CN1798443B - Method for solving error rate of physical channel - Google Patents

Method for solving error rate of physical channel Download PDF

Info

Publication number
CN1798443B
CN1798443B CN 200410104107 CN200410104107A CN1798443B CN 1798443 B CN1798443 B CN 1798443B CN 200410104107 CN200410104107 CN 200410104107 CN 200410104107 A CN200410104107 A CN 200410104107A CN 1798443 B CN1798443 B CN 1798443B
Authority
CN
China
Prior art keywords
error rate
data
physical channel
tfci
bits
Prior art date
Application number
CN 200410104107
Other languages
Chinese (zh)
Other versions
CN1798443A (en
Inventor
徐昌平
Original Assignee
华为技术有限公
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公 filed Critical 华为技术有限公
Priority to CN 200410104107 priority Critical patent/CN1798443B/en
Publication of CN1798443A publication Critical patent/CN1798443A/en
Application granted granted Critical
Publication of CN1798443B publication Critical patent/CN1798443B/en

Links

Abstract

The method includes following steps: gets the physical channel error rate by using transmission format combination indicator (TFCI); the base station makes hard decision for the data of TFCI, and meanwhile decodes the data of TFCI, and then makes anti code for the decoded data; in term of the hard decision result and the anti code result, gets the physical channel error rate. The invention also discloses another method for getting the physical channel error rate. It includes: gets the physical channel error rate by using data of pilot frequency domain; the base station makes hard decision forthe data of pilot frequency domain; in term of the data of pilot frequency domain corresponding to the time slot format sent down by radio network controller and the hard decision result, gets the physical channel error rate.

Description

一种物理信道误码率的求取方法 A method of obtaining physical channel error rate

技术领域 FIELD

[0001] 本发明涉及无线通信的信道技术,具体涉及一种物理信道误码率的求取方法。 [0001] relates to a wireless communication channel techniques of this invention, particularly relates to a physical channel BER obtaining method.

背景技术 Background technique

[0002] 随着无线通信技术的发展,信道传输性能日益得到人们的重视,信道传输过程中出现的误码会影响通信质量,误码严重时将导致通信无法正常进行。 [0002] With the development of wireless communication technology, channel transmission performance gaining increasing importance, the error occurred during the transmission channel will affect the quality of communication, the communication will lead to serious errors can not be normal. 因此,作为衡量信道传输性能的重要指标,误码率(BER)也就受到了重视。 Therefore, as an important indicator to measure the performance of the transmission channel, the bit error rate (BER) also received attention.

[0003] 在所有的无线信道BER中,物理信道的BER尤其重要。 [0003] BER in all wireless channels, the physical channel BER is particularly important. 因为无线网络控制器(RNC) 要根据从基站Node B获取的物理信道BER,进行无线通信的功率控制,调整上行信噪比;另外,在处理软切换时,RNC需要在多条无线链路中选择BER相对较低的数条无线链路,对选择的数条无线链路的数据进行合并,并进行其它的后续软切换操作。 Because the radio network controller (RNC) according to the physical channel BER acquired from the base station Node B, a wireless communication power control, adjusts the uplink SNR; Furthermore, when dealing with soft handover, the RNC requires the plurality of radio links selecting a relatively low BER number of wireless links, the selected number of data are combined radio links, and other subsequent soft handoff operation.

[0004] 当用户设备(UE)通过物理信道向Node B发送UE自身的原始信号时,原始信号在传输过程中会受到物理信道状态的影响,如:物理信道中的噪音信号会夹杂在原始信号中, 或信道传输时的信号衰减造成原始信号中的某些比特丢失等;当然,UE发射功率过低也会造成信号衰减,进而导致原始信号中的某些比特丢失。 [0004] When a user equipment (UE) transmits the UE itself the original signal to the Node B through a physical channel, the original signal is affected by the physical channel state during transmission, such as: physical channel noise signals will be mixed in the raw signal , the bits of signal attenuation cause some loss of the original signal or the like when the transmission channel; of course, the UE transmit power is too low can also cause signal attenuation, leading to some loss of bits in the original signal.

[0005] Node B侧的信号接收机接收到经由物理信道传输的信号后,对该信号进行解调。 After the [0005] Node B-side of the signal receiver receives a signal transmitted via a physical channel, demodulates the signal. 这时,在完成解调的信号与UE向Node B发送的原始信号的各个相同帧结构中,就会有一定数量的比特数据因误码而互不相同,用这些不相同的比特数除以Node B接收到的发自UE 的信号所包含的总比特数,就得到了物理信道BER。 In this case, each of the same frame structure of the original signal demodulation completion signal sent by the UE to the Node B, there will be a certain number of bits of data due to errors different from each other, divided by the number of the bits are not the same total number of bits sent from the Node B receives the UE contained in the signal, we get a physical channel BER.

