CN1828317A - 热驱动微型电场传感器 - Google Patents

热驱动微型电场传感器 Download PDF

Info

Publication number
CN1828317A
CN1828317A CN 200510051260 CN200510051260A CN1828317A CN 1828317 A CN1828317 A CN 1828317A CN 200510051260 CN200510051260 CN 200510051260 CN 200510051260 A CN200510051260 A CN 200510051260A CN 1828317 A CN1828317 A CN 1828317A
Authority
CN
China
Prior art keywords
electrode
hot
electric field
drive
guarded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510051260
Other languages
English (en)
Other versions
CN100409014C (zh
Inventor
夏善红
陈贤祥
白强
陈绍凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CNB2005100512602A priority Critical patent/CN100409014C/zh
Publication of CN1828317A publication Critical patent/CN1828317A/zh
Application granted granted Critical
Publication of CN100409014C publication Critical patent/CN100409014C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种热驱动微型电场传感器,其采用热应力驱动屏蔽电极,在水平方向上振动,使传感器具有体积小、重量轻、响应速度快、易于集成的特点;其测量的电流信号采用差分方式输出,提高了电场检测信号的信噪比与灵敏度。本发明以较小的驱动电压和驱动电流不仅可以减小激励信号源对感应电极信号的耦合干扰,而且可以采用标准的CMOS电路作为激励信号源;热驱动微型电场传感器的感应电极分为正感应电极和负感应电极两组,采用差分的方法检测,这样可以大大降低共模干扰,从而提高电场信号检测的信噪比与灵敏度。

