CN1795334A - 空气调节系统中的风扇阵列风扇部分 - Google Patents

空气调节系统中的风扇阵列风扇部分 Download PDF

Info

Publication number
CN1795334A
CN1795334A CNA200480006686XA CN200480006686A CN1795334A CN 1795334 A CN1795334 A CN 1795334A CN A200480006686X A CNA200480006686X A CN A200480006686XA CN 200480006686 A CN200480006686 A CN 200480006686A CN 1795334 A CN1795334 A CN 1795334A
Authority
CN
China
Prior art keywords
fan
array
air
conditioning system
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480006686XA
Other languages
English (en)
Other versions
CN1795334B (zh
Inventor
劳仑斯·G·霍普金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortek Air Solutions LLC
Original Assignee
Huntair Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huntair Inc filed Critical Huntair Inc
Publication of CN1795334A publication Critical patent/CN1795334A/zh
Application granted granted Critical
Publication of CN1795334B publication Critical patent/CN1795334B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Ventilation (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种空气调节系统中的风扇阵列风扇部分,包括多个风扇单元(200),设置在扇阵列中,并设置在空气调节室(202)中。一个优选实施例包括阵列控制器(300),被编程以在大致峰值效率运行所述多个风扇单元。多个风扇单元(200)可以实阵列结构、空间图案阵列结构、跳棋盘阵列结构、行稍微偏离阵列结构、列稍微偏离阵列结构、或交错阵列结构排列。