[0006] 然而,在实际操作中,由于Node B无法完全预知UE向其发送的所有原始信号,所以,目前通常采用一些特定的公式来计算物理信道BER,公式中一般包含物理信道的信噪比、带宽、数据传输速率等信道性能参数,以及Node B侧信号接收机的接收精度等接收机性能参数,还有可能包括Node B侧解调装置的解调误差等解调装置性能参数。 [0006] However, in actual operation, since the Node B to all UE can not completely predict the original signal transmitted, therefore, now commonly used in certain formula to calculate the BER physical channel, the formula typically contains physical channel SNR , bandwidth, data transmission rate channel performance parameters, and the accuracy of reception-side signal receiver Node B receiver performance parameters and the like, may also including Node B-side demodulating means demodulates the error of the demodulation device performance parameters. [0007] 但是,实际的物理信道传输性能会随着通信环境的不同而变化,所以,应用上述的特定公式计算出来的物理信道BER,就会与实际物理信道BER存在一定的差距,导致求取的物理信道BER的准确性和可靠性有所降低;另外,物理信道BER准确性和可靠性的降低,还将使RNC以及其它无线网络系统依据物理信道BER进行的相应判断及操作产生错误,从而降低了RNC以及其它网络系统的可靠性,严重影响了RNC以及其它网络系统的正常工作。 [0007] However, the actual physical channel transmission performance varies with different communication environments, so that application of the above specific formulas calculated from a physical channel the BER, will there is a gap and the actual physical channel the BER, resulting in obtaining physical channel BER decreased accuracy and reliability; Further, a physical channel BER accuracy and reliability degradation will also enable RNC and other wireless network systems were based on a corresponding physical channel BER is determined and an error operation, thereby reduce the reliability of the RNC and other network systems, seriously affected the normal work RNC and other network systems.

发明内容 SUMMARY

[0008] 有鉴于此,本发明的主要目的在于提供一种物理信道误码率的求取方法,以提高 [0008] In view of this, the main object of the present invention is to provide a method for obtaining physical channel error rate to enhance

求得的物理信道误码率的准确性和可靠性。 Accuracy and reliability of the determined physical channel bit error rate.

[0009] 达到上述目的,本发明的技术方案是这样实现的: [0009] to achieve the above object, the technical solution of the present invention is implemented as follows:

[0010] 本发明公开了一种物理信道误码率的求取方法,该方法包括以下步骤: [0010] The present invention discloses a method for obtaining physical channel error rate, the method comprising the steps of:

[0011] a.基站对收到的专用物理控制信道数据中的传输格式组合指示进行硬判决;并 . [0011] a base station dedicated physical control channel transport format combination data in the received hard decision indication; and

且,基站对收到的专用物理控制信道数据中的传输格式组合指示进行译码,再对译码结果反编码; And, base station dedicated physical control channel transport format combination indication in the received data is decoded, and then the anti-coding decoding result;

[0012] b.基站根据步骤a中的硬判决结果与反编码结果,得到物理信道误码率。 [0012] b. The base station according to hard-decision result and the counter in step a encoding result, to obtain a physical channel error rate. [0013] 步骤b中,所述基站得到物理信道误码率的方法是: [0013] Step b, the base station physical channel error rate to obtain a method is:

[0014] 基站比较特定传输时间内专用物理控制信道的相同帧结构中所述硬判决结果与所述反编码结果,得到误比特数;并用该误比特数除以特定传输时间内专用物理控制信道的相同帧结构中的传输格式组合指示的总比特数,将除得的比例值作为物理信道误码率。 [0014] the same frame structure dedicated physical control channel within a particular transmission time base in comparison to the hard-decision result with the inverse coding result, a number of error bits; and divided by the number of error bits within a particular transmission time dedicated physical control channel the total number of bits in the same frame structure in a transmission format combination indicator, the ratio of the value obtained in addition to the physical channel error rate. [0015] 步骤b中,所述基站得到物理信道误码率的方法是: [0015] Step b, the base station physical channel error rate to obtain a method is:

[0016] 基站比较特定传输时间内专用物理控制信道的相同帧结构中所述硬判决结果与 [0016] The base station comparing the same time within a particular transmission frame structure of the dedicated physical control channel and the hard decision result

所述反编码结果,得到误比特数;并用该误比特数除以特定传输时间内专用物理控制信道 The inverse coding result, a number of error bits; and a specific control channel by dividing the dedicated physical transmission time with the number of bit error

的相同帧结构中的传输格式组合指示的总比特数,再将除得的比例值量化为误码率等级, The total number of bits of the same frame transport format combination indicator of the structure, then the ratio of values ​​obtained in addition to the quantization level of the error rate,

将该误码率等级作为物理信道误码率。 The level of the error rate as a physical channel error rate.

