | 2004-11-24 | 浙江大学 | Method for growing germanium nanowires using alumina template |
CN1315605C (en) * | 2005-04-28 | 2007-05-16 | 浙江大学 | Supersonic liquid phase reduction process for preparing monodisperse nano germanium crystal |
-
2006
- 2006-02-20 CN CNB2006100495476A patent/CN1328417C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101176915B (en) * | 2006-11-09 | 2010-05-26 | 南京大学 | A kind of preparation method of carbon-coated nano metal nickel particle material |
CN103540995A (en) * | 2013-10-15 | 2014-01-29 | 东华大学 | Method used for liquid phase synthesis of germanium nanowires |
CN103540995B (en) * | 2013-10-15 | 2016-08-10 | 东华大学 | A method for liquid-phase synthesis of germanium nanowires |
Also Published As
Publication number | Publication date |
---|---|
CN1328417C (en) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101891184B (en) | Method for continuously synthesizing single-wall carbon nano tube by high temperature chemical vapor deposition method | |
KR20150110513A (en) | Carbon nano-tube production from carbon dioxide | |
CN100424011C (en) | A method for preparing silicon carbide nanotubes by chemical vapor deposition | |
JP2019524612A (en) | Boron nitride nanomaterial, its production method and application | |
CN107640751B (en) | One-dimensional boron nitride nano material and preparation method thereof | |
CN103601162A (en) | Preparation method of graphite type carbon nitride nanotubes | |
CN101348242A (en) | Method for preparing boron nitride nanotubes by magnesia thermal reduction | |
CN100443403C (en) | Method for continuous synthesis of large-diameter single-walled carbon nanotubes | |
CN108483413A (en) | A kind of preparation method of the Bamboo-shaped boron nitride nano-tube hierarchical structure of area load ultrathin boron nitride nanosheet | |
CN110681395B (en) | A Cu+ doped W18O49 composite material with adjustable morphology and size and its preparation method | |
CN101381105B (en) | Method for synthesizing molybdenum dioxide-carbon composite nano-wire | |
CN100371110C (en) | A method for synthesizing carbon-coated tin nanowires | |
WO2022178916A1 (en) | Carbon nanotube which uses alcohol solvent as carbon source, and preparation method therefor | |
CN101214949B (en) | Method for controlling growth, diameter and wall thickness of carbon nano-tube by methanol | |
Hou et al. | Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment | |
CN1831212A (en) | A method for synthesizing carbon-coated germanium nanowires | |
CN105710390A (en) | Method for preparing nano-grade molybdenum powder by directly utilizing industrial-grade molybdenum trioxide | |
CN100567147C (en) | A kind of synthetic method of organic-inorganic composite silicon oxide nanowire | |
CN1208245C (en) | Method for preparing boron nitride nanotubes | |
JP4556015B2 (en) | Zinc sulfide / silicon core / shell nanowire and method for producing the same | |
CN1995488B (en) | A kind of preparation method of iron oxide single crystal nanowire | |
CN1431146A (en) | Method for preparing powder of nano vanadium nitride in cubic phase | |
CN1225310C (en) | Metal oxide catalysts for preparing bundled multi-walled carbon nanotubes and methods for their preparation and use | |
CN101381097B (en) | Zinc oxide nanorod and preparation method thereof | |
CN1476930A (en) | Bimetallic oxide catalyst and method for preparing single-walled carbon nanotubes with controllable diameter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070725 Termination date: 20100220 |