Description

空气调节系统中的风扇阵列风扇部分
申请人亨泰尔公司提交本国际申请。本申请要求2003年3月20日提交的美国临时申请60/456,413在USC119(e)的权益。本申请基于上述申请并要求其优先权,此处一并作为参考。
技术领域
本发明涉及在空气调节系统中采用的风扇阵列风扇部分。
背景技术
空气调节系统(也称之为空气调节器)传统上用于调节大厦或房间(也称之为“建筑物”)。空气调节系统定义为包括部件的结构,这些部件设计为一起工作,以作为用于使结构通风的主系统的部分调节空气。空气调节系统可包括例如冷却盘管、加热盘管、过滤器、增湿器、风扇、减音器、控制器、和用于满足结构需要的其它装置。空气调节系统可在工厂中制造,并被运输至待安装的建筑物,或可使用必需的装置将它建在合适位置上,以满足建筑物的功能需要。空气调节系统的空气调节室102包括在风扇吸入锥104之前的进气室112和排气室110。在空气调节室102内设置风扇单元100(以吸入锥104、风扇106、和电机108示出)、风扇框架、和与风扇功能相关的任何附件(例如,减震器、控制器、安装装置、以及相关室(cabinetry))。在风扇106内是具有至少一个叶片的扇轮(未示出)。扇轮具有从扇轮的外周缘的一侧到扇轮的外周缘的相对侧测量的扇轮直径。通过咨询风扇制造商所选择的风扇类型,确定例如高度、宽度、空气道长度等处理室102的尺寸。
图1示出示例性现有技术空气调节系统,其具有容纳在空气调节室102中的单个风扇单元100。为了示例性目的,示出具有吸入锥104、风扇106、和电机108的风扇单元100。较大建筑物、要求更大的空气体积的建筑物、或要求较高或较低温度的建筑物通常需要较大风扇单元100和通常相应的较大空气调节室102。
如图1中所示,空气调节室102大体上分成排气室110和进气室112。将组合的排气室110和进气室112称为空气道路径120。风扇单元100可设置在排气室110中(如所示出的)、进气室112中、或部分在进气室112内和部分在排气室110内。其中设置风扇单元100的空气道路径120的部分可一般称为“风扇部分”(用附图标记114表示)。吸入锥104的尺寸、风扇106的尺寸、电机108的尺寸、和扇框架(未示出)的尺寸至少部分确定空气道路径120的长度。可将过滤器组122和/或冷却盘管(未示出)添加到系统中风扇单元100的上游或下游。
例如,要求六(6)英寸水表压每分钟50,000立方英尺气流的第一示例性结构通常要求现有技术空气调节室102大得足够容纳55英寸叶轮、100马力电机、和支撑框架。现有技术空气调节室102约为92英寸高、114至117英寸宽、和106至112英寸长。空气调节室102和/或空气道路径120的最小长度由用于给定风扇类型、电机尺寸、和应用的出版的制造商数据规定。现有技术室尺寸指南示出用于配置空气调节室103的示例性规则。这些规则基于最优化、调整、和试验。
例如,第二示例性结构包括用在半导体和制药净化室中的再循环空气调节器,要求两(2)英寸水表压每分钟26,000立方英尺气流。这种结构通常要求现有技术空气系统具有大得足够容纳44英寸叶轮、25马力电机、和支撑框架的空气调节室102。现有技术空气调节室102约为78英寸高、99英寸宽、和94至100英寸长。空气调节室102和/或空气道路径120的最小长度由用于给定风扇类型、电机尺寸、和应用的出版的制造商数据规定。现有技术室尺寸指南示出用于配置空气调节室103的示例性规则。这些规则基于最优化、调整、和试验。
这些现有技术空气调节系统具有许多问题,包括以下示例性问题:
·由于不动产(例如建筑物空间)非常昂贵,所以空气调节室102的较大尺寸是非常不理想的。
·单个风扇单元100生产昂贵,且通常对于每项工作定制生产。
·单个风扇单元100运行昂贵。
·单个风扇单元100是效率低的,因为它们仅在其工作范围的小部分上具有最优或峰值效率。
·如果单个风扇单元100故障,则不再能进行空气调节。
·大风扇单元100的低频声音难以衰减。
·大风扇单元100的高质量和高湍流可造成不想要的震动。
高度限制已经使得使用构造有彼此靠近水平设置的两个风扇单元100的空气调节系统成为必要。然而,应指出,良好的工程实践是将空气调节室和排气室110设计为对称的,以便于跨过所述空气调节室的宽度和高度的气流更均匀。已经使用存在高度限制的双风扇单元100,且以高的高宽比设计所述单元,以容纳想要的流速。如Greenheck的“Installation Operatingand Maintenance Manual”中所示的,如果想要并排安装,则存在特定指示来安排这些风扇,以便存在扇轮之间的至少一个扇轮直径间隙和风扇和壁或屋顶之间至少一个扇轮直径的一半。Greenheck参考甚至特别表述了“with less spacing will experience performance losses”的布置。通常,将空气调节系统和空气调节室102设计为在气流方向上具有每分钟500英尺的匀速速度梯度的流速。然而,具有双风扇单元100的空气调节系统仍大体上具有单风扇实施例的问题。通过将风扇单元100的数量从一个提高到两个,没有发现优点。并且,双风扇单元100部分在紧跟在风扇单元100之后的区域中呈现出不均匀的速度梯度,这使得经过过滤器、盘管、和减音器的气流不均匀。
应指出,电气装置具有多风扇冷却系统的优点。例如,Bonet的美国专利No.6,414,845使用用于安装在多部件隔室(bay)电子装置中的多风扇模块化冷却部件。尽管在Bonet系统中实现的一些优点将在本系统中实现,但存在显著不同。例如,Bonet系统设计为通过指引来自每个风扇的输出到特定装置或区域,便于电子器件冷却。Bonet系统将不用于在通常的气流方向上指引气流到所有装置。例如Simon的美国专利No.4,767,262和EIGhobashy等人的美国专利No.6,388,880等其它专利讲述了与电子器件一起使用的风扇阵列。
然而,即使在计算机和机器工业中,讲述了除了风扇在接近自由传送的低系统阻力情形下外,并行的工作风扇并不提供理想的结果。例如,Sunon Group具有这样的网页,其中它们示出并行工作的双轴风扇,但是特别表述了如果“并行风扇”应用于较高系统阻力,则外壳在形成并行风扇操作的流速上具有较少增加。反对使用并行风扇的类似实例可从HighBeam Reach’s library(http://stati.highbeam.com)得到的文章和lanMcLeod在http://papstplc.highbeam.com得到的文章中找到。
发明内容
本发明涉及空气调节系统中的风扇阵列风扇部分,包括排列在扇阵列中并设置在空气调节室内的多个风扇单元。一个优选实施例可包括编程为以峰值效率操纵多个风扇单元的阵列控制器。多个风扇单元可排列在实阵列结构、空间图案阵列结构、跳棋盘(checker board)阵列结构、行稍微偏离(rows slightly offset)阵列结构、列稍微偏离(columns slightly offset)阵列结构、或交错阵列结构中。
考虑到下述结合附图对本发明作出的详细描述,将更容易理解本发明的前述和其它目的、特性、和优点。
附图说明
图1是在空气调节室内具有单个大风扇单元的示例性现有技术空气调节系统的侧视图。
图2是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的示例性风扇阵列风扇部分的侧视图。
图3是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的4×6示例性风扇阵列风扇部分的平面图或正视图。
图4是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的5×5示例性风扇阵列风扇部分的平面图或正视图。
图5是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的3×4示例性风扇阵列风扇部分的平面图或正视图。
图6是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的3×3示例性风扇阵列风扇部分的平面图或正视图。
图7是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的3×1示例性风扇阵列风扇部分的平面图或正视图。
图8是在空气调节室内具有多个小风扇单元的本发明的空气调节系统中的可选示例性风扇阵列风扇部分的平面图或正视图。
图9是本发明的空气调节系统中的可选示例性风扇阵列风扇部分的平面图或正视图,其中多个小风扇单元排列在空气调节室内的跳棋盘阵列中。
图10是本发明的空气调节系统中的可选示例性风扇阵列风扇部分的平面图或正视图,其中多个小风扇单元排列在空气调节室内稍微偏离行中。
图11是本发明的空气调节系统中的可选示例性风扇阵列风扇部分的平面图或正视图,其中多个小风扇单元排列在空气调节室内稍微偏离列中。
图12是本发明的空气调节系统中的5×5示例性风扇阵列风扇部分的平面图或正视图,其通过打开部分风扇和关闭部分风扇以52%的容量运行。
图13是本发明的空气调节系统中的5×5示例性风扇阵列风扇部分的平面图或正视图,其通过打开部分风扇和关闭部分风扇以32%的容量运行。
图14是本发明的空气调节系统中的可选示例性风扇阵列风扇部分的侧视图,其在空气调节室内具有多个交错的小风扇单元。
具体实施方式
本发明涉及空气调节系统中的风扇阵列风扇部分。如图2至11所示,空气调节系统中的风扇阵列风扇部分使用多个单独的单个风扇单元200。在一个优选实施例中,风扇单元200以实阵列结构(true array)(图3-7)设置,但可选实施例可包括举例来说可选结构,诸如空间图案(spacedpattern)(图8)、空间图案阵列结构(图9)、行稍微偏离阵列结构(图10)、或交错阵列结构(图11)。由于本发明可以用实阵列和/或可选阵列实施,术语“阵列”的含义是广泛的。
本发明的扇阵列中的风扇单元200可以按照20%的扇轮直径隔开。靠近设置的阵列的理想工作条件是距离为30%至60%的扇轮直径。通过紧密地隔离风扇单元200,更多的空气可进入更小的空间。例如,如果风扇单元200的扇轮具有20英寸的扇轮直径,在一个扇轮的外周和邻近扇轮的外周之间仅需要4英寸的空间(20%)(或者在扇轮的外周和邻近的壁或内顶板之间2英寸空间)。
通过使用更小的风扇单元200,可以用更少的插入结构(扇框架)支撑风扇单元200。这可以与支撑现有技术风扇单元100的起到基体作用的较大扇框架进行比较。较大的扇框架必须足够大和坚固以支撑现有技术风扇单元100的整个重量。由于它们的尺寸和位置的原因,已知扇结构干扰气流。在优选实施例中,因此,扇阵列的风扇单元200由支撑电机108的对气流具有最小摩擦力的框架支撑。
正如在背景技术部分提到的,有人已经尝试使用相邻安装水平彼此设置在空气调节系统中的两个风扇单元100。正如同样在背景技术部分提到的,风扇阵列已经在电子和计算机组件中得到使用。然而,在空气调节系统领域,在水平设置的扇轮之间总是必须具有较大的间隔,具有较小间隔的结构是昂贵的,且有性能损耗。单个大风扇将所有空气送入机壳。使用两个相同的或稍微小一些的风扇使得一个风扇产生的空气与其他风扇产生的空气干扰。为了解决干扰问题,风扇不得不在特定导线中隔开,通常在风扇之间提供至少一个轮径的空闲间隔(和轮径到相邻壁的一半)。根据这一逻辑,将不能增加更多的风扇。即使已经增加额外的风扇,风扇之间的空间将继续保持至少一个轮径。另外,在空气调节系统领域,垂直堆叠风扇单元是不可思议的,原因在于,用过于密封风扇单元的工具不能有助于这样的堆叠(他们仅被涉及为位于底板上)。
应指出,送风扇是本发明的优选风扇单元200。特别的,已知有TwinCity Fan Companies,Ltd.of Minneapolis,Minnesota,U.S.制造的工作良好的APF-121、APF-141、APF-161、以及APF-181送风扇。送风扇工作良好的原因在于它们不产生诸如由轴式风扇和壳体离心风扇以及大离心风扇产生的高速率点。可选实施例可使用将不在气流方向产生高速率梯度的将要开发的风扇单元。其它实施例,虽然低效,使用诸如在气流方向具有高速率点的轴式风扇和/或离心壳式风扇。
在优选实施例中,通过阵列控制器300(图12和13)控制空气调节系统中的风扇阵列风扇部分中的每个风扇单元200。在一个优选实施例中,阵列控制器300可被编程以使风扇单元200在峰值效率运行。在这一峰值效率实施例中,不是以减小的效率运行所有风扇单元200,阵列控制器300关闭某些风扇单元200并使剩余的风扇单元200在峰值效率运行。在可选实施例中,风扇单元200可以全部运行在相同的运行功率水平(例如,效率和/或流速)。
本发明的另一优点在于用于控制扇速并从而控制速率和压力的阵列控制器300(可以是可变频率驱动(variable frequency drive,VFD))适用于空气调节系统的风扇阵列风扇部分的制动马力。由于扇壁的效率可在较大的流速和压力范围内优化,扇阵列消耗的实际工作功率大体小于对比的现有技术空气调节系统消耗的实际工作功率,阵列控制器的功率可相应降低。在传统设计的控制器(已经具有可变频率驱动)可适于根据电气规程要求的电机最高铭牌额定功率的情况下,阵列控制器300可适于扇阵列的功率消耗。提供2.5英寸空气压力的每分钟50,000立方英寸的现有技术风扇设计的一个实例,将需要50马力的电机和50马力的控制器。本发明优选使用十四个两马力电机阵列和30马力的阵列控制器300。
本发明解决了现有技术中包括但不限于不动产的空气调节系统的很多问题:减少的制造成本、减少的工作成本、增加的效率、改善的气流均匀性、冗余度、良好的衰减效果、以及降低的振动。
控制能力
如所提到的,优选通过被编程以使风扇单元200在峰值效率运行的阵列控制器300(图12和13)控制空气调节系统中的风扇阵列风扇部分中的每个风扇单元200。在这一峰值效率实施例中,不是以减小的效率运行所有风扇单元200,阵列控制器300能够关闭某些风扇单元200并使剩余的风扇单元200在峰值效率运行。优选地,阵列控制器300能够以预定的组和/或整体作为一个组单独控制风扇单元200。
例如,在诸如图4、12、和13所示出的5×5的阵列中,希望控制阵列的人可以选择想要的空气量、气流等级、气流模式、和/或运行的风扇单元200的数量。首先来看空气量,5×5阵列中的每个风扇单元200均贡献整个空气的4%。在可变空气量系统(这是大多数结构所具有的)中,仅有数个需要满足需求的扇阵列300运行。控制系统(可以包括阵列控制器300)可用于分别使风扇单元200联机(“开启”风扇单元200)和脱机(“关闭”风扇单元200)。开关风扇单元200的能力可有效地消除可变频率驱动的需求。同样,5×5阵列中的每个风扇单元200均使用整个功率的4%并产生气流等级的4%。使用控制系统使风扇单元200联机和脱机使用户能够控制功率用量和/或气流。如果需要,可以控制气流的模式。例如,根据系统,可以采取气流仅围绕机壳的边缘或仅在顶部有空气的模式。最后,单个风扇单元200可被联机和脱机。在一个或多个风扇单元200工作出问题时,需要维护(例如需要常规服务)时,和/或需要更换时,这种控制能力是有利的。有问题的单个风扇单元200可以脱机,而系统的剩余部分保持全功能。一旦单个的风扇单元200可使用,它们将回到联机状态。
当大厦或建筑物控制系统需要具有较高压力的低空气量时,体现出开启或关闭风扇单元200的进一步优点。在这种情况下,风扇单元200可被模块化以产生稳定的工作点并消除有时使使用者和维护人员烦恼的涌浪效应(surge effect)。涌浪效应是对于给定量的扇速度来说系统压力太高且风扇单元200具有进入失速(stall)的可能性。
控制能力的实例在图12和13中示出。在图12示出的空气调节系统中的风扇阵列风扇部分中,阵列控制器300可以以所示出的第一示例模式开启风扇单元200并关闭风扇单元200,使得整个系统被设置为以52%的最大额定气流工作,但仅消耗整个额定功率的32%。这些数字基于结构中的示例性典型扇操作。图13示出了空气调节系统中的风扇阵列风扇部分设置为在32%的最大额定气流工作,但仅消耗整个额定功率的17%。这些数字结构中的示例性典型扇操作。在这一实施例中,阵列控制器300创建如示出的关闭风扇单元200和开启风扇单元200的第二示例模式。
不动产
本发明的控制处理部220中的风扇阵列风扇部分优选使用比空气调节系统中的现有技术排气室120更少(60%到80%)的不动产(其中标号100为如图1中所示的现有技术,标号200为如图2中所示的本发明)。对比现有技术(图1),本发明(图2)示出缩短通风道120、220的图形展示。这里有很多原因:使用多个小风扇单元200可减小通风道120、220的长度。例如,减小风扇单元100、200和电机108、208的尺寸减小了进气室112、212的长度。排气室110、210的长高度同样被减小,原因在于来自本发明的空气调节系统的风扇阵列风扇部分的空气基本上是均匀的,而现有技术中的空气调节系统具有较高空气速率点并需要时间和空间来混合,以使在其存在空气处理隔离室102、202时气流是均匀的。(这也可被描述为较高的静态效率,其中本发明不再需要在现有技术风扇系统的排放部的下游设置装置,因为很少需要或不再需要从高速率到低速率的转移)。与现有技术控制处理系统相比,空气调节系统中的风扇阵列风扇部分从进气室212更均匀和更有效地吸入空气,从而可减少进气室112、212的长度。
为了比较目的,在本发明的背景中阐述的第一示例性结构(要求六(6)英寸水表压每分钟50,000立方英尺气流的结构)。使用所述第一示例性结构,本发明的示例性实施例可由89英寸高160英寸宽30至36英寸长的标称排气室212服务(如与现有技术实施例的106至112英寸长相比的)。排气室210包括例如图5中所示的具有12个风扇单元200的空气调节系统中的3×4风扇阵列风扇部分。每个示例性风扇单元200所需要的空间将是在取决于阵列结构的一侧上的约为24至30英寸的矩形管。通风道路径220为42至48英寸(如与现有技术实施例中的88至139英寸相比的)。
为了比较目的,在本发明的背景中阐述的第二示例性结构(要求两(2)英寸水表压每分钟26,000立方英尺气流的结构)。使用所述第二示例性结构,本发明的示例性实施例可由84英寸高84英寸宽30至36英寸长的标称排气室212服务(如与现有技术实施例的94至100英寸长相比的)。排气室包括(例如图5中所示的)具有9个风扇单元200的空气调节系统中的3×3风扇阵列风扇部分。每个示例性风扇单元200所需要的空间将是在取决于阵列结构的一侧上的约为24至30英寸的矩形管。通风道路径220为42至48英寸(如与现有技术实施例中的71至95英寸相比的)。
降低的生产成本
与用在现有技术空气调节系统中的单个风扇单元100相比,在本发明的控制处理系统中建立风扇阵列风扇部分通常是更有成本效率的。成本节约部分由于可大规模生产扇阵列的各个风扇单元200。成本节约也部分由于制造较小的风扇单元200是较廉价的。尽管现有技术单个风扇单元100通常为特定目的定制,但本发明可在单类型的风扇单元200上实现。在可选实施例中,可以存在几个具有不同尺寸和/或功率(输入和输出)的风扇单元200。不同的风扇单元200可用在单个控制处理系统中或每个空气调节系统将仅具有一种类型的风扇单元200。即使在较小的风扇单元200被定制时,制造用于特定工程的多风扇单元200的成本几乎一直比产生用于相同工程的单个大的现有技术风扇单元100的成本低。这是因为产生较大部件的困难和/或获得单个大现有技术风扇单元100所必需的较大部件的成本。这种成本节约也延伸到产生较小空气调节室202的成本。
在本发明的一个优选实施例中,风扇单元200是模块化的,使得所述系统是“即插即用”。这种模块化单元可通过包括用于在风扇单元200自身外部上互锁的结构实现。可选地,这种模块化单元可通过使用用于互锁风扇单元200的单独结构实现。在再一可选实施例中,这种模块化单元可通过使用其中可放置风扇单元200的网格系统实现。
减少的运行费用
与现有技术空气调节系统相比,通过使用要求较低频率噪音控制和对气流的较低静态阻力,由于较大的控制灵活性和对结构运行要求的精细调整,使得本发明的空气调节系统中的风扇阵列风扇部分优选运行较廉价。
提高的效率
与现有技术空气调节系统相比,由于每个小风扇单元200能以峰值效率运行,所以本发明的空气调节系统中的风扇阵列风扇部分优选更有效。所述系统分别打开和关闭风扇单元200,以防止特定风扇单元200的低效率使用。应指出,阵列控制器300可用于控制风扇单元200。如上所阐述的,阵列控制器300关闭某些风扇单元200,并以峰值效率运行其余风扇单元200。
冗余度
多风扇单元200增加了系统的冗余度。如果单个风扇单元200故障,则仍将存在冷却。阵列控制器300可考虑不能使用的风扇单元,使得冷却或空气流速没有明显的降低。这种特性在维护期间也是有用的,因为阵列控制器300可关闭保持脱机的风扇单元200,而冷却或空气流速没有明显的降低。
消音优点
与大风扇单元的低频声音相比,小风扇单元200的高频声音更容易衰减。由于扇壁具有较少的低频声能,所以需要较短的廉价声频陷波器来衰减由多个小风扇单元200产生的较高频声音(与由单个大风扇单元100产生的低频声音相比)。多个风扇单元200每个都工作,使得来自每个单元的声波将互相作用,以取消特定频率的声音,从而产生比现有技术系统更安静的工作单元。
减少的振动
本发明的多风扇单元200具有质量较小的较小轮,且由于剩余失衡产生较少的力,从而造成比大风扇单元更小的振动。由于各个风扇往往由于小的相差而互相取消,所以多风风扇单元200的总振动将传送较少能量给结构。多风扇单元200的每个风扇单元200都管理总空气处理要求的较小百分比,因此产生较少的气流湍流和相当少的振动。
应指出,图3示出具有二十四个风扇单元200的空气调节系统中的4×6风扇阵列风扇部分,图4示出具有二十五个风扇单元200的空气调节系统中的5×5风扇阵列风扇部分,图5示出具有十二个风扇单元200的空气调节系统中的3×4风扇阵列风扇部分,图6示出具有九个风扇单元200的空气调节系统中的3×3风扇阵列风扇部分,且图7示出具有三个风扇单元200的空气调节系统中的3×1风扇阵列风扇部分。应指出,尽管风扇单元200可排列在单个平面上(如图2中所示),但可选的阵列结构可包含在多个平面中排列成交错构造的多个风扇单元200(如图14中所示)。应指出,可将冷却盘管添加在系统中风扇单元200的上游或下游。应指出,尽管示出过滤器组122、222在风扇单元200的上游,但是过滤器组122、222也可在下游。
应指出,可选实施例使用水平排列的扇阵列。换句话说,图2-14中所示的实施例可水平或垂直或在垂直于气流方向的任何方向上使用。例如,如果通风道的垂直部用作控制处理室202,则可水平排列扇阵列。本实施例在用于回风井的空气调节室中是特别实用的。
应指出,扇部214可以是其中设置风扇单元200的空气道路径220的任何部分。例如,风扇单元200可设置在排气室212中(如所示出的)、进气室212中、或部分在进气室212内和部分在排气室210内。也应指出,空气调节室202可以是通风道的部分。
在前面的说明书中采用的数据和表达用作描述术语,而非限制,且目的不是排除所示出和描述的特性或其部分的等同物。本发明的范围仅由所附权利要求书所限定和限制。

Claims (10)

1.一种空气调节系统中的风扇阵列风扇部分,包括:
(a)至少三个风扇单元;
(b)所述至少三个风扇单元排列在风扇阵列中;
(c)空气调节室,所述风扇单元的风扇阵列设置在其中;以及
(d)阵列控制器,用于控制所述至少三个风扇单元,以在大致峰值效率运行。
2.根据权利要求1所述的空气调节系统中的风扇阵列风扇部分,其中所述至少三个风扇单元是送气扇。
3.根据权利要求1所述的空气调节系统中的风扇阵列风扇部分,其中所述空气调节室具有通风道路径,所述通风道路径小于72英寸。
4.根据权利要求1所述的空气调节系统中的风扇阵列风扇部分,其中所述至少三个风扇单元是排列在扇阵列结构中的多个风扇单元,所述扇阵列结构选自包括下述的组:
(a)实阵列结构;
(b)空间图案阵列结构;
(c)跳棋盘阵列结构;
(d)行稍微偏离阵列结构;
(e)列稍微偏离阵列结构;以及
(f)交错阵列结构。
5.根据权利要求1所述的空气调节系统中的风扇阵列风扇部分,其中所述至少三个风扇单元是包括至少两个垂直排列的风扇单元的送气扇。
6.一种空气调节系统中的风扇阵列风扇部分:
(a)空气调节室;
(b)多个风扇单元;
(c)所述多个风扇单元排列在风扇阵列中;
(d)所述风扇阵列具有至少一个垂直设置在至少一个其它的风扇单元上的风扇单元;以及
(e)所述扇阵列位于所述空气调节室中。
7.根据权利要求6所述的空气调节系统中的风扇阵列风扇部分,进一步包括被编程为在大致峰值效率运行所述多个风扇单元的阵列控制器。
8.根据权利要求6所述的空气调节系统中的风扇阵列风扇部分,其中所述多个风扇单元是送气扇。
9.根据权利要求6所述的空气调节系统中的风扇阵列风扇部分,其中所述空气调节室具有通风道路径,所述通风道路径小于72英寸。
10.根据权利要求6所述的空气调节系统中的风扇阵列风扇部分,其中所述多个风扇单元是排列在风扇阵列结构中的多个风扇单元,所述风扇阵列结构选自包括下述的组:
(a)实阵列结构;
(b)空间图案阵列结构;
(c)跳棋盘阵列结构;
(d)行稍微偏离阵列结构;
(e)列稍微偏离阵列结构;以及
(f)交错阵列结构。
CN200480006686XA 2003-03-20 2004-03-19 空气调节系统中的风扇阵列风扇部分 Expired - Fee Related CN1795334B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45641303P 2003-03-20 2003-03-20
US60/456,413 2003-03-20
PCT/US2004/008578 WO2004085928A2 (en) 2003-03-20 2004-03-19 Fan array fan section in air-handling systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2011100965684A Division CN102200137B (zh) 2003-03-20 2004-03-19 空气调节系统中的风扇阵列风扇部分、将空气供给到建筑物的方法

Publications (2)

Publication Number Publication Date
CN1795334A true CN1795334A (zh) 2006-06-28
CN1795334B CN1795334B (zh) 2011-06-01

Family

ID=33098117

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011100965684A Expired - Fee Related CN102200137B (zh) 2003-03-20 2004-03-19 空气调节系统中的风扇阵列风扇部分、将空气供给到建筑物的方法
CN200480006686XA Expired - Fee Related CN1795334B (zh) 2003-03-20 2004-03-19 空气调节系统中的风扇阵列风扇部分

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011100965684A Expired - Fee Related CN102200137B (zh) 2003-03-20 2004-03-19 空气调节系统中的风扇阵列风扇部分、将空气供给到建筑物的方法

Country Status (15)

Country Link
EP (2) EP1604116B1 (zh)
JP (1) JP4008007B2 (zh)
KR (1) KR100736944B1 (zh)
CN (2) CN102200137B (zh)
AT (1) ATE492728T1 (zh)
CA (4) CA2516215C (zh)
DE (2) DE08017758T1 (zh)
DK (2) DK1604116T3 (zh)
ES (2) ES2357516T3 (zh)
HK (1) HK1083119A1 (zh)
IL (2) IL170635A (zh)
MX (1) MXPA05009943A (zh)
PL (1) PL1604116T3 (zh)
PT (1) PT1604116E (zh)
WO (1) WO2004085928A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939536A (zh) * 2007-12-10 2011-01-05 V平方风公司 模块阵列式流体流动能量转换设备
CN102597529A (zh) * 2009-10-27 2012-07-18 亨泰尔公司 风扇阵列控制系统
US8937399B2 (en) 2007-12-10 2015-01-20 V Squared Wind, Inc. Efficient systems and methods for construction and operation of mobile wind power platforms

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255332B2 (en) 2003-03-20 2022-02-22 Nortek Air Solutions, Llc Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system
US7137775B2 (en) 2003-03-20 2006-11-21 Huntair Inc. Fan array fan section in air-handling systems
US7597534B2 (en) * 2003-03-20 2009-10-06 Huntair, Inc. Fan array fan section in air-handling systems
US7963749B1 (en) 2006-11-25 2011-06-21 Climatecraft Technologies, Inc. Fan with variable motor speed and disk type unloading device
US8814639B1 (en) 2008-10-29 2014-08-26 Climatecraft Technologies, Inc. Fan system comprising fan array with surge control
JP5808986B2 (ja) * 2011-09-06 2015-11-10 興研株式会社 空気吹き出し装置
US9568209B2 (en) 2013-04-30 2017-02-14 Eaton Corporation System and method for controlling output flow of parallel connected blowers
CN103267321B (zh) * 2013-05-30 2016-08-10 深圳橙果医疗科技有限公司 手术室空气净化系统
BR112016006060B1 (pt) * 2013-10-22 2021-05-18 Abb Schweiz Ag método para otimizar a operação de sistema de arrefecimento do transformador, método para determinar a capacidade do vfd e sistema de arrefecimento de transformador
CN105485845B (zh) * 2015-12-18 2018-07-03 奥克斯空调股份有限公司 多风机空调室内机的电机控制方法
DE102016113496A1 (de) 2016-07-21 2018-01-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Verfahren zum Regeln von Ventilatoren sowie Ventilatorgruppe
DE102017116399A1 (de) 2017-07-20 2019-01-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Verfahren zum Regeln von wenigstens zwei Ventilatoren
EP3754205A4 (en) 2018-02-23 2021-10-20 Daikin Industries, Ltd. AIR BLOWING DEVICE AND AIR CONDITIONING DEVICE
US11204192B2 (en) 2018-06-15 2021-12-21 Johnson Controls Technology Company Adjustable duct for HVAC system
CN111894884B (zh) * 2020-07-10 2023-11-03 上海沪工焊接集团股份有限公司 适用于弧焊电源的风机控制方法、存储介质及弧焊电源
DE102020118725A1 (de) 2020-07-15 2022-01-20 Ebm-Papst Mulfingen Gmbh & Co. Kg System und ein Verfahren zur optimierten Regelung einer Anordnung von mehreren Ventilatoren

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601968A (en) * 1978-03-23 1981-11-04 Covrad Ltd Method and apparatus for control of a cooling system
DE8705665U1 (zh) * 1987-04-16 1987-06-11 Knuerr-Mechanik Fuer Die Elektronik Ag, 8000 Muenchen, De
US5370576A (en) * 1993-01-13 1994-12-06 Eleanor L. Sackett Sidewall vent-mounted fan assembly for a truck cab
US5586932A (en) * 1993-11-05 1996-12-24 Professional Supply, Inc. Environmental control airhouse with variable output
DE19719507A1 (de) * 1997-05-09 1998-11-12 Alsthom Cge Alcatel Gestellrahmen mit Baugruppenträger und Belüftungseinrichtung
US6104608A (en) * 1997-10-30 2000-08-15 Emc Corporation Noise reduction hood for an electronic system enclosure
US6072397A (en) * 1998-12-03 2000-06-06 Ascend Communications, Inc. Method and apparatus for reducing flame emissions from an electronics enclosure
US6414845B2 (en) 1999-05-24 2002-07-02 Hewlett-Packard Co. Multiple-fan modular cooling component
US6388880B1 (en) 2000-10-19 2002-05-14 Fijitsu Network Communications, Inc. Removable fan tray assembly with latching features
TW495135U (en) * 2001-05-18 2002-07-11 Delta Electronics Inc Multiple heat radiating module
US6690576B2 (en) * 2001-07-31 2004-02-10 Hewlett Packard Development Company, L.P. Externally mounted on-line replaceable fan module
DE10140279A1 (de) * 2001-08-16 2003-03-06 Ludwig Michelbach Vorrichtung und Verfahren zur Rückkühlung von Kühlmitteln oder Rückkühlmedien oder zur Kältegewinnung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939536A (zh) * 2007-12-10 2011-01-05 V平方风公司 模块阵列式流体流动能量转换设备
US8937399B2 (en) 2007-12-10 2015-01-20 V Squared Wind, Inc. Efficient systems and methods for construction and operation of mobile wind power platforms
US9709028B2 (en) 2007-12-10 2017-07-18 V Squared Wind, Inc. Efficient systems and methods for construction and operation of mobile wind power platforms
CN102597529A (zh) * 2009-10-27 2012-07-18 亨泰尔公司 风扇阵列控制系统
US10317105B2 (en) 2009-10-27 2019-06-11 Nortek Air Solutions, Llc Fan array control system

Also Published As

Publication number Publication date
CA2666332A1 (en) 2004-10-07
CA2840794A1 (en) 2004-10-07
WO2004085928A3 (en) 2005-04-21
CN102200137B (zh) 2013-09-25
EP1604116B1 (en) 2010-12-22
DK1604116T3 (da) 2011-04-11
PT1604116E (pt) 2011-02-25
ES2357516T3 (es) 2011-04-27
ATE492728T1 (de) 2011-01-15
JP2006519972A (ja) 2006-08-31
CN102200137A (zh) 2011-09-28
CA2666332C (en) 2012-10-02
CA2781853C (en) 2014-04-22
EP1604116A2 (en) 2005-12-14
IL207092A (en) 2013-04-30
JP4008007B2 (ja) 2007-11-14
ES2325300T1 (es) 2009-09-01
WO2004085928A2 (en) 2004-10-07
IL170635A (en) 2010-12-30
EP2014923B1 (en) 2019-05-08
KR100736944B1 (ko) 2007-07-09
CN1795334B (zh) 2011-06-01
DE08017758T1 (de) 2009-09-17
CA2781853A1 (en) 2004-10-07
KR20050115898A (ko) 2005-12-08
HK1083119A1 (en) 2006-06-23
DK2014923T3 (da) 2019-06-17
EP2014923A2 (en) 2009-01-14
CA2516215C (en) 2011-05-17
CA2516215A1 (en) 2004-10-07
EP1604116A4 (en) 2007-05-23
PL1604116T3 (pl) 2011-06-30
DE602004030665D1 (de) 2011-02-03
EP2014923A3 (en) 2010-03-03
CA2840794C (en) 2016-05-03
MXPA05009943A (es) 2005-11-04

Similar Documents

Publication Publication Date Title
CN101156028B (zh) 空气调节系统中的风扇阵列风扇部分
CN1795334B (zh) 空气调节系统中的风扇阵列风扇部分
US7527468B2 (en) Fan array fan section in air-handling systems
US11255332B2 (en) Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110601

Termination date: 20150319

EXPY Termination of patent right or utility model