[0017] 所述特定传输时间是一个传输时间间隔。 The [0017] specific transmission time is a transmission time interval.

[0018] 与现有技术相比,本发明可应用不同的方式,灵活、方便地求取物理信道误码率。 [0018] Compared with the prior art, the present invention can be applied in different ways, flexibility and ease of obtaining physical channel error rate. [0019] 当应用传输格式组合指示求取物理信道误码率时,基站对收到的传输格式组合指示数据进行硬判决;同时,将收到的传输格式组合指示数据进行译码,再对译码结果反编码;通过比较上述硬判决结果和反编码结果,得到物理信道误码率,使求得的物理信道误码率的准确性和可靠性得到一定程度的提高。 [0019] When applying TFCI obtains a physical channel error rate, the base station of the transport format combination indicator data received and hard decision; simultaneously, the transport format combination indicates the received data is decoded, and then the translation results anti-code encoded; hard-decision result by comparing the encoding results and trans, obtained physical channel error rate, so that the accuracy and reliability of the physical channel error rate is determined to a certain extent.

附图说明 BRIEF DESCRIPTION

[0020] 图1为本发明一较佳实施例的物理信道误码率求取流程图; [0021] 图2为本发明另一较佳实施例的物理信道误码率求取流程图。 [0020] FIG 1 physical channel error rate according to a preferred embodiment of the present invention, a flow chart is obtained; [0021] FIG. 2 of the present invention, a further preferred embodiment the physical channel error rate obtaining a flowchart of the embodiment.

具体实施方式 Detailed ways

[0022] 目前,信道编码已经成功地应用于各种通信系统中,并且在计算机、磁记录与各种存储器中也得到日益广泛的应用,信道编码又称差错控制编码。 [0022] At present, channel coding has been successfully applied to various communication systems, and has also been increasingly widely used in the computer, with a variety of magnetic memory, channel coding, also known as error control coding. 差错控制编码的基本实现方法是在发送端进行组帧时,将被传输的信息码元附上一些冗余监督码元,这些监督码元与信息码元之间以某种确定的规则相互关联。 The basic method of error control coding to realize that when framing at the transmitting end, the transmitted information symbol supervision attach some redundancy symbols related in some specific rule between the supervision information symbols with symbols . 接收端按照既定的规则通过译码操作校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至根据信息码元与监督码元之间的所述关联关系纠正错误。 Receiving end according to the rules established by the parity information symbol decoding operations and monitoring the relationship between symbols, transmission error occurs once, the symbol information element and monitoring the relationship of the symbol to be destroyed, so that the receiver can discover errors even correcting errors according to the association relationship between the information symbols and monitoring symbols.

[0023] 本发明正是应用上述信道编、译码技术,以求取物理信道误码率。 [0023] Application of the present invention has the above-described channel encoding, decoding technique, in order to obtain a physical channel error rate. 总体而言,可以利用DPCCH的传输格式组合指示(TFCI)域或导频(Pilot)域进行物理信道BER的求取。 In general, the DPCCH can use a transport format combination indication (the TFCI) field or a pilot (Pilot) domain obtains a physical channel BER. [0024] 当应用传输格式组合指示求取物理信道误码率时,基站对收到的传输格式组合指示数据进行硬判决;同时,将收到的传输格式组合指示数据进行译码,再对译码结果反编码;通过比较上述硬判决结果和反编码结果,得到物理信道误码率。 [0024] When applying TFCI obtains a physical channel error rate, the base station of the transport format combination indicator data received and hard decision; simultaneously, the transport format combination indicates the received data is decoded, and then the translation results anti-code encoded; hard-decision result by comparing the encoding results and trans, obtained physical channel error rate.

[0025] 当应用导频域数据求取物理信道误码率时,基站对接收到的导频域数据硬判决; 并通过比较无线网络控制器下发的时隙格式所对应的导频域数据与硬判决结果,得到物理信道误码率。 [0025] When applying frequency domain data obtaining physical guide channel error rate, the base station pilot frequency-domain data received hard decision; distributed by a comparator and a radio network controller slot format corresponding to the data domain pilot with the hard-decision result, obtained physical channel error rate.

[0026] 下面,结合附图及具体实施例对本发明方法详细说明。 [0026] Hereinafter, specific embodiments in conjunction with the accompanying drawings and detailed description of the method of the present invention. [0027] 首先,先举一实施例,对应用TFCI域进行物理信道BER求取的方法进行描述。 [0027] First, a first embodiment cited, the application of the TFCI field method obtains a physical channel BER will be described. [0028] 实施例一: [0028] Example a:

[0029] 参见图1,图1为本发明一较佳实施例的物理信道误码率求取流程图,该流程包括以下步骤: [0029] Referring to FIG. 1, FIG. 1 physical channel error rate obtaining a flowchart of the preferred embodiment of the present invention, which comprises the following steps:

[0030] 步骤101 :UE发射DPCCH数据之前,首先要完成发射数据的组帧。 [0030] Step 101: UE transmits DPCCH data prior to, to complete the first set of data frame transmission. 这时,UE对TFCI 数据进行编码,使其比特数成为32比特。 At this time, the UE of the TFCI data is encoded so that the number of bits becomes 32 bits. 当然,如果TFCI比特数不足10比特,就要先将TFCI比特数补足10比特后,再进行编码。 Of course, if the number of TFCI bits is less than 10 bits, it must first make up the number of the TFCI bits 10 bits before encoding.

[0031] TFCI是用于定义专用物理数据信道(DPDCH)数据帧中数据传输格式的参数, 一般以一个10比特的字符串表示,当作为接收端的Node B接收到发自UE的数据帧后,Node B 就会从中获取TFCI,以获知相应DPDCH数据帧中数据的传输格式。 [0031] TFCI for defining a dedicated physical data channel (DPDCH) data transmission format parameter data frame, generally represented by a 10-bit string, after receiving the data frame sent from the UE as the Node B when receiving side, Node B will derive TFCI, in order to know the transmission format corresponding to the data DPDCH data frame.

[0032] 步骤102 :将完成编码的TFCI所包含的32比特数据分别映射到DPCCH的每个帧结构中。 [0032] Step 102: the complete 32-bit encoded TFCI data included in each frame are mapped into the structure of the DPCCH. 具体而言,就是将完成编码的TFCI分别映射到DPCCH的各个数据帧包含的所有时隙的TFCI域中,使每个帧结构所包含的各时隙的TFCI域中都包含具有一定比特数、且完成编码的TFCI数据。 Specifically, the complete coding TFCI is mapped to all slots of each data frame contains a DPCCH TFCI field, so that each slot of each frame structure included in the TFCI field contains a certain number of bits, and a data-encoded TFCI. 上述映射操作为现有技术,所以不在此赘述。 The above-described prior art for the mapping operation, so this is not repeated herein.

[0033] 当然,完成映射后,可能有的时隙的TFCI域中的TFCI比特数少于其它时隙TFCI 域中的TFCI比特数,这时可以将相对较少的TFCI域中的TFCI比特数补足,使DPCCH各时隙的TFCI域中的TFCI比特数均相同。 TFCI bits [0033] Of course, the mapping is complete, the number of bits TFCI TFCI field may be of a conventional time slot than other slots in the domain TFCI TFCI bits, time may be relatively small number of TFCI domain TFCI bits make up the DPCCH TFCI field of each slot number is the same. 之后,将DPCCH的比特数据中的0变换为-1, 1变换为+1。 Thereafter, the data bits in the DPCCH 0 into -1 and 1 is converted to +1.

[0034] 经过上述操作后,就完成了对UE发射信号的组帧。 [0034] After the above operation is completed for the UE transmit framing signal.

[0035] 步骤103 :UE将完成组帧的DPCCH数据经过调制后进行发射。 [0035] Step 103: UE will complete set of frames after DPCCH data modulated transmit.

[0036] 步骤104 :Node B接收发自UE的DPCCH数据,并将该数据解调。 [0036] Step 104: Node B receives the UE sent from the DPCCH data, and the data demodulation.

[0037] 步骤105 :Node B对完成解调的DPCCH数据中的TFCI域数据进行硬判决,即:将 [0037] Step 105: Node B TFCI field of DPCCH data Data demodulation is done in hard decision, namely:

TFCI域中值大于等于0的数据判决为O,将值小于0的数据判决为1。 TFCI field value is greater than or equal judgment data 0 is O, the data decision value less than 0 is 1.