Description

热驱动微型电场传感器
技术领域
本发明涉及传感器,特别涉及热驱动微型电场传感器。
背景技术
电场强度是一个十分重要的跨学科特性参量。电场强度的测量在航空航天、地学与环境检测和工业生产等领域都具有十分重要的应用,例如在航空航天领域,大气电场的强度值被列为航天器能否发射的重要条件之一,为保障飞行器的安全升空,航天部门十分重视飞行器发射前雷电的实时探测与监测;在地学与环境监测领域,电场检测被广泛应用于大气环流研究、地质灾害预报、气象及沙尘的预报、石油及矿产勘探、大气污染检测等方面;在工业生产领域,过强的电场会使精密的电子设备失灵,甚至损坏这些精密的电子设备,因而在一些精密电子设备的生产和使用过程中,需要知道其生产环境或工作环境中的电场强度,以免设备失灵或损坏。
目前已有若干种电场传感器,根据不同的应用背景、应用环境和检测范围,电场传感器可分为大气电场检测、海底电场检测、电力系统或电器设备周围电场检测、精密电子设备生产与使用环境电场检测等;根据其工作原理,可分为电荷感应式和光学式两类。电荷感应式电场传感器制作技术比较成熟,量程大,精度较高,但是由于其体积大,结构复杂,造价昂贵,在应用中受到了一定的限制。光学式电场传感器响应速度快,噪声较低,但是一般测量范围较窄,成本较高,且不适合于测量静电场。
本发明人曾提出了基于微细加工技术的垂直振动式微型电场传感器方案(发明专利申请号02147377.3)和平行振动式微型电场传感器方案(发明专利申请号03106433.7)。本发明在前两者的基础上提出了采用热驱动结构实现屏蔽电极在平面内相对于其下方的感应电极做来回周期运动,采用热驱动结构的优点是在较小的驱动电压和驱动电流下就可以实现较大的驱动力和驱动位移,而且可以实现较快的响应速度,较小的驱动电压有利于减少驱动电极对感应电极信号的耦合干扰,从而提高电场检测信号的信噪比和灵敏度,较小的驱动电压和驱动电流的另一个好处是可以采用标准的CMOS集成电路作为微型电场传感器的激振信号源,这样有利于传感器和信号激励与检测电路的进一步集成;另外这种热驱动微型电场传感器的感应电极分为正感应电极和负感应电极两组,感应电极上的电流信号采用差分的方式输出,这样能够显著降低共模干扰,从而提高电场检测信号的信噪比和灵敏度。
发明内容
本发明的目的是提供一种热驱动微型电场传感器,使传感器具有体积小、重量轻、响应速度快、易于集成的特点,且提高了电场检测信号的信噪比与灵敏度。
为达到上述目的,本发明的技术解决方案是提供一种热驱动微型电场传感器,其采用热应力驱动屏蔽电极,在水平方向上振动,使传感器具有体积小、重量轻、响应速度快、易于集成的特点;其测量的电流信号采用差分方式输出,提高了电场检测信号的信噪比与灵敏度。
所述的热驱动微型电场传感器,包括基底、感应电极、屏蔽电极和支撑结构等几部分;其还包括驱动电极和热驱动结构,其中,驱动电极有两极,两极固接于基底上表面,并串接于开关电路,两极间由一热驱动结构相连,热驱动结构悬空,其中点一侧通过一连杆与屏蔽电极的一端相连;
屏蔽电极水平固接于支撑结构上,支撑结构由固定锚和微弹性梁组成,微弹性梁呈框状,固接于屏蔽电极四周缘,微弹性梁的框状上设有复数个支脚,支脚伸向下方的端部与片状固定锚固接,固定锚固接于基底上表面;
感应电极处于屏蔽电极正下方,由正感应电极和负感应电极组成,两组电极固接于基底上表面,相互不连接,且与屏蔽电极之间有一间隙;
屏蔽电极接地,正感应电极与差分放大电路的正极相连,负感应电极与差分放大电路的负极相连;
对驱动电极加一方波电压,以热应力驱动热驱动结构做双向水平位移,带动屏蔽电极在水平方向上振动,以得到正、负感应电极上感应电荷形成的与外部电场强度成正比的交变电流信号,实现外电场的探测。
所述的热驱动微型电场传感器,其所述热驱动结构,为V型梁热驱动器或冷热梁热驱动器,用多晶硅或掺杂单晶硅材料制作。
所述的热驱动微型电场传感器,其所述V型梁热驱动器,为单个V型梁结构,V型梁两端分别与驱动电极两极连接,尖端与连杆一端连接;或为级联结构,以三个V型梁组成,其中两个V型梁的两端分别与驱动电极两极连接,两个尖端分别与第三个V型梁的两端连接,第三个V型梁的尖端与连杆一端连接。
所述的热驱动微型电场传感器,其所述冷热梁热驱动器,由窄梁和宽梁两部分组成,窄梁与宽梁串接后折弯,支脚分别与驱动电极两极连接,其折点与连杆一端连接;或已折弯的两个串接的窄梁与宽梁,两支脚分别与驱动电极两极连接,两折点相接,且与连杆一端连接。
所述的热驱动微型电场传感器,其所述V型梁热驱动器或冷热梁热驱动器,可以由单个热驱动器组成,也可以是复数个单体热驱动器的并联组合。
所述的传感器,其所述屏蔽电极、正感应电极和负感应电极的数量相同。
所述的传感器,其加在驱动电极两级上的驱动电压大小相等,方向相反,保证屏蔽电极上的电位等于零,达到屏蔽电极接地的目的。
本发明工作原理属于电荷感应式,是传统电荷感应式电场传感器的微型化,但其实现屏蔽电极周期运动的驱动方法不同,传统的电荷感应式电场传感器一般是采用微电机来实现屏蔽电极的周期旋转运动,本发明的基于MEMS工艺制备的热驱动微型电场传感器是采用热驱动结构来驱动屏蔽电极,这种热驱动的微型电场传感器具有体积小、重量轻、易于集成、可以批量生产、成本低等优点。
附图说明
图1是本发明热驱动微型电场传感器的工作原理图;
图2是用于微型电场传感器的热驱动结构工作原理图;
图3是热驱动微型电场传感器的屏蔽电极与热驱动结构图;
图4是热驱动微型电场传感器的基底与感应电极结构图。
具体实施方式
见图1、图3、图4,本发明的热驱动微型电场传感器的基本结构主要包括基底8、感应电极、屏蔽电极1、驱动电极4、热驱动结构5和支撑结构等几部分。其中,驱动电极4有两极,两极固接于基底8上表面,并串接于开关电路,两极间由一热驱动结构5相连,热驱动结构5悬空,其中点一侧通过一连杆9与屏蔽电极1的一端相连。
屏蔽电极1水平固接于支撑结构上,支撑结构由固定锚6和微弹性梁7组成,微弹性梁7呈框状,固接于屏蔽电极1四周缘,微弹性梁7的框状上设有复数个支脚,支脚伸向下方的端部与片状固定锚6固接,固定锚6固接于基底8上表面。
感应电极处于屏蔽电极1正下方,由正感应电极2和负感应电极3组成,两组电极固接于基底8上表面,相互不连接,且与屏蔽电极1之间有一定的间隙。
屏蔽电极1接地,正感应电极2与差分放大电路的正极相连,负感应电极3与差分放大电路的负极相连。
对驱动电极4加一方波电压,以热应力驱动热驱动结构5做双向水平位移,带动屏蔽电极1在水平方向上振动,以得到正、负感应电极2、3上感应电荷形成的与外部电场强度E成正比的交变电流信号,实现外电场的探测。
热驱动微型电场传感器的工作原理如图1所示,接地的屏蔽电极1由图2中的热驱动结构5驱动在平面内做来回周期运动,当屏蔽电极1位于图1(a)的初始位置时,正感应电极2被屏蔽电极1所屏蔽,在其表面只能感应出很少量的感应电荷,负感应电极3完全暴露,在外部电场E的作用下,在其表面上感应出与外电场E成正比的电荷,当屏蔽电极1位于图1(b)所示的终止位置时,正感应电极2被暴露,在其表面上感应出与外电场E成正比的电荷,此时负感应电极3被接地屏蔽电极1屏蔽,在其表面上只能感应出很少量的感应电荷,当屏蔽电极1在图1(a)和图1(b)的初始位置与终止位置之间做来回周期运动时,其下方的正感应电极2和负感应电极3由于外电场E的作用在它们表面上的感应电荷数量将做周期变化,随时间周期变化的感应电荷将形成与外部电场强度E成正比的交变电流,该电流信号经差分放大电路和后续电路处理后得到一可测量的与外部电场强度E成正比的电信号,从而实现测量外部空间电场强度的目的,将感应电极分为正负两组,采用差分的方式来检测感应电极上的电流信号可以大大降低共模噪声,提高电场检测信号的信噪比与灵敏度。
图2是用于驱动屏蔽电极1在平面内做来回周期运动的热驱动结构5,如图2(a)所示,当在固定在硅基底8上的驱动电极4上加上+V和-V的驱动电压时,用多晶硅或掺杂单晶硅制作的与其下方硅片基底8有一定间隙的V型梁热驱动器5将会由于焦耳热效应受热膨胀而产生热应力,使其中间的尖端向右运动,如果在驱动电极4上加一个如图2(c)所示的方波电压,多晶硅或掺杂单晶硅V型梁热驱动器5将会周期性地受热与冷却,从而可以实现在平面内的来回周期运动。如果如图2(b)所示,将这种V型梁热驱动器5级联起来,可以将V型梁热驱动器5所能实现的驱动位移放大,即可以在同样的驱动电压下实现更大的驱动位移。除了可以采用图2(a)和图2(b)所示的V型梁热驱动器5外,还可以采用图2(d)和图2(e)所示的冷热梁热驱动器5,它们的特点是多晶硅或掺杂单晶硅梁分为窄梁与宽梁两部分,如图2(d)所示的窄梁与宽梁为串联结构,当在驱动电极上加一定的驱动电压时,窄梁由于电阻比宽梁大,由于焦耳热效应生成的热量比宽梁多,导致窄梁的温度比宽梁高,其热变形的程度也比宽梁大,从而导致其右端发生如图所示的逆时针变形运动,产生一定的驱动力与驱动位移,这种热驱动结构的缺点是其驱动的轨迹是弧线,在使用时有所不便,而且由于其结构的不对称性,难以控制其驱动部位的电位,但如果采用图2(e)所示的冷热梁热驱动器5,就可以克服这些不足,图2(e)是把两个并联的冷热梁热驱动器5串联起来,这样可以在其中间的驱动部分实现直线驱动位移,由于结构的对称性,也容易控制中间驱动部位的电位。之所以要控制驱动部位的电位是因为在微型电场传感器中,需要将热驱动结构5与接地的屏蔽电极1相连,这样必须保证驱动部位的电位等于零,才能达到屏蔽电极1接地的目的。如果工作时的驱动力不够大,还可以象图2(f)和图2(g)所示的那样,将多个V型梁热驱动器5或冷热梁热驱动器5并联起来,这样可以获得更大的驱动力。
如图3所示,将级联结构的V型梁热驱动器5与接地屏蔽电极1连接起来,屏蔽电极1通过微弹性梁7和固定锚6固定在硅基底8上(如图4所示的感应电极:正感应电极2和负感应电极3,位于图3所示的屏蔽电极1的下方,且与上方的屏蔽电极1之间有一定的间隙),这样就可以使用V型梁热驱动器5来驱动屏蔽电极1使其在平面内相对于其下方的正感应电极2和负感应电极3做来回周期运动,从而实现对正感应电极2和负感应电极3的周期性暴露与屏蔽。当然除了可以采用V型梁热驱动器5以外,也可以采用图2(e)所示的冷热梁热驱动器5来驱动接地屏蔽电极1。相对于传统的静电梳齿驱动结构来说,采用热驱动结构5的优点是在较小的驱动电压与驱动电流下就可以获得较大的驱动力和驱动位移,同时能够实现较快的响应速度,较小的驱动电压和驱动电流不仅可以减小激励信号源对感应电极信号的耦合干扰,而且可以采用标准的CMOS电路作为激励信号源,这样便于器件与电路的进一步集成;热驱动的另一优点是驱动结构紧凑,只需要占用很少的芯片面积,这样可以提高感应电极的面积,从而有利于提高电场信号检测的灵敏度。

Claims (8)

1.一种热驱动微型电场传感器,其特征在于,采用热应力驱动屏蔽电极,在水平方向上振动,使传感器具有体积小、重量轻、响应速度快、易于集成的特点;其测量的电流信号采用差分方式输出,提高了电场检测信号的信噪比与灵敏度。
2.如权利要求1所述的热驱动微型电场传感器,包括基底、感应电极、屏蔽电极和支撑结构等几部分;其特征在于,还包括驱动电极和热驱动结构,其中,驱动电极有两极,两极固接于基底上表面,并串接于开关电路,两极间由一热驱动结构相连,热驱动结构悬空,其中点一侧通过一连杆与屏蔽电极的一端相连;
屏蔽电极水平固接于支撑结构上,支撑结构由固定锚和微弹性梁组成,微弹性梁呈框状,固接于屏蔽电极四周缘,微弹性梁的框状上设有复数个支脚,支脚伸向下方的端部与片状固定锚固接,固定锚固接于基底上表面;
感应电极处于屏蔽电极正下方,由正感应电极和负感应电极组成,两组电极固接于基底上表面,相互不连接,且与屏蔽电极之间有一定的间隙;
屏蔽电极接地,正感应电极与差分放大电路的正极相连,负感应电极与差分放大电路的负极相连;
对驱动电极加一方波电压,以热应力驱动热驱动结构做双向水平位移,带动屏蔽电极在水平方向上振动,以得到正、负感应电极上感应电荷形成的与外部电场强度成正比的交变电流信号,实现外电场的探测。
3.如权利要求2所述的热驱动微型电场传感器,其特征在于,所述热驱动结构,为V型梁热驱动器或冷热梁热驱动器,用多晶硅或掺杂单晶硅材料制作。
4.如权利要求3所述的热驱动微型电场传感器,其特征在于,所述V型梁热驱动器,为单个V型梁结构,V型梁两端分别与驱动电极两极连接,尖端与连杆一端连接;或为级联结构,以三个V型梁组成,其中两个V型梁的两端分别与驱动电极两极连接,两个尖端分别与第三个V型梁的两端连接,第三个V型梁的尖端与连杆一端连接。
5.如权利要求3所述的热驱动微型电场传感器,其特征在于,所述冷热梁热驱动器,由窄梁和宽梁两部分组成,窄梁与宽梁串接后折弯,支脚分别与驱动电极两极连接,其折点与连杆一端连接;或已折弯的两个串接的窄梁与宽梁,两支脚分别与驱动电极两极连接,两折点相接,且与连杆一端连接。
6.如权利要求3、4或5所述的热驱动微型电场传感器,其特征在于,所述V型梁热驱动器或冷热梁热驱动器,由单个热驱动器组成,或是复数个单体热驱动器的并联组合。
7.如权利要求2所述的传感器,其特征在于,所述屏蔽电极、正感应电极和负感应电极的数量相同。
8.如权利要求2所述的传感器,其特征在于,加在驱动电极两极上的驱动电压大小相等,方向相反,保证屏蔽电极上的电位等于零,达到屏蔽电极接地的目的。
CNB2005100512602A 2005-03-03 2005-03-03 热驱动微型电场传感器 Active CN100409014C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100512602A CN100409014C (zh) 2005-03-03 2005-03-03 热驱动微型电场传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100512602A CN100409014C (zh) 2005-03-03 2005-03-03 热驱动微型电场传感器

Publications (2)

Publication Number Publication Date
CN1828317A true CN1828317A (zh) 2006-09-06
CN100409014C CN100409014C (zh) 2008-08-06

Family

ID=36946808

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100512602A Active CN100409014C (zh) 2005-03-03 2005-03-03 热驱动微型电场传感器

Country Status (1)

Country Link
CN (1) CN100409014C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308781A (zh) * 2012-03-16 2013-09-18 中国科学院电子学研究所 伸缩谐振式三维电场传感器
CN105911370A (zh) * 2016-04-28 2016-08-31 中国科学院电子学研究所 一种金属微结构电场传感器
CN106093605A (zh) * 2016-06-08 2016-11-09 中国科学院电子学研究所 一种扭转式电场传感器
CN107748299A (zh) * 2017-10-16 2018-03-02 河南汇纳科技有限公司 一种单芯片集成多环境兼容性传感器
CN108508284A (zh) * 2018-03-26 2018-09-07 中国科学院电子学研究所 一种基于扭转振动的互屏蔽式电场传感器
CN110794225A (zh) * 2019-11-14 2020-02-14 云南电网有限责任公司电力科学研究院 一种高压直流电场检测装置及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220065C (zh) * 2002-10-23 2005-09-21 中国科学院电子学研究所 振动式微型电场传感器
CN1223828C (zh) * 2003-02-25 2005-10-19 中国科学院电子学研究所 平行振动式微型电场传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308781A (zh) * 2012-03-16 2013-09-18 中国科学院电子学研究所 伸缩谐振式三维电场传感器
CN103308781B (zh) * 2012-03-16 2016-01-27 中国科学院电子学研究所 伸缩谐振式三维电场传感器
CN105911370A (zh) * 2016-04-28 2016-08-31 中国科学院电子学研究所 一种金属微结构电场传感器
CN106093605A (zh) * 2016-06-08 2016-11-09 中国科学院电子学研究所 一种扭转式电场传感器
CN107748299A (zh) * 2017-10-16 2018-03-02 河南汇纳科技有限公司 一种单芯片集成多环境兼容性传感器
CN108508284A (zh) * 2018-03-26 2018-09-07 中国科学院电子学研究所 一种基于扭转振动的互屏蔽式电场传感器
CN110794225A (zh) * 2019-11-14 2020-02-14 云南电网有限责任公司电力科学研究院 一种高压直流电场检测装置及其制备方法

Also Published As

Publication number Publication date
CN100409014C (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
CN100409014C (zh) 热驱动微型电场传感器
CN101685119B (zh) 谐振式微型电场传感器
CN101246192B (zh) 一种微型三维电场传感器
CN100420952C (zh) 静电梳齿激励差分检测式微型电场传感器
CN102445604B (zh) 异型电极微型电场传感器
CN1877349A (zh) 交错振动式电场传感器
CN1278922C (zh) 一种音叉式微机械陀螺及其制作方法
CN104459181A (zh) 一种用于流速、加速度和角速度敏感的仿生毛发传感器
CN103308781B (zh) 伸缩谐振式三维电场传感器
CN113155664B (zh) 一种高灵敏度的微弱气体检测装置及其检测方法
CN113063996A (zh) 一种静电驱动金属微结构电场传感器
CN103278659A (zh) 一种基于应力检测的风速传感器
CN110040680B (zh) 基于电热预加载具有准零刚度特性的mems微重力传感器芯片
CN108344900A (zh) 基于模态局部化效应的大量程室温单电子分辨率静电计
CN101655368A (zh) 基于纳米膜量子隧穿效应的电磁驱动陀螺仪
CN113514666B (zh) 一种基于pt对称谐振器的微机械加速度计及其检测方法
CN100430741C (zh) 磁驱动或热磁混合驱动微型电场传感器
CN110078014A (zh) 基于静电预加载具有准零刚度特性的mems微重力传感器芯片
CN112284580A (zh) 一种基于机械超材料结构的压力传感器
CN108594007B (zh) 基于固支梁压阻效应的微波功率传感器
CN110914664B (zh) 具有平行双极线阱系统的高灵敏度测力计
CN204848255U (zh) 一种基于电磁感应的微惯性传感器
CN104176230B (zh) 基于涡电流位移传感器的梯形翼振动控制装置及方法
CN102620751A (zh) 一种微悬臂梁传感器的共振激发方法
CN110286338A (zh) 一种适用于一体式三轴磁传感器的磁场调制结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant