CN1821073A - Process for preparing test tube brush type silicon carbide - Google Patents

Process for preparing test tube brush type silicon carbide Download PDF

Info

Publication number
CN1821073A
CN1821073A CN 200610049683 CN200610049683A CN1821073A CN 1821073 A CN1821073 A CN 1821073A CN 200610049683 CN200610049683 CN 200610049683 CN 200610049683 A CN200610049683 A CN 200610049683A CN 1821073 A CN1821073 A CN 1821073A
Authority
CN
China
Prior art keywords
silicon carbide
carbon fiber
crucible
silicon
test tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610049683
Other languages
Chinese (zh)
Other versions
CN1331743C (en
Inventor
陈建军
潘颐
杨光义
吴仁兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CNB2006100496835A priority Critical patent/CN1331743C/en
Publication of CN1821073A publication Critical patent/CN1821073A/en
Application granted granted Critical
Publication of CN1331743C publication Critical patent/CN1331743C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The preparation process of test tube brush shaped silicon carbide includes the following steps: setting silicon inside graphite crucible, distributing polyacrylonitrile-base carbon fiber on the crucible and covering with one graphite crucible in the same size to increase contact between carbon fiber and silicon vapor; setting the crucible without direct contact between the Si powder and carbon fiber inside vacuum high temperature sintering furnace under Ar atmosphere, heating in the temperature raising rate of 10-30deg.c/min to 1450-1650deg.c and maintaining for 3-9 hr; and turning off the power supply after finishing reaction while maintaining circular cooling water until cooling completely to obtain grey silicon carbide.

Description

A kind of preparation method of test tube brush type silicon carbide
Technical field
The present invention relates to a kind of preparation method of test tube brush type silicon carbide.
Background technology
The silicon carbide fiber material has huge application potential at aspects such as high temperature, high frequency, high-power, high-voltage photoelectron and anti-irradiation.Thereby silicon carbide fiber enhancing ceramic matric composite has excellent mechanical behavior under high temperature and is widely used as high-temperature structural components, as rocket pipe, guided missile nose cone, leading edge and brake facing etc.; Silicon carbide fiber, becomes and makes short-wavelength light electron device, high-temperature device, anti-irradiation device and the most important semiconductor material of high-power/high-frequency electron device with its good physics-chem characteristic and electrical characteristic as a kind of novel semiconductor material.Silicon carbide fiber will be 21 century one of the most noticeable high-tech material.At present, the main method of preparation silicon carbide fiber has three kinds: the precursor method: make the method for silicon carbide fiber by the invention of Japanese carbon element company as precursor with Polycarbosilane; Activated carbon fiber conversion method: utilize the reaction of gasiform silicon monoxide and gac to transform and generate silicon carbide fiber; Chemical Vapor deposition process.Because the continuous carbofrax fibre of precursor method preparation more is applicable to suitability for industrialized production than the low and production efficiency height of preparation cost of CVD method, but oxygen, the too high performance that influences fiber of carbon massfraction in the silicon carbide fiber.The performance of activated carbon fiber conversion method silicon carbide fiber and chemical Vapor deposition process, precursor conversion method make silicon carbide fiber and compare a certain distance is still arranged.Though the activated carbon fiber conversion method reduces the silicon carbide fiber production cost greatly, make that silicon carbide fiber is in enormous quantities, suitability for industrialized production and to be applied to be possible on a large scale.But its performance also needs further to improve.Prepare silicon carbide fiber with chemical Vapor deposition process, precursor conversion method and activated carbon fiber conversion method its relative merits are respectively arranged.Chemical Vapor deposition process is eliminated gradually owing to can't realize industrialization; The precursor conversion method is present comparative maturity, realizes the method for suitability for industrialized production, is the main flow direction of silicon carbide fiber preparation research; The activated carbon fiber conversion method is to realize the popular optimal path of silicon carbide fiber application, further improves the research direction that its performance is this method.
Silicon carbide nano bar (nano wire) can be used as toughner and be used for polymer-based, ceramic base, metal matrix is made matrix material.The silicon carbide nano bar of orientations (nano wire) also has field emission effect in addition, and the microelectronic device of this against vacuum also is that a potential is used.Therefore people have poured into very big effort for making silicon carbide nano bar.Successful first in the world synthetizing silicon carbide nano rods is to be realized in nineteen ninety-five by the C.M.Lieber research group of Harvard University.Its method is to utilize prepared in reaction silicon carbide nano bar between carbon nanotube and SiO or the SiI2.Afterwards, the carbonaceous preparation of silica gel silicon carbide nano bar that has the people to make by the carbothermic reduction collosol and gel.Also utilize chemical Vapor deposition process on the silicon substrate, to obtain silicon carbide nano bar.The Qian Yitai research group of Chinese University of Science and Technology then uses SiCl4 and CCl4 as reactant, and sodium Metal 99.5 has been realized the growth of silicon carbide nano bar as catalyzer in autoclave.In the synthetic method of numerous known silicon carbide nano bars, owing to exist many deficiencies and defective, silicon carbide nano bar to fail to realize industrialization so far.
Summary of the invention
The object of the present invention is to provide a kind of preparation method of test tube brush type silicon carbide.
The technical solution adopted for the present invention to solve the technical problems is:
Silicon at first is placed in the plumbago crucible as initial starting material, then PAN-based carbon fiber silk uniform distribution is on the crucible, in order to increase contacting of carbon fiber and silicon steam as far as possible, the plumbago crucible of being inverted same diameter is on the crucible that silicon is housed; Do not contact between Si powder and the carbon fiber, whole then crucible is placed in the vacuum high-temperature sintering stove, is warmed up to 1450~1650 ℃, soaking time 3~9 hours with the temperature rise rate of 10~30 ℃/min always; Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior; Reaction is turned off heating power supply after finishing, and water coolant circulates always and cools off fully until whole device.Reaction finishes, and the carbon fiber of black becomes canescence.
The useful effect that the present invention has is:
The present invention is source of the gas with the silicon vapor, adopts vapour to ooze the method carbon fiber and is converted into test tube brush type silicon carbide.Also do not meet at present the report of this pattern silicon carbide.This test tube brush type silicon carbide not only can be used as toughner and be used for polymer-based, ceramic base, metal matrix is made matrix material.The silicon carbide nano bar of orientations (nano wire) also has field emission effect in addition, and the microelectronic device of against vacuum is that a potential is used.Being of high quality of test tube brush type silicon carbide product, defectives such as product impurity, fault are few, and silicon carbide nano bar is very straight, and diameter Distribution is more even; Conversion unit is simple, and method is simple, the technology easy handling.
Description of drawings
Accompanying drawing is the sem photograph of test tube brush type silicon carbide.
Embodiment
Raw material: carbon fiber, silicon.
Conversion unit: vacuum high-temperature sintering stove, plumbago crucible
Silicon at first is placed in the plumbago crucible as initial starting material, then PAN-based carbon fiber silk uniform distribution is on the crucible, and in order to increase contacting of carbon fiber and silicon steam as far as possible, the crucible of being inverted same diameter is on the crucible that silicon is housed.Certain distance is arranged between Si powder and the carbon fiber.Whole then crucible is placed in the vacuum high-temperature sintering stove, is warmed up to 1450~1650 ℃, soaking time 3-9 hour with the temperature rise rate of 10~30 ℃/min always.Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior.Reaction is turned off heating power supply after finishing, and water coolant circulates always and cools off fully until whole device.Reaction finishes, and the carbon fiber of black becomes canescence.
The applicant is being converted into carbon fiber in the experiment of silicon carbide fiber, and the surface growth of discovery silicon carbide fiber has the silicon carbide nano bar of orientations.Because this special construction seems to be test-tube brush, so be named as test tube brush type silicon carbide.
Embodiment 1:
The crucible that installs raw material is positioned in the vacuum high-temperature sintering stove, is warmed up to 1650 ℃, soaking time 3 hours always with the temperature rise rate of 10 ℃/min.Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior.Reaction finishes, and the PAN-based carbon fiber of black becomes linen test tube brush type silicon carbide, as shown in drawings.
Embodiment 2:
The crucible that installs raw material is positioned in the vacuum high-temperature sintering stove, is warmed up to 1450 ℃, soaking time 9 hours always with the temperature rise rate of 30 ℃/min.Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior.Reaction finishes, and the carbon fiber of black becomes linen test tube brush type silicon carbide.
Embodiment 3:
The crucible that installs raw material is positioned in the vacuum high-temperature sintering stove, is warmed up to 1500 ℃, soaking time 6 hours always with the temperature rise rate of 20 ℃/min.Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior.Reaction finishes, and the PAN-based carbon fiber of black becomes linen test tube brush type silicon carbide.

Claims (1)

1, a kind of preparation method of test tube brush type silicon carbide is characterized in that the step of this method is as follows:
Silicon at first is placed in the plumbago crucible as initial starting material, then PAN-based carbon fiber silk uniform distribution is on this plumbago crucible, in order to increase contacting of carbon fiber and silicon steam as far as possible, the plumbago crucible of being inverted same diameter is on the crucible that silicon is housed; Do not contact between silicon and the carbon fiber, crucible is placed in the vacuum high-temperature sintering stove then, is warmed up to 1450~1650 ℃, soaking time 3~9 hours with the temperature rise rate of 10~30 ℃/min always; Whole device carries out under the atmosphere of Ar, takes place to avoid any oxidation behavior; Reaction is turned off heating power supply after finishing, and water coolant circulates always and cools off fully until whole device.Reaction finishes, and the carbon fiber of black becomes canescence.
CNB2006100496835A 2006-03-02 2006-03-02 Process for preparing test tube brush type silicon carbide Expired - Fee Related CN1331743C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100496835A CN1331743C (en) 2006-03-02 2006-03-02 Process for preparing test tube brush type silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100496835A CN1331743C (en) 2006-03-02 2006-03-02 Process for preparing test tube brush type silicon carbide

Publications (2)

Publication Number Publication Date
CN1821073A true CN1821073A (en) 2006-08-23
CN1331743C CN1331743C (en) 2007-08-15

Family

ID=36922673

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100496835A Expired - Fee Related CN1331743C (en) 2006-03-02 2006-03-02 Process for preparing test tube brush type silicon carbide

Country Status (1)

Country Link
CN (1) CN1331743C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828249A (en) * 2012-04-27 2012-12-19 中国人民解放军第二炮兵工程学院 Method for preparing monocrystalline silicon carbide nano-wires on flexible carbon fiber substrate
CN104828825A (en) * 2015-05-19 2015-08-12 山东大学 Low-cost method for synthesizing silicon carbide powder at low temperature
CN104988658A (en) * 2015-07-13 2015-10-21 浙江理工大学 SiC nanometer fiber non-woven material preparation method
CN109179419A (en) * 2018-09-05 2019-01-11 哈尔滨工业大学 A kind of preparation method of New test tube brush SiC nanowire
CN114735703A (en) * 2022-04-28 2022-07-12 中电化合物半导体有限公司 Synthesis method and application of silicon carbide fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824281A (en) * 1995-05-22 1998-10-20 Nippon Carbon Co., Ltd. Process for producing silicon carbide fibers
US5720933A (en) * 1996-03-11 1998-02-24 Srinivasan; Makuteswara Process for preparing ceramic fibers
DE19739881A1 (en) * 1997-09-11 1999-03-18 Andreas Gabriel Production of crystalline silicon carbide
CN1260124C (en) * 2004-04-29 2006-06-21 中国科学院山西煤炭化学研究所 Method of preparing nano-silicon carbide fiber
CN1292986C (en) * 2005-06-16 2007-01-03 哈尔滨工业大学 Process for preparing silicon carbide nano fibre

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828249A (en) * 2012-04-27 2012-12-19 中国人民解放军第二炮兵工程学院 Method for preparing monocrystalline silicon carbide nano-wires on flexible carbon fiber substrate
CN104828825A (en) * 2015-05-19 2015-08-12 山东大学 Low-cost method for synthesizing silicon carbide powder at low temperature
CN104988658A (en) * 2015-07-13 2015-10-21 浙江理工大学 SiC nanometer fiber non-woven material preparation method
CN104988658B (en) * 2015-07-13 2017-10-20 浙江理工大学 A kind of preparation method of SiC micro/nano-fibre non-woven materials
CN109179419A (en) * 2018-09-05 2019-01-11 哈尔滨工业大学 A kind of preparation method of New test tube brush SiC nanowire
CN109179419B (en) * 2018-09-05 2021-11-16 哈尔滨工业大学 Preparation method of test tube brush-shaped SiC nanowire
CN114735703A (en) * 2022-04-28 2022-07-12 中电化合物半导体有限公司 Synthesis method and application of silicon carbide fiber

Also Published As

Publication number Publication date
CN1331743C (en) 2007-08-15

Similar Documents

Publication Publication Date Title
CN103773985B (en) A kind of efficient original position prepares the method that Graphene strengthens Cu-base composites
CN109437157B (en) Floating catalyst chemical vapor deposition method for single-walled carbon nanotube
CN108148452B (en) Graphene-containing composite heat conduction filler and preparation method and application thereof
CN1331743C (en) Process for preparing test tube brush type silicon carbide
CN101041437A (en) Raw material formulation and method for low-temperature silicon carbide synthesization
CN104451957B (en) Low density SiC nanofiber and its preparation method
CN115058885B (en) Carbon fiber cloth surface orientation SiC nanowire array and preparation method thereof
CN1834287A (en) Method of preparing carbon-carbon composite material surface silicon carbide nano wire
CN101104515A (en) SiC nano-wire and preparing method thereof
CN1330568C (en) Synthesis process of needle shape nano silicon carbide
CN104532549A (en) Method for rapidly obtaining carbon/silicon carbide coaxial fiber by reducing plasma based on microwave and application
CN108456950B (en) Preparation method of high-modulus high-thermal-conductivity asphalt-based carbon fiber
CN100400417C (en) Process for preparing micrometer, sub micrometer and nonometer silicon carbide fiber
CN107119348A (en) A kind of graphite fibre and preparation method thereof
CN112030544B (en) Method for in-situ growth of silicon carbide nanowires on surface of silicon carbide fiber
CN102976324A (en) Synthesis method of beta-SiC nano wire
CN1330796C (en) Method of synthetizing two kinds of different shaped silicon carbid nano wire
CN212609576U (en) Base plate formula carbon nanotube preparation equipment
CN102373505A (en) Microwave preparation method of silicon carbide nano wire
CN105601311A (en) High-texture carbon-based composite and preparation method
CN111661837B (en) Base plate type carbon nano tube preparation equipment
CN104831419B (en) A kind of preparation method of SiBN fiber
CN100378256C (en) Method for synthesizing hexa-prism silicon carbide nano bar
CN110589832A (en) SiC nanowire and preparation method and application thereof
CN106006740A (en) Carbon fiber@ tungsten disulfide nanosheet kernel-shell composite structure and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070815