[0038] 同时,Node B对完成解调的DPCCH数据中的TFCI域数据进行译码。 [0038] Meanwhile, Node B TFCI field of DPCCH data is demodulated to complete data is decoded.

[0039] 由于译码操作具有一定的纠错能力,所以可以认为完成译码的TFCI域数据,与步 [0039] Since the decoding operation having a certain error correction capability, it can be considered complete coded TFCI field data, and step

骤103中UE向Node B发送的DPCCH数据中的TFCI域数据相同。 TFCI field data DPCCH same step in UE 103 transmits data to the Node B. 这样,就可以将完成译码 In this way, the decoding can be completed

的TFCI域数据作为求取DPCCH误码率的原始数据,并将该原始数据与步骤105中硬判决所 The TFCI field data as raw data DPCCH bit error rate is obtained, and the original data in step 105 in the hard judgment

得数据进行比较,以获得DPCCH误码率。 Data obtained are compared to obtain a bit error rate DPCCH.

[0040] 但是,由于一个数据帧中完成译码的TFCI域数据为10比特,与译码前的32比特的数据格式不符,所以还要应用与步骤101中相同的编码方法对完成译码的TFCI域数据再次编码,即:反编码,以使反编码后的一个数据帧中的TFCI域数据格式与译码前的一个数据帧中的TFCI域数据格式相符。 [0040] However, since a complete data frame decoded TFCI field data is 10 bits, and 32 bits of the previous decoded data format does not match, the application also the same as in step 101 to complete the encoding method of coding TFCI field data encoded again, namely: a data frame format before the TFCI field data and decoding a coded data frame counter, so that the anti-TFCI encoding in the data field format match.

[0041] 步骤106 :将各数据帧中完成反编码的TFCI域数据,分别与自身数据帧中相同帧结构内完成硬判决的TFCI域数据进行比较,如果在相同帧结构内完成反编码的TFCI域数据与完成硬判决的TFCI域数据相同,则表示无线传输无误;否则,就表示传输出现了误差, 将一个传输时间间隔(TTI)内的所有数据帧中出现传输误差的TFCI误比特数累加起来,同时还将该TTI内所有数据帧中的TFCI域数据进行累加,再将上述完成累加的TFCI误比特数除以上述完成累加的TFCI域数据总比特数。 [0041] Step 106: the completion of each data frame Anti coded TFCI field data, respectively, to complete within itself the data frame of the same frame structure TFCI field data hard decision is performed, and if the completion of the anti-coded within the same frame structure TFCI domain data and TFCI field data to complete the hard-decision is the same, it indicates that the wireless transmission is correct; otherwise, it indicates a transmission error has occurred, transmission errors TFCI appears all data frames within a transmission time interval (TTI) in a bit error accumulated number up TFCI field will also all the data frames within the TTI accumulated, then the number of bits of the error divided by the above-described complete accumulated total number of bits TFCI TFCI field data accumulation is completed. 完成上述除法运算后,将得到一个比例值。 After the completion of the division, a ratio of the resultant value. [0042] 步骤1Q7 :对得到的比例值进行量化,S卩:将不同的比例值范围设置为不同的DPCCH误码率等级,并确定步骤106中得到的比例值属于哪个误码率等级。 [0042] Step 1Q7: Comparative obtained quantized values, S Jie: different scale value range is set to a different level DPCCH error rate, and determining the ratio value obtained in step 106 which belong to the bit error rate level.

[0043] 经过上述操作,就得到了DPCCH的误码率;当然,也可以直接将获得的上述比例值 [0043] After the above operation, we get the BER of the DPCCH; of course, may be directly obtained in the above ratio values

作为DPCCH的误码率。 As the error rate of the DPCCH.

[0044] 由于DPCCH的误码率体现了物理信道的传输质量,所以可以将上述DPCCH的误码率作为物理信道BER。 [0044] Since the DPCCH transmission error rate reflects the quality of the physical channel, it may be a bit error rate as above-DPCCH physical channel BER.

[0045] 可见,本实施例是将DPCCH中TFCI作为测量数据,以求取物理信道BER,以TFCI作为测量数据所求取的物理信道BER具有较高的准确性。 [0045] seen that the present embodiment is the TFCI in the DPCCH as measurement data, in order to obtain a physical channel BER, TFCI as measurement data to the physical channel BER is obtained with high accuracy.

[0046] 下面,再举一实施例,对应用Pilot域进行物理信道BER求取的方法进行描述。 [0046] Next, to cite one embodiment, the application method Pilot domain physical channel BER is obtained will be described. [0047] 实施例二: [0047] Example II:

[0048] 实施例一中,虽然以TFCI作为测量数据求取物理信道BER时,TFCI域数据在UE 侧进行了编码,又在Node B侧进行了译码,通过该编、译码操作的纠错能力,使求取的物理信道BER具有较高的准确性。 [0048] In one embodiment embodiment, although the measurement data is obtained as the TFCI to the physical channel the BER, the encoded TFCI field data at the UE side, and was coded at the Node B side, through the encoding, decoding operation correct wrong capacity, the physical channel BER is obtained with high accuracy. 但上述纠错能力并不能使Node B侧完成译码的TFCI域数据与UE侧发送的TFCI域数据完全相同,毕竟目前的编、译码技术还存在一定的纠错误差。 However, the above-described error correction capability of Node B side does not make complete exactly the decoded TFCI TFCI field data domain data transmission with the UE side, after all, the encoding and decoding technology there is still a correction error. 所以,认为完成译码的TFCI域数据,与UE向Node B发送的TFCI域数据相同,进而将完成译码的TFCI域数据作为求取DPCCH误码率的原始数据,并将该原始数据与本实施例的步骤105 中硬判决所得数据进行比较所获得的物理信道BER,虽有一定的准确性,但准确性仍不是很高。 Therefore, the decoded TFCI considered complete data field, TFCI same domain data transmitted to the UE and Node B, in turn completed the decoded TFCI field data as raw data DPCCH bit error rate is obtained, and the original data with present the procedure of Example 105, the resulting hard decision data comparing the physical channel BER is obtained, although a certain degree of accuracy, but accuracy is still high.

[0049] 与实施例一中的TFCI相比,DPCCH中的Pilot域数据具有较好的稳定性。 [0049] Compared with the first embodiment of the TFCI, Pilot domain data DPCCH has a good stability. 因为, 当UE与Node B建立无线链路后,DPCCH中的Pilot域数据就固定不变了。 Because, after the UE and Node B to establish a radio link, the DPCCH Pilot domain data on the fixed. 同时,RNC会向UE和Node B下发完全相同的当前无线链路的时隙格式。 Meanwhile, RNC will issue slot format to the same radio link the current UE and Node B.

[0050] 上述时隙格式确定后,与该时隙格式唯一对应的Pilot序列,即:Pilot域数据也就确定了。 [0050] After determining the above-described slot format, the Pilot slot format corresponding to the unique sequence, namely: Pilot domain data is also determined. 所以,Node B接收到的时隙格式所对应的Pilot域数据,与UE发射的DPCCH中的Pilot域数据相同。 So, Node B received Pilot slot format corresponding to the data field, the same as the DPCCH transmitted by the UE in Pilot field data. 因此,可以将Node B所获知的上述Pilot域数据作为求取物理信道BER的原始数据。 Accordingly, Node B is informed of the Pilot domain data as raw data may be obtains a physical channel BER.

[0051] 应用Pilot域数据求取物理信道BER的方法如图2所示,图2为本发明另一较佳 Method [0051] Pilot application domain data obtaining physical channel BER is shown in FIG. 2, FIG. 2 of the present invention, another preferred

实施例的物理信道误码率求取流程图,该流程包括以下步骤: Physical channel error rate obtaining a flowchart of an embodiment, which comprises the following steps:

[0052] 步骤201 :Node B接收发自UE的DPCCH数据,并将该数据解调。 [0052] Step 201: Node B receives the UE sent from the DPCCH data and demodulate the data.

[0053] 步骤202 :Node B对完成解调的DPCCH数据中的Pilot域数据进行硬判决,即:将 [0053] Step 202: Node B on the DPCCH data Pilot domain data demodulation is done in the hard decision, namely:

Pilot域中值大于等于0的数据判决为O,将值小于0的数据判决为1。 Pilot field value is greater than or equal judgment data 0 is O, the data decision value less than 0 is 1.

[0054] 步骤203:Node B将各数据帧中完成硬判决的Pilot域数据,分别与RNC下发的时 [0054] Step 203: Node B will complete Pilot hard decision data fields in each data frame, respectively, when the RNC issued

隙格式所对应的Pilot域数据进行比较,如果相同,则表示无线传输无误;否则,就表示传 Pilot slot format corresponding to the data field, and if so, this indicates a wireless transmission is correct; otherwise, it means pass

输出现了误差,并将一个TTI内的所有数据帧中出现传输误差的Pilot误比特数累加起来, Transmission error has occurred, and all data frames within a TTI transmission error occurred Pilot error adding up the number of bits,

同时还将该TTI内所有数据帧中的Pilot域数据进行累加,再将上述完成累加的Pilot误 Pilot field data will also be within the TTI of all the data accumulated in the frame, and then completed the above-described accumulated error Pilot

比特数除以上述完成累加的Pilot域数据总比特数。 Divided by the number of bits of said total number of bits of the data field complete Pilot accumulated. 完成上述除法运算后,将得到一个比例值。 After the completion of the division, a ratio of the resultant value.

[0055] 步骤204:对得到的比例值进行量化,S卩:将不同的比例值范围设置为不同的DPCCH误码率等级,并确定步骤203中得到的比例值属于哪个误码率等级。 [0055] Step 204: the ratio of a value obtained quantized, S Jie: different scale value range is set to a different level DPCCH error rate, and determining the ratio value obtained in step 203 which belong to the bit error rate level. [0056] 经过上述操作,就得到了DPCCH的误码率;当然,也可以直接将获得的上述比例值作为DPCCH的误码率。 [0056] After the above operation, get the BER of the DPCCH; and the proportion of course, also be obtained directly as the value of the bit error rate of the DPCCH. [0057] 由于DPCCH的误码率体现了物理信道的传输质量,所以可以将上述DPCCH的误码率作为物理信道BER。 [0057] Since the DPCCH transmission error rate reflects the quality of the physical channel, it may be a bit error rate as above-DPCCH physical channel BER.

[0058] 可见,应用DPCCH中的Pi lot域数据求得的物理信道BER,比应用TFCI域数据求得的物理信道BER更准确、更可靠。 [0058] visible, Pi lot application domain data obtained in the DPCCH physical channel BER, obtained TFCI than the application domain data physical channel BER is more accurate, more reliable. 同时,相同帧结构中的Pilot域数据通常比TFCI域数据及其它域数据的比特数多,所以可以认为应用DPCCH中的Pilot域多比特数据求得的物理信道BER,与应用TFCI域数据及其它域数据求得的物理信道BER相比,具有相对较高的准确性、可靠性。 Meanwhile, Pilot field data in the same frame structure is generally greater than the number of bits TFCI field data and other domain data, it is considered that the application in the DPCCH Pilot domain multi-bit data obtained physical channel the BER, and application TFCI field data and other compared domain data obtained by the BER physical channel, with a relatively high accuracy and reliability.

[0059] 由以上所述可以看出,本发明所提供的物理信道误码率的不同求取方法,使求得的物理信道误码率的准确性和可靠性得到不同程度的提高。 [0059] As can be seen from the above, the method for determining the different physical channel error rate of the present invention provides the accuracy and reliability of the physical channel error rate determined to varying degrees improved. 以上所述仅为本发明的过程及方法实施例,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The foregoing is only embodiments of the process and methods of the present invention, not intended to limit the present invention, where any modifications within the spirit and principle of the present invention made, equivalent replacement, or improvement, should be included in the present invention. within the scope of protection.

Claims (4)

  1. 一种物理信道误码率的求取方法,其特征在于,该方法包括以下步骤:a.基站对收到的专用物理控制信道数据中的传输组合指示进行硬判决;并且,基站对收到的专用物理控制信道数据中的传输组合指示进行译码,再对译码结果反编码;b.基站根据步骤a中的硬判决结果与反编码结果,得到物理信道误码率。 Method for Determining the physical channel error rate, characterized in that the method comprises the steps of:. A combination of a base station transmission dedicated physical control channel data indicative of the received hard decision; and, the receiving station combination of dedicated physical control channel transmission data is decoded instructions, and then the anti-coding decoding result;. the station B with the hard-decision result in the step a trans encoding result to obtain the physical channel error rate.
  2. 2. 如权利要求1所述的方法,其特征在于,步骤b中,所述基站得到物理信道误码率的方法是:基站比较特定传输时间内专用物理控制信道的相同帧结构中所述硬判决结果与所述反编码结果,得到误比特数;并用该误比特数除以特定传输时间内专用物理控制信道的相同帧结构中的传输格式组合指示的总比特数,将除得的比例值作为物理信道误码率。 2. The method according to claim 1, wherein, in step b, the base station physical method to obtain the channel error rate: The same frame structure dedicated physical control channel within a particular transmission time base in comparison to the hard decision result of the anti-coding result, a number of error bits; divided by the total number of bits indicating transport format combinations and the same frame structure within a particular dedicated physical control channel transmission time with the number of error bits, except the ratio of the value obtained by as a physical channel error rate.
  3. 3. 如权利要求1所述的方法,其特征在于,步骤b中,所述基站得到物理信道误码率的方法是:基站比较特定传输时间内专用物理控制信道的相同帧结构中所述硬判决结果与所述反编码结果,得到误比特数;并用该误比特数除以特定传输时间内专用物理控制信道的相同帧结构中的传输格式组合指示的总比特数,再将除得的比例值量化为误码率等级,将该误码率等级作为物理信道误码率。 3. The method according to claim 1, wherein, in step b, the base station physical method to obtain the channel error rate: The same frame structure dedicated physical control channel within a particular transmission time base in comparison to the hard decision result of the anti-coding result, a number of error bits; divided by the total number of bits indicating transport format combinations and the same frame structure within a particular dedicated physical control channel transmission time with the number of error bits, then in addition to the ratio obtained value quantization level of the error rate, the level of the error rate as a physical channel error rate.
  4. 4. 如权利要求2或3所述的方法,其特征在于,所述特定传输时间是一个传输时间间隔。 4. The method of claim 2 or claim 3, wherein said particular transmission time is a transmission time interval.
CN 200410104107 2004-12-29 2004-12-29 Method for solving error rate of physical channel CN1798443B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410104107 CN1798443B (en) 2004-12-29 2004-12-29 Method for solving error rate of physical channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410104107 CN1798443B (en) 2004-12-29 2004-12-29 Method for solving error rate of physical channel

Publications (2)

Publication Number Publication Date
CN1798443A CN1798443A (en) 2006-07-05
CN1798443B true CN1798443B (en) 2010-04-28

Family

ID=36819116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410104107 CN1798443B (en) 2004-12-29 2004-12-29 Method for solving error rate of physical channel

Country Status (1)

Country Link
CN (1) CN1798443B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404037B (en) * 2010-09-15 2014-06-18 上海贝尔股份有限公司 Method and device for reducing return expense of soft combination in uplink multi-base station Multiple Input Multiple Output (MIMO)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070086A (en) 1996-09-20 2000-05-30 Nec Corporation Closed loop power transmitter power control unit for a CDMA cellular system
CN1324521A (en) 1998-10-20 2001-11-28 交互数字技术公司 Cancellation of pilot and unwanted traffic signals in a CDMA system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070086A (en) 1996-09-20 2000-05-30 Nec Corporation Closed loop power transmitter power control unit for a CDMA cellular system
CN1324521A (en) 1998-10-20 2001-11-28 交互数字技术公司 Cancellation of pilot and unwanted traffic signals in a CDMA system

Also Published As

Publication number Publication date
CN1798443A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP5253741B2 (en) Method and apparatus for link quality feedback in wireless communication
CN1224191C (en) Device for controlling power in variable rate communication system
US7164710B2 (en) Rate adaptation for use in adaptive multi-rate vocoder
US7277498B2 (en) Mapping method of code word with QAM modulation
US6108372A (en) Method and apparatus for decoding variable rate data using hypothesis testing to determine data rate
CN1809982B (en) Quality determination for a wireless communications link
JP4218387B2 (en) Wireless communication system, a base station and radio link quality information correction method and a program for use therewith
EP1110345B1 (en) Codec mode decoding using a priori knowledge
US20020196812A1 (en) Transmitter, receiver, transmitter-receiver, and communication system with retransmission management
JP4199281B2 (en) Soft error correction in Tdma wireless system
JP5997058B2 (en) Channel quality indication detection
JP4105687B2 (en) Transmission power control in the virtual decoding based on
AU2009231940B2 (en) Encoding and decoding of control information for wireless communication
US5557639A (en) Enhanced decoder for a radio telephone
CA2165342C (en) Method and apparatus for determining the data rate of a received signal
US5566206A (en) Method and apparatus for determining data rate of transmitted variable rate data in a communications receiver
CN1235350C (en) Method and apparatus for transmitter power control
TW527801B (en) Method and apparatus for detecting zero rate frames in a communications system
US5774496A (en) Method and apparatus for determining data rate of transmitted variable rate data in a communications receiver
CN1111990C (en) Transmitter method and transmission system using adaptive coding based on channel characteristics
JP4065025B2 (en) Cellular communication system using a plurality of code rates
US6424631B1 (en) Apparatus and methods for determining rate of transmitted variable rate data
JP3399923B2 (en) Decoding method in a communication terminal apparatus and communication terminal apparatus
US20040252647A1 (en) System and method to determine a bit error probability of received communications within a cellular wireless network
JP4554291B2 (en) Estimating signal quality in a radio communication system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted