CN1788226A - The variable shape of the lens - Google Patents

The variable shape of the lens Download PDF

Info

Publication number
CN1788226A
CN1788226A CN 200480013032 CN200480013032A CN1788226A CN 1788226 A CN1788226 A CN 1788226A CN 200480013032 CN200480013032 CN 200480013032 CN 200480013032 A CN200480013032 A CN 200480013032A CN 1788226 A CN1788226 A CN 1788226A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
fluid
lens
meniscus
tank
variable
Prior art date
Application number
CN 200480013032
Other languages
Chinese (zh)
Other versions
CN100374900C (en )
Inventor
S·库伊佩
B·H·W·亨德里克斯
Original Assignee
皇家飞利浦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B26/00Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating
    • G02B26/004Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Abstract

一种可变透镜(100;200;220;240;250;300;350)包括箱(125),光轴(90)延伸通过该箱(125)。 A variable lens (100; 200; 220; 240; 250; 300; 350) comprises a tank (125), the optical axis (90) extending through the tank (125). 该箱(125)包含第一流体(130)和第二流体(140),所述流体在横断光轴(90)延伸的弯月面(150)上接触。 The box (125) comprising a first fluid (130) and a second fluid (140), contacting the fluid meniscus transverse axis (90) extending over (150). 该弯月面(150)的周边固定地位于箱(125)的内表面(120)上。 Surrounding the meniscus (150) is fixedly located in the tank (125) inner surface (120). 所述流体(130,140)基本上是不混溶的,并具有不同的折射率。 The fluid (130, 140) are substantially immiscible and have different refractive indices. 泵(110)用于通过改变该箱(125)中容纳的每一种所述流体(130,140)的相对体积而可控制地改变弯月面(150)的形状。 A pump (110) may be used for the shape of the meniscus (150) is changed by changing the control box (125) contained in each of said fluid (130, 140) relative volume.

Description

可变形状透镜 The variable shape of the lens

技术领域 FIELD

本发明涉及一种可变透镜,包括这种透镜的光学设备,以及制造这种透镜和这种设备的方法。 The present invention relates to a variable lens, such a lens comprises an optical device, and a method of manufacturing such a lens and such a device.

背景技术 Background technique

透镜是能够使一种或多种波长的光聚焦(会聚或发散)的设备。 Lens is capable of focusing the one or more wavelengths of light (converge or diverge) device. 术语光理解为包括可见电磁辐射和其他波长的电磁辐射。 The term light is understood to include electromagnetic radiation in the visible electromagnetic radiation and other wavelengths.

可变(或可调)透镜是这样一种透镜,其中能够可控制地调整该透镜的一个或多个性质,例如,可以改变透镜的焦距或位置。 Variable (or adjustable) lens is a lens which can be controllably adjust one or more properties of the lens, for example, change the focal length or position of the lens.

DE19710668描述了一种可变透镜系统40,如图1A和1B中所示。 DE19710668 describes 40, as shown in FIG. 1A and 1B to a variable lens system shown in FIG. 透镜系统40包括充满流体44的弹性薄膜42。 The lens system 40 comprises an elastic film 42 filled with the fluid 44. 通过泵46控制薄膜中流体44的压力。 The fluid pressure in the film 44 by the pump 46 is controlled. 虚线表示透镜系统40的光轴90。 Dashed line represents the optical axis of the lens system of 9040. 薄膜42作为可变透镜,该透镜的形状(以及因此透镜光焦度(power of lens))根据流体44的压力而改变。 A lens film 42 as a variable, the shape of the lens (and thus lens power (power of lens)) varies according to the pressure of the fluid 44. 图1A示出处于低压下的流体44,即薄膜42形成双凹透镜。 1A shows a fluid at low pressure 44, i.e., a biconcave lens film 42 is formed. 图1B示出处于高压下的流体44,薄膜42形成双凸透镜。 1B shows a fluid at high pressure 44, a lenticular lens film 42 is formed.

这种系统存在许多缺点。 There are many disadvantages of this system. 由于薄膜表面移动,很难保持良好的光学性质并且容易受振动的影响。 Since the moving film surface, difficult to maintain good optical properties and is susceptible to the effects of vibration. 此外,其容易受机械疲劳的影响。 Further, it is easily subject to mechanical fatigue. 控制该透镜的形状不仅取决于流体44的重力和压力,而且取决于薄膜42的弹性。 Controlling the shape of the lens depends not only on the gravity and pressure of the fluid 44, but also on the elastic film 42. 因此,获得所需透镜形状的范围可能是有问题的,特别是在薄膜42的弹性随时间变化的情况下。 Thus, a range of desired lens shape can be problematic, especially in the case where the elastic film 42 changes with time. 此外,弹性薄膜通常不是气密的,导致流体随时间从该设备中蒸发。 Further, the elastic film is generally not air-tight, resulting in evaporation of the fluid from the device over time.

基于电润湿设备的可变焦点透镜也是已知的。 Variable focus lens based on electrowetting device are also known. 电润湿设备是利用电润湿现象工作的设备。 Electrowetting device is a device utilizing electrowetting phenomenon works. 在电润湿中,三相接触角随外加电压而改变。 In electrowetting, the three-phase contact angle is changed with applied voltage. 三相构成了两种流体和一种固体。 Two-phase fluid and constitutes a solid.

国际专利申请WO 99/18456描述了利用电润湿效应的可变焦点透镜。 International patent application WO 99/18456 describes a variable-focus lens using electrowetting effect. 图2是这种典型光学设备的横截面视图。 FIG 2 is a cross-sectional view of the typical optical device. 该设备具有密封空间92(即箱或腔)中封闭的两种不混溶的流体80、87。 The apparatus has a sealed space 92 (i.e., cavity or box) in a closed two immiscible fluids 80,87. 术语不混溶表示两种流体不混合。 The term immiscible denotes two fluids do not mix. 第一流体80是绝缘体(例如硅油),第二流体87是导电的(例如水和乙醇的混合物)。 The first fluid 80 is an insulator (e.g. silicone oil), the second fluid 87 is electrically conductive (e.g., a mixture of water and ethanol). 第一流体80和第二流体87具有不同的折射率。 The first fluid 80 and second fluid 87 having different refractive indices.

可以从电压源50向两个电极51、52施加电压,从而在第一流体87和电极52之间产生电场(绝缘层65防止第二电极52接触导电的第二流体)。 Voltage may be applied to the two electrodes 51, 52 from the voltage source 50, so that the fluid 87 is generated between the first electrode 52 and the field (65 prevent the second insulating layer 52 a second electrode contacting the electrically conductive fluid).

通过改变施加于第二流体87的电压,第一流体80和第二流体87之间的界面形状改变,从而使界面85提供的透镜功能改变。 By changing the voltage applied to the second fluid 87, it changes the shape of the interface 87 between the first fluid and the second fluid 80, thereby changing the lens function provided by the interface 85. 图1中的设备具有在绝缘层65之上的由亲水剂70的环所围绕的直径为D1的防水薄膜60,以定位第一流体80。 A waterproofing membrane diameter of the ring 60 in FIG. 1 device having an insulating layer 65 over a hydrophilizing agent 70 is surrounded D1 to locate the first fluid 80.

该电润湿透镜也存在许多缺点。 The electrowetting lens also has many drawbacks. 例如,透镜形状由可变电压来限定,同时该透镜形状受绝缘层的不均匀性影响。 For example, a lens shape is defined by a variable voltage, while the shape of the lens under the influence of the unevenness of the insulating layer. 这种构形需要相对较高的电压来改变界面85的形状。 This configuration requires a relatively high voltage to change the shape of the interface 85. 此外,绝缘层可能要经受充电(特别是在高电压下)的影响。 Further, the insulating layer may be subjected to charge (especially at a high voltage) impacts. 如果绝缘层不均匀地充电,那么将导致接触角不等,从而导致非球面的透镜。 If the insulating layer is not uniformly charged, this would result in unequal contact angles, resulting in an aspherical lens. 此外,这种透镜不可能从正光焦度透镜变为负光焦度透镜(反之亦然)。 Further, such a lens is not possible from the positive refractive power of the lens becomes negative refractive power of the lens (or vice versa).

本发明实施例的目的在于提供一种可变透镜,其解决本文中提到或没有提到的现有技术的一个或多个问题。 Object of embodiments of the present invention to provide a variable lens that addresses referred to herein or a prior art does not mention or more problems. 本发明的另一个目的在于提供包括这种透镜的光学设备,以及制造这种透镜和这种设备的方法。 Another object of the present invention to provide an optical apparatus including such a lens, and such lenses and methods for manufacturing such devices.

发明内容 SUMMARY

在第一方面,本发明提供了一种可变透镜,包括:箱;延伸通过该箱的光轴;该箱包含第一流体和第二流体,这两种流体在横断光轴延伸的弯月面上接触,该弯月面的周边固定地位于该箱的内表面上,这两种流体基本上是不混溶的,并具有不同的折射率;和至少一个泵,用于通过改变该箱中容纳的每一种所述流体的相对体积而可控制地改变弯月面的形状。 In a first aspect, the present invention provides a variable lens, comprising: a tank; an optical axis extending through the tank; the tank comprises a first and second fluids, the two fluid meniscus extends transverse to the optical axis the contact surface, the perimeter of the meniscus is fixedly located on the inner surface of the tank, two fluids are substantially immiscible and have different refractive indices; and at least one pump, by varying the tank relative to the volume of fluid in each of said receiving and controllably varying the shape of the meniscus.

这两种透镜之间的弯月面作为透镜,因此通过改变弯月面的形状可以很容易地调整透镜的有效形状。 Between the two meniscus lens as a lens, can be easily adjusted by changing the effective shape of the lens shape of the meniscus. 由于透镜的光路中不需要机械部件,因此光路不会发生机械磨损和破损。 Since the optical path of the lens in no mechanical parts, so that the light path without mechanical wear and breakage. 此外,透镜形状与电压变化没有直接关系,因此使透镜不依赖于绝缘层中的充电效果。 Further, the voltage change of the lens shape is not directly related, so that the lens effect is not dependent on the charging of the insulating layer. 此外,该设计使制造的透镜可以从正光焦度透镜调整为负光焦度透镜(反之亦然),从而允许宽范围的设计自由度。 Further, the lens design can be adjusted from the manufacturing positive refractive power of the lens is a negative refractive power of the lens (or vice versa), allowing a wide range of design freedom.

在另一方面,本发明提供了一种包括可变透镜的光学设备,该透镜包括:箱;延伸通过该箱的光轴;该箱包含第一流体和第二流体,这两种流体在横断光轴延伸的弯月面上接触,该弯月面的周边固定地位于该箱的内表面上,这两种流体基本上是不混溶的,并具有不同的折射率;和至少一个泵,用于通过改变该箱中容纳的每一种所述流体的相对体积而可控制地改变弯月面的形状。 In another aspect, the present invention provides an optical device comprising a variable lens, the lens comprising: a tank; an optical axis extending through the tank; the tank comprises a first and second fluids, the fluid in the two transverse contacting a meniscus optical axis extending outside of the meniscus is fixedly located on the inner surface of the tank, two fluids are substantially immiscible and have different refractive indices; and at least one pump, for the shape of the meniscus can be controllably varied by varying the relative volumes of each of said fluid contained in the tank.

在再一个方面,本发明提供了一种制造可变透镜的方法,该方法包括:提供箱,光轴延伸通过该箱;在该箱中放置第一流体和第二流体,使这两种流体在横断光轴延伸的弯月面上接触,该弯月面的周边固定地位于该箱的内表面上,这两种流体基本上是不混溶的,并具有不同的折射率;以及提供至少一个泵,用于通过改变该箱中容纳的每一种所述流体的相对体积而可控制地改变弯月面的形状。 In a further aspect, the present invention provides a method of manufacturing a variable lens, the method comprising: providing a tank, an optical axis extending through the tank; placing the first and second fluids in the tank, so that the two fluid an optical axis extending transverse to the meniscus contacts the periphery of the meniscus is fixedly located on the inner surface of the tank, two fluids are substantially immiscible and having different refractive indices; and providing at least a pump for the control of the shape of the meniscus can be varied by changing the relative volume of each of said fluid contained in the tank.

在又一方面,本发明提供了一种制造光学设备的方法,该方法包括以下步骤:提供可变透镜,该可变透镜包括:箱;延伸通过该箱的光轴;该箱包含第一流体和第二流体,这两种流体在横断光轴延伸的弯月面上接触,该弯月面的周边固定地位于该箱的内表面上,这两种流体基本上是不混溶的,并具有不同的折射率;和至少一个泵,用于通过改变该箱中容纳的每一种所述流体的相对体积而可控制地改变弯月面的形状。 In yet another aspect, the present invention provides a method of manufacturing an optical device, the method comprising the steps of: providing a variable lens, the variable lens comprising: a tank; an optical axis extending through the tank; the tank comprises a first fluid and a second fluid, the two fluids the meniscus extending transverse the optical axis of the contact, the perimeter of the meniscus is fixedly located on the inner surface of the tank, two fluids are substantially immiscible and They have different refractive indices; and at least one pump, for controllably changing the shape of the meniscus by altering the relative volume of each of said fluid contained in the tank.

本发明的其他目的和优点将根据随附权利要求书阐明的优选特征而显而易见。 Other objects and advantages of the present invention will be apparent from the appended claims set forth preferred features of the book.

附图说明 BRIEF DESCRIPTION

现在通过例子的方式,参照附图更好地理解本发明,并示出怎样实现本发明的各个实施例,在附图中:图1A和1B示出已知可变透镜的两种不同构形的示意性横截面;图2表示已知类型的电润湿可变透镜的示意性横截面;图3A和3B分别表示依照本发明第一实施例的可变透镜的示意性横截面,以及由该可变透镜提供的等效光学功能元件;图4A-4C表示依照本发明另一实施例的可变透镜的示意性横截面;图5表示依照本发明另一实施例的可变透镜的示意性横截面;图6表示依照本发明又一实施例的可变透镜的示意性横截面;图7表示依照本发明另一实施例的可变透镜的示意性横截面;图8表示依照本发明实施例的用于扫描光学记录载体的包括可变透镜的设备;以及图9表示依照本发明实施例的包括可变透镜的可变焦点图像捕获设备。 Now by way of example, with reference to the accompanying drawings a better understanding of the present invention, and shows how to implement various embodiments of the present invention, in which: FIGS. 1A and 1B show two different configurations of a known variable lens schematic cross-section; 2 a schematic cross-sectional view showing a known type of electrowetting variable lens; FIGS. 3A and 3B are schematic cross-sectional embodiment of a variable lens in accordance with a first embodiment of the present invention, and the the equivalent optical function element provided variable lens; FIGS. 4A-4C shows a schematic cross section of an embodiment of a variable lens in accordance with another embodiment of the present invention; FIG. 5 shows a schematic embodiment of a variable lens in accordance with another embodiment of the present invention cross-section; Figure 6 shows in accordance with the present invention, a schematic cross section of a variable lens according to another embodiment; FIG. 7 shows a schematic cross section of exemplary embodiment of the variable lens in accordance with another embodiment of the present invention; FIG. 8 in accordance with the present invention represents Example embodiments include apparatus for scanning an optical record carrier variable lens; and FIG. 9 shows an embodiment according to the present invention comprises a variable lens variable focus image capture device.

具体实施方式 detailed description

图3A示出依照本发明第一实施例的可变透镜。 3A shows a first embodiment of the variable lens in accordance with the present invention. 透镜100可被认为是由两种不同的元件形成的:由两种流体130、140之间的弯月面150形成的透镜功能元件,和用于改变该透镜功能元件的形状的泵110。 Lens 100 may be considered to be formed by two distinct elements: a lens function formed by the meniscus element 150 between the two fluids 130, 140, and a pump for changing the shape of the lens 110 of the functional element.

流体是响应于任何力而改变其形状的物质,其易于流动或符合流体箱的轮廓,并包括气体、液体、蒸汽、以及能够流动的固液混合物。 Fluid force in response to any substance that alters its shape, which is easy to flow or conform to the contour of the fluid tank, and comprising a gas, liquid, vapor, and solid-liquid mixture can flow.

两种流体130、140基本上是不混溶的,即两种流体不混和。 The two fluids 130, 140 are substantially immiscible, i.e., the two fluids do not mix. 两种流体130、140具有不同的折射率。 Two fluids 130, 140 having different refractive indices. 这样,由于这两种流体具有不同的折射率,因此通过沿两种流体接触面形成的弯月面150来提供透镜功能。 Thus, since two fluids have different refractive indices, the meniscus formed by the contact surface 150 along the two fluids to provide a lens function. 透镜功能是弯月面150使一种或多种波长的光聚焦(会聚或发散)的能力。 150 is a meniscus lens function so that one or more wavelengths of light to focus (converge or diverge) capabilities. 在该特定实施例中,假定流体130的折射率高于流体140的折射率。 In this particular embodiment, fluid 130 is higher than the refractive index is assumed that the refractive index of the fluid 140.

这两种流体优选具有基本上相等的密度,以便使重力对透镜100的作用最小。 The two fluids are preferably of substantially equal density, so as to minimize the role of gravity of the lens 100.

流体130、140密封在箱125中。 130, 140 sealed in a fluid tank 125. 在该实施例中,箱125采取纵向延伸管的形式,该管具有由内表面120限定的侧壁。 In this embodiment, box 125 takes the form of a longitudinally extending tube, the tube having an inner surface defined by side walls 120. 光轴通过该管纵向延伸。 An optical axis extending longitudinally through the tube. 在该特定实施例中,管是圆筒形管,具有恒定的圆形横截面面积,光轴与管轴是同轴的。 In this particular embodiment, the tube is a cylindrical tube having a constant circular cross-sectional area of ​​the optical axis is coaxial with the tube axis. 额外的壁121、122在管的端部延伸以形成密封流体的箱125。 Additional walls 121,122 extend to form a sealed fluid tank 125 at the end of the tube. 箱125中沿光轴90的至少一部分壁121、122是透明的。 At least a portion of the wall of the box 125 along the optical axis 90 are transparent to 121,122. 如果需要,这些壁121、122中的一个或两个可以呈透镜形状。 If desired, one or both of the walls 121, 122 may be in the shape of a lens.

两种流体130、140之间的弯月面150横断透镜100的光轴90延伸。 Meniscus lens 150 transverse to the optical axis 100 between the two fluids 130, 140 90 extends. 术语横断表示弯月面与光轴相交(即其跨过光轴延伸),且不平行于光轴;弯月面150可以以任何所需角度与光轴90相交。 The term transverse indicates meniscus intersect the optical axis (i.e., which extends across the optical axis), and not parallel to the optical axis; meniscus 150 may intersect at any desired angle to the optical axis 90. 管的侧壁120限定了弯月面150的周边。 Sidewall 120 of the tube defines a perimeter of the meniscus 150.

通常,为了将流体130、140定位在箱125的所需部分中,箱的不同区域对每种流体具有不同的可湿性,因此每种流体将被各自的区域吸引。 Generally, to 130, 140 positioned at a desired portion of the fluid tank 125, different regions having different wettability box for each fluid, so each fluid will be attracted to the respective regions. 可湿性是流体润湿(覆盖)一个区域的程度。 Wettable degree of wetting fluid (coverage) of a region. 例如,如果流体130是水,而流体140是油,那么壁122的内表面可以是亲水的,从而吸引流体130而不吸引流体140。 For example, if the fluid 130 is water and fluid 140 is oil, the inner surface of the wall 122 may be hydrophilic so as to attract the fluid suction fluid 140 rather than 130.

弯月面150的周边接触管的侧壁的表面120。 The peripheral surface of the meniscus 150 contacts the side wall 120 of the tube. 弯月面的周边固定地位于表面120上。 Perimeter of the meniscus is fixedly located on the surface 120. 换句话说,弯月面150的周边接触表面120的位置151是固定的,即,将弯月面周边固定在该表面上。 In other words the position of the meniscus in contact with the peripheral surface 120 150 151 are fixed, i.e., the peripheral surface of the meniscus is fixed on the surface. 在该特定实施例中,例如在表面120从疏水变为亲水的位置151处,通过在位置151处该表面的可湿性突变将弯月面周边固定在该表面上。 In this particular embodiment, for example, at a position 151 changes from hydrophobic to hydrophilic surface 120, by mutation of the wettable surface 151 at the peripheral surface of the fixed position of the meniscus on the surface.

弯月面150的形状由两种流体之间的压力差和圆筒的内径来确定。 Shape of the meniscus 150 is determined by the inner diameter of the cylinder and the pressure difference between the two fluids. 所示的弯月面150是凸面(从流体130的角度来观察)。 Meniscus 150 illustrated is convex (as viewed from the perspective of the fluid 130).

泵110与充满流体的箱125相连,用于将大量的一种或多种流体泵送到箱125或从箱125抽出大量的一种或多种流体。 Pump 110 and 125 connected to the fluid-filled tank, for amounts of one or more fluids pumped into tank 125, or withdrawn amounts of one or more fluids from the tank 125.

在该特定实施例中,泵110用于同时增大流体130的体积并减小流体140的体积(反之亦然),以保持箱125中两种流体的总体积相同。 In this particular embodiment, the pump 110 is used to simultaneously increase the volume of fluid 130 and to reduce the volume of fluid 140 (and vice versa), 125 to maintain the same total volume of the two fluids tank. 结果是,由于弯月面的周边固定在表面120上,所以弯月面150的形状将改变。 As a result, due to the perimeter of the meniscus is fixed to the surface 120, the shape of the meniscus 150 will be changed.

例如,如果向箱125添加额外的流体130,那么弯月面的形状可变得更凸,即形成由虚线150′表示的弯月面。 For example, if the additional fluid 130 is added to tank 125, then the shape of the meniscus may become more convex, i.e., a meniscus is formed by the broken line '150 indicated. 可替换的是,如果添加额外的流体140,那么该弯月面的形状可变为由虚线150″表示的形状,即弯月面变为凹面(从流体130的角度来观察)。应该理解,通过改变箱125中流体的体积,可以将弯月面的形状从凸面变为平面、凹面。 Alternatively, if additional fluid 140, then the meniscus shape of a broken line 150 of the variable shape "indicated by, i.e., the meniscus becomes concave (as viewed from the perspective of the fluid 130). It should be understood, by changing the volume of fluid in tank 125, the shape of the meniscus may be changed from a convex plane, a concave surface.

希望弯月面的最大曲率出现在弯月面形成半球形时。 Desired maximum curvature of the meniscus occurs when the meniscus forming hemispherical. 但是,应该理解,可能存在弯月面移动的阈值压力,当压力变大从而克服了弯月面的固定作用时,弯月面随后移动位置。 However, it should be understood that there may be a threshold pressure the meniscus moves, when the pressure is increased to overcome the fixation of the meniscus, the meniscus position is then moved. 这种阈值压力取决于可湿性变化的量。 Such a threshold pressure is dependent on the amount of change in wettability.

图3B表示了当流体130的折射率大于流体140时,由弯月面150提供的有效光学功能元件,即焦距为f的平凸透镜160的光学功能元件。 3B shows the refractive index of the fluid when the fluid 130 is greater than 140, the effective optical function provided by the meniscus element 150, i.e., focal length f of the plano-convex lens 160 of an optical functional element. 换句话说,弯月面150有效地提供了透镜160的功能,其将平行光170(沿着平行于光轴90的方向入射到透镜上)聚焦到与该透镜相距f的焦点172。 In other words, the meniscus 150 effectively provides the function of a lens 160, which parallel light 170 (incident direction parallel to the optical axis 90 of the lens) to the focal distance f of the lens 172.

当弯月面改变形状时(即,变为图3A中虚线150′所示的形状),那么该有效透镜功能元件也改变,变为虚线160′所示的形状。 When the meniscus changes shape (i.e., becomes broken line 150 in FIG. 3A 'shape shown), then the effective lens function also changes element, it becomes a broken line 160' shape shown. 由于弯月面150′比弯月面150更加弯曲,那么该透镜将具有更大的光焦度,即,具有更短的焦距,从而将平行光170聚焦到与该透镜距离更短的焦点172′。 Since the meniscus 150 'is more curved than meniscus 150, then the lens will have a larger optical power, i.e., have a shorter focal length, thereby focusing the parallel light 170 and the focus lens 172 a shorter distance '.

在图3A所示的实施例中,通过表面可湿性变化来固定地定位弯月面150。 In the embodiment illustrated in FIG. 3A, the change in surface wettability to the meniscus 150 is fixedly positioned. 但是,应该理解,可以使用其他技术来固定弯月面周边的位置。 However, it should be understood that to fix the position of the meniscus perimeter using other techniques.

例如,图4A、4B和4C示出依照本发明其他实施例的可变透镜200、220、240的横截面视图。 For example, FIG. 4A, 4B and 4C show a cross-sectional view of a variable lens in accordance with another embodiment of the present invention is 200,220,240. 相同的附图标记表示相似的部件。 The same reference numerals refer to like parts.

可以将设备200的箱125想象为两个部分(125a,125b)。 Box 125 device 200 may be thought of as two portions (125a, 125b). 这两个部分125a、125b都是圆筒形管,每一个都在一端封闭。 The two portions 125a, 125b are cylindrical tubes, each closed at one end. 这两个部分125a和125b具有不同的圆形横截面,其中一个部分(125b)小于另一个部分(125a)。 The two portions 125a and 125b having different circular cross-section, wherein a portion (125b) is smaller than the other portion (125a). 因此,在两个管接合的地方产生具有外部转角的台阶(step)。 Thus, a step (step) has an outer corner where the two tubes joined.

在该特定实施例中,通过弯月面所接触的表面120的几何形状变化而将该弯月面固定在适当位置。 In this particular embodiment, the geometry of the meniscus is varied by contacting the surface 120 and the meniscus fixed in position. 特别是,弯月面的周边接触表面120中台阶的转角(位置151)。 In particular, the periphery of the contact surface of the step 120 of the rotational angle of the meniscus (position 151). 几何形状的突变足以固定地定位弯月面的周边。 Mutations sufficient to fix the geometry of the perimeter of the meniscus is positioned.

应该理解,可以利用其他几何形状变化来固定地定位弯月面150。 It should be appreciated that other geometric shapes may be utilized to change the meniscus 150 is fixedly positioned. 优选的是,弯月面所接触的位置是出现角度突变的表面。 Preferably, the position of the meniscus in contact with the surface of the emergence angle of mutations. 角度变化越大(例如边缘或转角越急剧或者越尖锐),弯月面的固定作用越大,因此弯月面所经历的曲率半径的变化越大。 Larger angular change (e.g., sharp edges or corners more or sharper), the greater the fixation of the meniscus, so the greater the change experienced by the meniscus curvature radius.

举例来说,图4B示出设备220,在该设备中,环形物(或环)在内表面120的一部分的周围延伸。 By way of example, apparatus 220 shown in FIG. 4B, in the apparatus, the inner ring (or rings) that extends around a portion of the surface 120. 优选的是,环形物的平面垂直于光轴90。 Preferably, the plane perpendicular to the optical axis of the ring 90. 该环形物具有三角形横截面,因此在环的内表面上形成锐角转角。 The ring has a triangular cross-section, thereby forming a sharp corner on the inner surface of the ring. 弯月面接触该转角(位置151)。 The contact angle of the meniscus (position 151).

图4C示出本发明的可替换实施例,其一般类似于图4B中所示的实施例。 Figure 4C shows an alternative embodiment of the present invention, which is generally similar to the embodiment illustrated in FIG. 4B. 在该特定例子中,该环形物非常薄,因此该环形物的内表面实际上是一个长钉(spike)。 In this particular example, the ring is very thin, the inner surface of the annulus is actually a spike (spike). 弯月面150在该尖锐内表面(位置151)处接触该环。 The meniscus 150 contacts the sharp surface of the inner ring (position 151). 关于适合于固定弯月面150的位置的其他适当的几何形状变化对本领域的技术人员来说是显而易见的。 For other suitable geometry adapted to change the position of the meniscus 150 is fixed to those skilled in the art it will be apparent.

如果需要,可以通过改变几何形状和改变可湿性来将弯月面150固定在适当位置。 If necessary, by changing the geometry and wettability to the change of the meniscus 150 is fixed in place. 例如,在图4A、4B、4C中,通过在锐角转角所在位置处箱的可湿性的突变来增强固定作用。 For example, in FIG. 4A, 4B, 4C, wettable by mutations in the tank at the location of sharp corners to enhance fixation.

应该理解,能够以许多方式将流体泵送到箱125中并从箱125中抽吸出来,例如利用机械泵。 It should be appreciated, it is possible in many ways to pump fluid from the tank 125 and the suction box 125 out, for example using a mechanical pump. 图5示出本发明的可替换实施例,其中通过电润湿进行抽吸。 Figure 5 shows an alternative embodiment of the present invention, wherein the wetting by an electric suction.

在图5所示的设备250中,假定由例如玻璃的亲水材料来形成限定箱125的圆筒,该箱包含两种流体。 In the device 250 shown in Figure 5, it is assumed for example, hydrophilic material to form a glass cylinder defining a tank 125, the tank comprising two fluids. 在该实施例中,第一流体130是水,而第二流体140是油。 In this embodiment, the first fluid 130 is water, the second fluid 140 is oil. 限定箱125的内表面120的上部122涂有疏水层。 Defining an inner surface of the upper casing 125 122 120 coated with a hydrophobic layer. 结果是,水弄湿玻璃,但是不会弄湿疏水涂层。 As a result, it wetted with water glass, but does not wet the hydrophobic coating. 因此,可湿性的变化将弯月面150的周边固定在适当位置。 Thus, the change in the wettability of the fixed perimeter of the meniscus 150 in place. 应该理解,由弯月面提供的透镜功能元件的圆周的性质(quality)是由沉积(或者除去,如果涂层首先涂敷到所有内表面上,那么选择性地除去)涂层的精度来确定的。 It should be appreciated that the nature of the circumference of the lens element functions provided by the meniscus (Quality) is (if the coating is first applied to all the inner surface, then selectively removing or removed) by the deposition of the coating to determine accuracy of.

例如,可通过车床或通过光刻技术部分地除去材料层。 For example, the material layer is removed by a lathe or partially by a photolithography technique. 通过许多技术,包括注塑法可获得几何形状的精确变化。 By many techniques, precise changes in the geometry of the available comprises injection molding.

通道116连接两种不混溶的液体(水和油)。 Channel 116 connecting the two immiscible liquids (oil and water). 通过该通道116泵送这些液体,因此改变箱125中液体的体积,从而也改变箱中弯月面150的曲率半径。 116 through which the pumped liquid, thus changing the volume of liquid in the tank 125, thus changing the radius of curvature of the meniscus 150 of the tank.

在通道116中存在另一个弯月面112,其限定了两种液体之间的界面。 There is another meniscus 112 in the channel 116, which defines the interface between the two liquids. 利用电润湿改变该弯月面112的曲率(因此改变其位置),结果,改变了箱125中流体的体积。 Electrowetting change the curvature of the meniscus 112 (thus changing its position), the result, change in the volume of fluid in tank 125. 通过在电极114和电极118之间施加电压来进行电润湿,从而使两种流体130、140与通道116的表面之间的三相接触角改变。 Electrowetting performed by applying a voltage between the electrode 114 and the electrode 118, such that the two fluids 130 and 140 to change the channel of three-phase contact angle between the surface 116.

在该特定实施例中,通道116的半径远小于箱125的半径。 In this particular embodiment, channel 116 is much smaller than the radius of the radius of tank 125. 因此,通道116中弯月面112的接触角相对较小的变化将导致箱125中弯月面150的接触角非常大的变化。 Thus, the channel 116 in the contact angle of the meniscus 112 will result in relatively small changes in the contact angle of the casing 125 of the meniscus 150 is a very big change. 通道116必须足够长以适应弯月面112的所需范围和运动。 Channel 116 must be long enough to accommodate the desired range of motion and the meniscus 112. 如果需要,通道116可由例如挠性管的管来形成,或者由第二圆筒(例如可放置在第一圆筒周围的较大圆筒,类似于图4中所示的布置)来形成。 If desired, the channel 116 may be a flexible tube such as a tube is formed, or by a second cylinder (e.g. the first cylinder may be placed around the large cylinder, similar to the arrangement shown in FIG. 4) is formed.

图6示出依照本发明另一实施例的可变透镜300。 Figure 6 shows a variable lens 300 according to another embodiment of the present invention. 在该特定实施例中,限定透镜的弯月面150的两种流体130、140是不混溶的,但不一定适合于电润湿。 In this particular embodiment, the meniscus lens defining two fluids 130, 140, 150 are immiscible but not necessarily suitable for electrowetting. 例如,第一流体130可以是氟化油,第二流体140可以是烃油。 For example, the first fluid 130 may be a fluorinated oil, the second fluid 140 may be a hydrocarbon oil. 氟化油具有非常低的折射率,从而可以获得两种流体之间很大的折射率差。 Fluorinated oils have a very low refractive index, the refractive index can be obtained a large difference between the two fluids.

通过可湿性的突变再一次将弯月面150的周边固定在适当位置。 Again the perimeter of the meniscus 150 is secured in place by mutation wettable. 箱125的内表面的上部涂有可由烃油(例如聚乙烯)润湿的层,该内表面的其余部分涂有可由氟化油(例如特氟隆)润湿的层。 An upper portion of the inner surface of the tank 125 may be coated with a hydrocarbon oil (e.g., polyethylene) layer is wetted, the rest of the inner surface may be coated with a fluorinated oil (such as Teflon) wetting layer. 通道116中存在一定体积的水135(称作“水栓”)。 There is a certain volume of water in the channel 116 135 (referred to as "slug"). 假定烃油140适合于电润湿,那么可以利用电润湿来移动通道中的水栓,这通过流体130和140在通道外面的相应移动来反映。 140 assuming a hydrocarbon oil suitable for electrowetting, electrowetting can then move the slug passage, which reflect the fluid 130 and 140 to move out of the respective passage. 因此,通过水栓135提供的抽吸作用,可改变大弯月面150的形状,由此改变透镜的光焦度。 Thus, by providing the suction faucet 135, a large meniscus shape can be changed 150, thereby changing the optical power of the lens.

这种透镜300是如何不需要为两种流体提供透镜作用的弯月面150以适合于电润湿的例子,这两种流体必须仅仅是不混溶的。 How the meniscus lens 300 is not required to provide a lens effect of the two fluids suitable for electrowetting example 150, the two fluids must only be immiscible. 在该例子中,流体130、140中只有一种适合于电润湿,为使用电润湿效应而提供附加流体(栓135)作为泵。 In this example, only one of the fluid 130, 140 is suitable for electrowetting, using the electrowetting effect to provide additional fluid (plug 135) as a pump. 但是,应该理解,如果这些流体通过例如机械泵的另一个泵的作用而移动,那么可能的液体的范围变得更大。 However, it should be understood that, if the fluid is moved by the action of a mechanical pump, for example, another pump, then the range of possible liquid becomes larger. 因此,适当的设计允许在所选的流体类型中进行更宽地选择。 Therefore, an appropriate design allows for a wider choice in selecting the type of fluid.

图7示出依照本发明又一个实施例的透镜350。 Figure 7 shows the present invention in accordance with yet another embodiment of the lens element 350. 该透镜350一般类似于图5中所示的透镜250。 The lens 350 is generally similar to the lens shown in FIG. 5 250. 但是,在该特定实施例中,将中心柱124引入箱125中。 However, in this particular embodiment, the inlet box 124 central post 125. 柱124在与外部圆筒壁122相同高度(即,垂直于光轴90的相对位置)涂有疏水层122。 Column 124 at the same height of the outer cylinder wall 122 (i.e., perpendicularly to the relative position of the optical axis 90) is coated with a hydrophobic layer 122. 结果固定住的弯月面150是环形。 Results pinned the meniscus 150 is annular. 现在该弯月面没有引入光焦度,但是引入了球差。 Now the meniscus does not introduce optical power, but introduces spherical aberration. 弯月面150引入的球差的程度取决于环形弯月面的曲率,球差很可能具有很宽的范围。 The degree of spherical aberration introduced by the meniscus 150 depending annular meniscus curvature, spherical aberration is likely to have a wide range. 因此,可将这种透镜用作像差校正器。 Thus, such a lens may be used as an aberration corrector.

在该特殊的透镜350中,柱124采取与光轴90共轴的圆筒形式。 In this particular lens 350, the post 124 take the form of a cylinder coaxial with the optical axis 90. 但是,应该理解,实际上该柱也可以采取任何所需的形状,或者位于箱125中任何所需的位置。 However, it should be understood that, in fact, the column may also take any desired shape, or in box 125 in any desired position. 该柱124可湿性的变化不需要与表面120上的可湿性变化位于同一高度。 Change the wettability of the column 124 need not be located in the same height as the upper surface 120 changes wettability.

各种类型的泵都可用作泵110。 Various types of pumps are used as pump 110. 例如,国际专利申请WO 02/069016描述了大量如何能够移动流体的方式,例如电毛细管、差压电毛细管现象(differential-pressure electro-capillarity)、电润湿、连续电润湿、电泳、电渗、介电电泳、电水动抽吸(electrohydrodynamic pumping)、热毛细管(thermocapillary)、热膨胀、电介质抽吸或可变的电介质抽吸,这些方式中的任一种都可以用于提供泵110所需的抽吸。 For example, International patent application WO 02/069016 describes how large a manner capable of moving fluid, such as an electric capillary, piezoelectric capillarity difference (differential-pressure electro-capillarity), electrowetting, continuous electrowetting, electrophoresis, electroosmosis , dielectrophoresis, the electric hydrodynamic pumping (electrohydrodynamic pumping), heat the capillary (thermocapillary), thermal expansion, dielectric pumping or variable dielectric pumping, in any of these ways may be used to provide a desired pump 110 suction. 可替换的是,泵可以是机械泵。 Alternatively, the pump may be a mechanical pump.

尽管在上面的实施例中,将管描述为圆形管(即,其具有圆形横截面),但是应该理解,实际上,管可以具有任何所需的横截面,例如正方形、矩形或椭圆形。 Although in the above embodiment, the tube described circular tubes (i.e., having a circular cross-section), it should be understood that in practice, the tube may have any desired cross section, such as square, rectangular or elliptical .

同样,在上面的实施例中,将透镜描述为由两种流体形成,流体之间的界面提供透镜功能元件。 Also, in the above embodiment, the lens is described as being formed of two fluids, the interface between the lens function to provide a fluid element. 但是,应该理解,实际上,该透镜可包括任何数量的流体。 However, it should be understood that, in practice, the lens may include any number of fluid. 例如,该透镜可包括由大量水分开的两种油。 For example, the lens may include a large amount of water separated from the two oils. 因此,产生具有两个弯月面的双透镜,每个弯月面对应于水和一种油之间的界面。 Thus, a lenticular lens having two meniscus, the meniscus face of each corresponding to the interface between water and an oil. 可以固定这两个弯月面中的每一个。 Each of these can be fixed in two meniscus. 通过改变每种流体各自的体积(即,通过改变管中所含的水的体积,以及管中的每种油的体积),能够可控制地改变由这两个弯月面提供的透镜功能元件。 By changing the respective volumes of each fluid (i.e., by changing the volume of water contained in the tube, and the volume of each oil in the tube), it can be controllably alter the lens function provided by the two elements meniscus .

应该理解,本发明的可变透镜可构成需要透镜的任何光学设备的一部分。 It should be understood that the variable lens of the invention may form part of any optical devices requires a lens.

图8示出用于扫描光学记录载体2的设备1,包括物镜系统18,该物镜系统包括依照本发明实施例的可变焦点透镜。 FIG 8 illustrates an apparatus 2 for scanning an optical record carrier 1, system 18 comprises an objective lens, the objective system comprises a variable focal lens in accordance with an embodiment of the present invention. 记录载体包括透明层3,信息层4置于该透明层的一侧。 The record carrier comprises a transparent layer 3, layer 4 information is placed on one side of the transparent layer. 通过保护层5来保护该信息层上与透明层相反的一侧,使其不受环境影响。 5 through the protective layer to protect the transparent layer side opposite to the information layer from environmental impact. 透明层面向该设备的一侧称作入射面6。 Side of the transparent layer facing the device is referred to as incident surface 6. 透明层3通过对信息层提供机械支撑而作为记录载体的基底。 The transparent layer 3 by providing mechanical support for the information layer of the record carrier as a substrate.

可替换的是,透明层可以仅具有保护信息层的作用,而通过位于信息层另一侧上的一层来提供机械支撑,例如通过保护层5,或者通过连接到信息层4的附加信息层和透明层来提供机械支撑。 Alternatively, the transparent layer may have only the effect of protecting the information layer, while the mechanical support is provided by a layer positioned on the other side of the information layer, for example, through the protective layer 5, or by connecting to the information layer 4 of the additional information layer and a transparent layer to provide mechanical support.

可以将信息按照在基本上平行、同心或螺旋轨道上设置的可光学检测的标记的形式存储在记录载体的信息层4中。 It may be marked on the information in the substantially parallel, concentric or spiral tracks provided in the form of optically detectable information stored in the recording layer 4 in the carrier. 这些标记可以是任何光学可读的形式,例如反射系数或磁化方向不同于其周围环境的多个凹坑或多个区域的形式,或这些形式的组合。 These marks may be in any optically readable form, such as a reflection coefficient or a direction of magnetization different from its surroundings in the form of a plurality of pits or a plurality of regions, or a combination of these forms.

扫描设备1包括能够发射辐射光束12的辐射源11。 Scanning device comprises a radiation source capable of emitting a radiation beam 11 and 12. 辐射源可以是半导体激光器。 The radiation source may be a semiconductor laser. 分束器13朝准直透镜14反射发散的辐射光束12,该准直透镜将发散光束12变为准直光束15。 The beam splitter 13 toward the collimator lens 14 reflecting the diverging radiation beam 12, the collimator lens 12 becomes diverging light beam 15 collimated beam. 准直光束15入射在物镜系统18上。 Collimated beam 15 is incident on the objective lens system 18.

物镜系统可包括一个或多个透镜和/或光栅。 The objective lens system may comprise one or more lenses and / or a grating. 物镜系统18具有光轴19。 Objective system 18 has an optical axis 19. 物镜系统18将光束17变为会聚光束20,入射在记录载体2的入射面6上。 The objective system 18 changes the beam 17 converging beam 20, incident on the entrance surface 2 of the record carrier 6. 物镜系统具有适合于使辐射光束通过透明层3的厚度的球差校正。 The objective lens system having a spherical aberration correction adapted to the radiation beam through the thickness of the transparent layer 3. 会聚光束20在信息层4上形成光点21。 Converging beam 20 forms a spot 21 on the information layer 4. 信息层4反射的辐射形成发散光束22,由物镜系统18将其转变为基本上准直的光束23,随后由准直透镜14将其转变为会聚光束24。 Radiation reflected information layer 4 is formed a diverging beam 22, which by the objective system 18 into a substantially collimated light beam 23, followed by the collimator lens 14 into a converging beam 24 thereof. 分束器13通过向检测系统25透射至少一部分会聚光束24而使正向光束与反射光束分开。 13 by the convergence of the beam splitter 24 and the forward light beams reflected light beam into at least 25 separate from transmission detector system. 检测系统捕获该辐射,并将其变为电输出信号26。 Detection system captures the radiation and becomes an electrical output signal 26. 信号处理器27将这些输出信号变为各种其他信号。 The signal processor 27 output signal changes to these various other signals.

这些信号之一是信息信号28,其值代表从信息层4读取的信息。 One of these signals is an information signal 28, which represents the information read from the information layer 4. 通过信息处理单元来处理该信息信号以进行误差校正29。 Processing the information signal to the information processing unit 29 to perform error correction. 来自信号处理器27的其他信号是聚焦误差信号和径向误差信号。 Other signals from the signal processor 27 are the focus error signal and a radial error signal. 聚焦误差信号代表光点21和信息层4之间的轴向高度差。 Axially between the focus 21 and the information layer 4 an error signal representative of the spot height difference. 径向误差信号代表在信息层4的平面内,光点21和光点所遵循的信息层的轨道中心之间的距离。 Representative of the radial error signal in the plane of the information layer 4, the distance between the light spot 21 and the center of the track of the information layer of the optical spot follows. 将聚焦误差信号和径向误差信号馈送到伺服电路31中,该伺服电路将这些信号变为分别控制聚焦致动器和径向致动器的伺服控制信号32。 The focus error signal and radial error signals are fed to a servo circuit 31, the servo circuit turns these signals control the focus actuator and a radial actuator 32 of the servo control signal. 图中没有示出这些致动器。 Not shown in these actuators. 聚焦致动器控制物镜系统18沿聚焦方向33的位置,由此控制光点21的实际位置,从而使其与信息层4的平面基本上重合。 The focus actuator controls the position of the objective system 18 in the focus direction 33, thereby controlling the actual position of the spot 21 so that it and the plane of the information layer 4 substantially coincide. 径向致动器控制物镜18沿径向34的位置,由此控制光点21的径向位置,从而使其与信息层4中遵循的轨道的中心线基本上重合。 Radial actuator 18 controls the position of the radial direction of the objective lens 34, thereby controlling the radial position of the light spot 21, so that the center line of the track and the information layer 4 so as to follow substantially coincident. 图中的轨道沿垂直于图面的方向延伸。 FIG track in a direction extending perpendicular to the plane of FIG.

在该特定实施例中,图8的设备还适合于扫描第二类型的记录载体,其具有比记录载体2更厚的透明层。 In this particular embodiment, the apparatus of FIG. 8 are also suitable for scanning a record carrier of the second type, having a thicker transparent layer than the record carrier 2. 该设备可以使用辐射光束12或具有用于扫描第二类型记录载体的不同波长的辐射光束。 The device may use a radiation beam 12 or a radiation beam having a different wavelength for scanning a second type of record carrier. 该辐射光束的NA可适于这种类型的记录载体。 The NA of this radiation beam may be adapted to the type of record carrier. 相应地,必须适合该物镜系统的球差补偿。 Accordingly, it is necessary to compensate for spherical aberration of the objective system.

例如,在双层BD(蓝光盘)盘中,两个信息层位于0.1mm和0.08mm深度处;因此它们通常相隔0.02mm。 For example, a two-layer BD (Blu-ray Disc) disc, the two information layers located at a depth of 0.1mm and 0.08mm; they are typically separated by 0.02mm. 当从一层到另一层重新聚焦时,由于信息层的深度差,产生大约200mλ的不需要的球差,需要对其进行补偿。 When refocusing from one layer to another, due to the difference in information layer depth, some unwanted spherical 200mλ difference needs to be compensated. 这通过在物镜系统18中引入球差使这两个球差抵消来实现。 This is achieved by the introduction of two ball errand spherical aberration of the objective lens system 18 in canceling.

在本发明的一个实施例中,通过利用依照本发明的可变透镜,通过改变入射在物镜系统18上的光束15的准直在物镜系统18中引入球差。 In one embodiment of the present invention, by using a variable lens in accordance with the present invention, spherical aberration introduced 18 by changing the registration system 18 is incident on the objective lens 15 direct light beams in the objective lens system. 可以将这种可变透镜加入作为光束15的光路中的额外设备,或者该可变透镜构成透镜14的一部分(例如,透镜14是复合透镜)。 Such a variable lens may be added as the path of the beam 15 of the additional equipment, or constitute a part of the variable lens 14 of the lens (e.g., lens 14 is a compound lens). 通过改变可变透镜中弯月面的形状,能够根据需要将光束15从平行变为略微会聚或发散,从而引入所需的球差。 By changing the shape of the meniscus of the variable lens, it is possible according to the necessary changes from the parallel light beam 15 slightly converges or diverges, thereby introducing the desired spherical aberration.

图9说明包括依照本发明可替换实施例的透镜的可变焦点图像捕获设备400。 9 illustrates an alternative according to the invention comprises a lens according to an embodiment of the variable focus image capture device 400.

设备400包括复合可变焦点透镜,该透镜包括多个表面形成的圆柱形管120、凸出的前透镜404和凸出的后透镜406。 Device 400 includes a compound variable focus lens, the lens comprising a plurality of cylindrical surface of the tube 120, the front lens 404 and a convex projection 406 of the rear lens. 两个透镜和管密封的空间形成圆柱形流体箱125。 Two lenses and tubes were sealed space 125 forms a cylindrical fluid tank. 流体箱125容纳第一和第二流体130和140。 Receiving a first fluid tank 125 and second fluid 130 and 140. 这两种流体沿弯月面150接触。 Both the fluid meniscus 150 along the contact. 如前所述,根据泵422供给箱的每种流体各自的体积,弯月面形成可变形状的弯月透镜。 As described above, according to each fluid pump 422 is supplied to the respective tank volume, a meniscus is formed in the shape of a meniscus lens of variable.

前透镜404是高折射塑料制成的凸-凸透镜,如聚碳酸酯或环烯烃共聚物(COC),其具有正光焦度。 The front lens 404 is made of plastic of high refractive convex - convex, such as polycarbonate or cyclic olefin copolymer (COC), which has a positive power. 该前透镜的至少一个表面是非球面,以提供所需的初始聚焦特性。 At least one of the front lens surface is aspherical, to provide desired initial focusing characteristics. 后透镜元件406由低色散塑料制成,如COC,并包括充当像场致平器(field flattener)的非球面透镜表面。 The rear lens element 406 is made of a low dispersive plastic, such as COC, and including serving as aspheric lens surface flattener (field flattener) of the image field. 后透镜元件的其他表面可以是平面、球面或非球面。 The other surface of the rear lens element may be flat, spherical or aspherical.

将消炫光阑(glare stop)416和孔径光阑418添加到透镜的前面。 The elimination Hyun diaphragm (glare stop) 416 and the aperture stop 418 is added to the front of the lens. 像素化(pixellated)图像传感器420位于透镜后面的传感器平面中,所述传感器如CMOS(互补金属氧化物硅)传感器阵列。 Sensor plane behind the lens of a pixel (pixellated) image sensor 420, the sensor such as a CMOS (complementary metal oxide silicon) sensor array.

泵422依照图像信号的聚焦控制处理所得到的聚焦控制信号来驱动透镜,从而提供无穷和10cm之间的物体范围(object range)。 Pump 422 focus control signal in accordance with a focus control processing an image signal obtained by driving the lens, and the object to provide infinite range (object range) between 10cm.

前透镜元件404优选与管形成为一个单独主体,所述管由后透镜406封闭以形成密封单元。 The front lens element 404 is preferably formed as a single tube body, the tube is closed by the rear lens 406 to form a sealing unit. 第二透镜元件406可相对于图8中所示的元件而伸长,透镜元件406的平坦后表面可以由成角度的镜面来代替,优选成45°角,从而使图像传感器420置于透镜下面,以便减小透镜的尺寸。 The second lens element 406 may be elongated relative to the elements shown in FIG. 8, a flat rear surface of the lens element may be replaced by an angled mirror surface 406, preferably a 45 ° angle, so that the image sensor 420 is placed below the lens in order to reduce the size of the lens.

前透镜404和后透镜406的内表面可以涂有保护层,以避免制成透镜的材料与流体130和140不相容。 The inner surface of the front lens 404 and rear lens 406 may be coated with a protective layer to avoid lens made of a material incompatible with the fluid 130 and 140. 保护层也可以具有抗反射特性。 The protective layer may also have anti-reflection characteristics.

根据上面的例子,应该理解,在本发明的各个实施例中,提供了一种可变透镜,其中通过可控制地改变两种流体之间的弯月面形状可以很容易地调整该透镜的形状。 According to the example above, it should be appreciated that, in various embodiments of the present invention, there is provided a variable lens, which can be controlled by changing the shape of the meniscus between the two fluids shape of the lens can be easily adjusted . 由于光路中不需要机械组件,因此光路不会遭受机械磨损和破损。 Since the optical path no mechanical components, the optical path will not be subject to mechanical wear and tear. 此外,可以具有具有正光焦度或负光焦度之间调整该透镜。 Further, an adjustment between the lens having a positive refractive power or negative refractive power.

Claims (14)

  1. 1.一种可变透镜(100;200;220;240;250;300;350),包括:-箱(125);-延伸通过该箱(125)的光轴(90);-该箱包含第一流体(130)和第二流体(140),所述流体在横断光轴(90)延伸的弯月面(150)上接触,该弯月面(150)的周边固定地位于该箱(125)的内表面(120)上,所述流体(130,140)实质上是不混溶的,并具有不同的折射率;和-至少一个泵(110),用于通过改变该箱(125)中容纳的每一种所述流体(130,140)的相对体积而可控制地改变弯月面(150)的形状。 1. A variable lens (100; 200; 220; 240; 250; 300; 350), comprising: - a tank (125); - the axis extending through the tank (125) (90); - the tank comprises a first fluid (130) and a second fluid (140), said fluid contact with the upper (150) axis transverse to the meniscus (90) extending outside the meniscus (150) is fixedly located in the tank ( 125) inner surface (120), said fluid (130, 140) substantially immiscible and having different refractive indices; and - at least one pump (110), by varying the tank (125 ) contained in each of said fluid (130, 140) relative volume controllably alter the shape of the meniscus (150).
  2. 2.如权利要求1所述的透镜,其中通过所述表面(120)的至少一个特性的变化来固定地定位该弯月面(150)的周边。 2. A lens according to claim 1, wherein a characteristic change in fixed positioned at least outside the meniscus (150) by said surface (120).
  3. 3.如权利要求2所述的透镜,其中该变化是表面(120)的几何形状变化。 The lens as claimed in claim 2, wherein the change is a change in the geometry of the surface (120).
  4. 4.如权利要求2或3所述的透镜,其中该变化是所述表面(120)的可湿性变化。 Lens of claim 2 or as claimed in claim 3, wherein the change is a change of the wettable surface (120).
  5. 5.如前面任一项权利要求所述的透镜,其中泵(110)利用下面至少一个来工作:电毛细管、差压电毛细管、电润湿、连续电润湿、电泳、电渗、介电电泳、电水动抽吸、机械抽吸、热毛细管、热膨胀、电介质抽吸、或可变的电介质抽吸。 5. The lens of any preceding claim, wherein the pump (110) using at least one of the following work: electrocapillarity, piezoelectric capillary difference, electrowetting, continuous electrowetting, electrophoresis, electroosmosis, dielectric electrophoresis, electric hydrodynamic pumping, mechanical suction, capillary heat, thermal expansion, dielectric pumping or variable dielectric pumping.
  6. 6.如前面任一项权利要求所述的透镜,其中箱(125)具有圆形、矩形或椭圆形横截面。 6. A lens according to any preceding claims, wherein the box (125) has a circular, rectangular or elliptical cross-section.
  7. 7.如前面任一项权利要求所述的透镜,其中该透镜进一步包括柱(124),其在箱(125)中延伸,并接触弯月面(150)的周边,该弯月面的周边固定地位于该柱的表面上。 7. The peripheral lens of any preceding claims, wherein the lens further comprises a post (124), which extends in the tank (125), and a contact meniscus (150), the perimeter of the meniscus fixedly located on the surface of the column.
  8. 8.如前面任一项权利要求所述的透镜,其中该箱(125)进一步包含第三流体,该第三流体在横断光轴(90)延伸的第二弯月面上与第二流体接触,该第二弯月面的周边固定地位于箱(125)的内表面(120)上,第二流体(140)和第三流体实质上是不混溶的,并具有不同的折射率。 8. A lens according to any one of the preceding claims, wherein the box (125) further comprises a third fluid, the second face of the third fluid meniscus extending transverse the optical axis (90) in contact with the second fluid , is fixedly positioned on the box (125) of the inner surface of the second meniscus perimeter (120), a second fluid (140) and a refractive index different from the third fluid is substantially immiscible and having.
  9. 9.如前面权利要求8所述的透镜,其中该第三流体和第一流体(130)是相同的材料。 9. A lens according to preceding claim 8, wherein the first fluid and the third fluid (130) are the same material.
  10. 10.一种光学设备(1;400),包括可变透镜(100;200;220;240;250;300;350),该透镜包括:-箱(125);-延伸通过该箱(125)的光轴(90);-该箱(125)包含第一流体(130)和第二流体(140),所述流体在横断光轴(90)延伸的弯月面(150)上接触,该弯月面(150)的周边固定地位于该箱(125)的内表面(120)上,所述流体(130,140)实质上是不混溶的,并具有不同的折射率;和-至少一个泵(110),用于通过改变该箱(125)中容纳的每一种所述流体(130,140)的相对体积而可控制地改变弯月面(150)的形状。 10. An optical apparatus (1; 400), comprising a variable lens (100; 200; 220; 240; 250; 300; 350), the lens comprising: - a tank (125); - extending through the tank (125) optical axis (90); - the tank (125) comprising a first fluid (130) and a second fluid (140), the fluid meniscus in the transverse axis (90) extending in the (150) contacting the on the perimeter of the meniscus (150) is fixedly located in the tank (125) an inner surface (120), said fluid (130, 140) substantially immiscible and having different refractive indices; and - at least a pump (110), for the shape of the meniscus can (150) is changed by changing the control box (125) contained in each of said fluid (130, 140) relative volume.
  11. 11.如权利要求10所述的光学设备,其中该设备是光学扫描设备(1),以用于扫描光学记录载体(2)的信息层(4),该设备包括用于产生辐射光束(12,15,20)的辐射源(11),和用于将该辐射光束(12,15,20)会聚在信息层(4)上的物镜系统(18)。 11. The optical apparatus according to claim 10, wherein the device is an optical scanning device (1) for scanning an optical record carrier (2) information layers (4), the apparatus comprises a beam of radiation for generating a (12 , 15, 20) of the radiation source (11), and means for the radiation beam (12,15,20) converging objective lens system (18) (4) information layer.
  12. 12.如权利要求10所述的光学设备,其中该设备是可变焦点图像捕获设备(400)。 12. The optical apparatus according to claim 10, wherein the device is a variable focus image capture device (400).
  13. 13.一种制造可变透镜(100;200;220;240;250;300;350)的方法,该方法包括:-提供箱(125),光轴(90)延伸通过该箱;-在箱(125)中放置第一流体(130)和第二流体(140),使得这两种流体(130,140)在横断光轴(90)延伸的弯月面(150)上接触,该弯月面(150)的周边固定地位于该箱(125)的内表面(120)上,所述流体(130,140)实质上是不混溶的,并具有不同的折射率;和-提供至少一个泵(110),用于通过改变该箱(125)中容纳的每一种所述流体(130,140)的相对体积而可控制地改变弯月面(150)的形状。 13. A method of manufacturing a variable lens (100; 200; 220; 240; 250; 300; 350) of the method, the method comprising: - providing a tank (125), the optical axis (90) extending through the box; - the tank placing a first fluid (130) (125) and a second fluid (140), such that the two fluids (130, 140) contacts the upper transverse to the optical axis of the meniscus (90) extending (150), the meniscus the peripheral surface (150) is fixedly located in the tank (125) an inner surface (120), said fluid (130, 140) substantially immiscible and having different refractive indices; and - providing at least one a pump (110), for the shape of the meniscus can (150) is changed by changing the control box (125) contained in each of said fluid (130, 140) relative volume.
  14. 14.一种制造光学设备(1;400)的方法,该方法包括以下步骤:-提供可变透镜(100;200;220;240;250;300;350),该可变透镜包括:-箱(125);延伸通过该箱(125)的光轴(90),该箱(125)包含第一流体(130)和第二流体(140),所述流体在横断光轴(90)延伸的弯月面(150)上接触,该弯月面(150)的周边固定地位于该箱(125)的内表面(120)上,所述流体(130,140)实质上是不混溶的,并具有不同的折射率;和-提供至少一个泵(110),用于通过改变该箱(125)中容纳的每一种所述流体(130,140)的相对体积而可控制地改变弯月面(150)的形状。 14. A method of manufacturing an optical device; (1 400), the method comprising the steps of: - providing a variable lens (100; 200; 220; 240; 250; 300; 350), the variable lens comprising: - a tank (125); extension (90), the tank (125) comprising a first fluid (130) and a second fluid (140) through the optical axis of the tank (125) of the fluid extending transverse the optical axis (90) meniscus (150) in contact on the periphery of the meniscus (150) is fixedly located on the inner surface of the tank (125) (120), said fluid (130, 140) substantially immiscible and having different refractive indices; and - providing at least one pump (110) for controllably varied by changing the meniscus of the tank (125) contained in each of said fluid (130, 140) relative volume surface shape (150).
CN 200480013032 2003-05-14 2004-05-12 The variable shape of the lens CN100374900C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03101328 2003-05-14
EP03101328.7 2003-05-14

Publications (2)

Publication Number Publication Date
CN1788226A true true CN1788226A (en) 2006-06-14
CN100374900C CN100374900C (en) 2008-03-12

Family

ID=33442817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200480013032 CN100374900C (en) 2003-05-14 2004-05-12 The variable shape of the lens

Country Status (6)

Country Link
US (1) US7436598B2 (en)
EP (1) EP1625442B1 (en)
JP (1) JP4974677B2 (en)
KR (1) KR20060013655A (en)
CN (1) CN100374900C (en)
WO (1) WO2004102253A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102370456A (en) * 2010-08-09 2012-03-14 明达医学科技股份有限公司 Eyebase optical image device
CN102370455A (en) * 2010-08-09 2012-03-14 明达医学科技股份有限公司 Eyebase optical image device

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102250A1 (en) * 2003-05-14 2004-11-25 Koninklijke Philips Electronics N.V. Variable lens
KR20060013655A (en) 2003-05-14 2006-02-13 코닌클리케 필립스 일렉트로닉스 엔.브이. Variable shape lens
WO2005040866A3 (en) 2003-10-23 2005-08-25 Andreas Obrebski Projection optics with adjustable refractive power and method for adjusting the refractive power thereof
DE10349467A1 (en) * 2003-10-23 2005-06-02 Carl Zeiss An optical element for variably adjusting the focal length in an optical device and optical device
GB0407414D0 (en) * 2004-04-01 2004-05-05 1 Ltd Variable focal length lens
FR2878338B1 (en) * 2004-11-24 2007-03-02 Varioptic Sa Frame of variable focal length lens
JP4946020B2 (en) * 2004-11-30 2012-06-06 ブラザー工業株式会社 Pumps, liquid transfer device and a liquid moving apparatus including a pump
JP2008527454A (en) * 2005-01-14 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Variable reflecting device
WO2006131882A1 (en) * 2005-06-10 2006-12-14 Koninklijke Philips Electronics N.V. Variable fluid lens having two menisci
US8027095B2 (en) 2005-10-11 2011-09-27 Hand Held Products, Inc. Control systems for adaptive lens
JP4673202B2 (en) * 2005-12-06 2011-04-20 株式会社リコー Image input device
US7382544B2 (en) * 2006-02-10 2008-06-03 Honeywell International Inc. Devices and related methods for light distribution
EP2076800A4 (en) * 2006-02-24 2011-01-05 Agency Science Tech & Res Method for forming variable focus liquid lenses in a tubular housing
US20110149407A1 (en) * 2006-06-08 2011-06-23 Agency For Science, Technology And Research Rugged variable focus liquid lenses and actuators for actuation of liquid lenses
JP4894366B2 (en) * 2006-06-14 2012-03-14 株式会社ニコン Shake correcting device and optical instruments
EP1870741A1 (en) * 2006-06-21 2007-12-26 Varioptic Variable focus liquid lens
DE602006010839D1 (en) * 2006-06-21 2010-01-14 Varioptic Sa Triple liquid lens
US7813047B2 (en) 2006-12-15 2010-10-12 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US8027096B2 (en) 2006-12-15 2011-09-27 Hand Held Products, Inc. Focus module and components with actuator polymer control
DE102007004080A1 (en) * 2007-01-26 2008-08-07 Universität Freiburg Fluid membrane lens system, has control unit controlling pressure or volume of fluid that fills fluid chambers and controlling pressure based on predetermined focal length, such that chromatic and/or monochromatic aberrations are minimized
US8034106B2 (en) * 2007-02-02 2011-10-11 Adoptics Ag Interfacial refraction accommodating lens (IRAL)
JP5108898B2 (en) * 2007-02-02 2012-12-26 Hoya株式会社 Interface refraction adjusting lens (IRAL)
US20090195882A1 (en) * 2008-02-05 2009-08-06 Bolle Cristian A Mechanical lenses
JP2010107908A (en) * 2008-10-31 2010-05-13 Sony Corp Electro-wetting apparatus, variable focal length lens, optical pickup apparatus, optical record reproduction apparatus, droplet operation apparatus, optical element, zoom lens, imaging apparatus, light modulating device, display, electronic flash apparatus, and method of driving electro-wetting apparatus
US8659835B2 (en) 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
US9182521B2 (en) 2010-05-14 2015-11-10 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens including variable voltage zones
US8687280B2 (en) 2010-09-29 2014-04-01 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens including meniscus wall with microchannels
US8665526B2 (en) 2010-05-14 2014-03-04 Johnson & Johnson Vision Care, Inc. Arcuate liquid meniscus lens
US8638502B2 (en) 2010-09-29 2014-01-28 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with non-spherical meniscus wall
US8743467B2 (en) 2010-06-29 2014-06-03 Johnson & Johnson Vision Care, Inc. Lens with conical frustum meniscus wall
US8638501B2 (en) 2010-07-27 2014-01-28 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with convex torus-segment meniscus wall
US8634145B2 (en) 2010-07-29 2014-01-21 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with concave torus-segment meniscus wall
US8767308B2 (en) 2010-08-23 2014-07-01 Johnson & Johnson Vision Care, Inc Negative add liquid meniscus lens
US8693104B2 (en) 2010-08-24 2014-04-08 Johnson & Johnson Vision Care, Inc. Lens with compound linear-convex meniscus wall
US8767309B2 (en) 2010-09-08 2014-07-01 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
CA2812487A1 (en) 2010-09-27 2012-04-05 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens including gradient thickness dielectric coating
US8717547B2 (en) * 2010-09-30 2014-05-06 Alcon Research, Ltd Production process for an interface unit and a group of such interface units
CN102053362A (en) * 2010-12-07 2011-05-11 东南大学 Liquid lens array and filling method thereof
US8867141B2 (en) 2011-03-18 2014-10-21 Johnson & Johnson Vision Care, Inc. Lens with multi-concave meniscus wall
JP2013217990A (en) * 2012-04-04 2013-10-24 Canon Inc Liquid lens and manufacturing method thereof
KR101422787B1 (en) * 2013-07-11 2014-07-28 포항공과대학교 산학협력단 Electrohydrodynamic liquid lens
US20170363270A1 (en) * 2016-06-21 2017-12-21 Abl Ip Holding Llc Variable total internal reflection electrowetting lens assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477158A (en) * 1981-10-15 1984-10-16 Pollock Stephen C Lens system for variable refraction
JPH01302301A (en) * 1988-05-31 1989-12-06 Asahi Optical Co Ltd Liquid enclosing optical element
US5864128A (en) 1991-10-15 1999-01-26 Geo Labs, Inc. Lens with variable focal length
US5774273A (en) * 1996-08-23 1998-06-30 Vari-Lite, Inc. Variable-geometry liquid-filled lens apparatus and method for controlling the energy distribution of a light beam
DE19710668A1 (en) 1997-03-14 1998-09-17 Robert Seidel Variable lens system e.g. for endoscope zoom lens
FR2769375B1 (en) 1997-10-08 2001-01-19 Univ Joseph Fourier Varifocal lens
US5973852A (en) * 1998-03-26 1999-10-26 The United States Of America As Represented By The Secretary Of The Air Force Variable power fluid lens
JP2000121969A (en) 1998-10-13 2000-04-28 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JP3961729B2 (en) * 1999-03-03 2007-08-22 株式会社デンソー Omnifocal imaging apparatus
JP3608453B2 (en) * 1999-11-18 2005-01-12 松下電器産業株式会社 Ultrasonic probe and ultrasonic inspection device
US6702483B2 (en) 2000-02-17 2004-03-09 Canon Kabushiki Kaisha Optical element
JP2002169110A (en) * 2000-11-30 2002-06-14 Canon Inc Optical element, optical device and photographing device
WO2002069016A3 (en) 2001-02-28 2003-05-08 Lightwave Microsystems Corp Microfluid control for waveguide optical switches, variable attenuators, and other optical devices
CN2486982Y (en) 2001-07-19 2002-04-17 力捷电脑股份有限公司 Optic lens group of optic scanner
DE60239069D1 (en) * 2001-10-11 2011-03-10 Koninkl Philips Electronics Nv 2d / 3d display device
US7170832B2 (en) * 2002-09-19 2007-01-30 Koninklijke Philips Electronics N.V. Optical scanning device
WO2004102989A1 (en) 2003-05-14 2004-11-25 Koninklijke Philips Electronics N.V. Time-division multiplexing circuit-switching router
CN100476497C (en) * 2003-05-14 2009-04-08 皇家飞利浦电子股份有限公司 Adjustable reflector, optical equipment and manufacturing method thereof
CN1788476A (en) 2003-05-14 2006-06-14 皇家飞利浦电子股份有限公司 Iterative channel estimation using pilot signals
KR20060013655A (en) 2003-05-14 2006-02-13 코닌클리케 필립스 일렉트로닉스 엔.브이. Variable shape lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102370456A (en) * 2010-08-09 2012-03-14 明达医学科技股份有限公司 Eyebase optical image device
CN102370455A (en) * 2010-08-09 2012-03-14 明达医学科技股份有限公司 Eyebase optical image device

Also Published As

Publication number Publication date Type
JP2007500874A (en) 2007-01-18 application
US20060274425A1 (en) 2006-12-07 application
WO2004102253A1 (en) 2004-11-25 application
JP4974677B2 (en) 2012-07-11 grant
KR20060013655A (en) 2006-02-13 application
CN100374900C (en) 2008-03-12 grant
US7436598B2 (en) 2008-10-14 grant
EP1625442B1 (en) 2012-08-22 grant
EP1625442A1 (en) 2006-02-15 application

Similar Documents

Publication Publication Date Title
US6320699B1 (en) Aberration correcting apparatus and optical apparatus using the same
US6181485B1 (en) High numerical aperture optical focusing device for use in data storage systems
US6154302A (en) Light deflection device and array thereof
US7580195B2 (en) Optical lens and method of manufacturing the same
US20050030438A1 (en) Variable optical-property element
US20020101646A1 (en) Deformable mirror having displacement detecting function
US20080266645A1 (en) Device and method to realize a light processor
Ren et al. Variable-focus liquid lens
US20070156021A1 (en) Remote imaging apparatus having an adaptive lens
US7230771B2 (en) Zoom lens
US20080019015A1 (en) Variable Focus Microlens
US6831782B2 (en) Solid immersion lens array and methods for producing a solid immersion lens array
US6952313B2 (en) Method and device for image zooming
US20060045501A1 (en) Zoom flash with variable focus lens
Krogmann et al. A MEMS-based variable micro-lens system
US20100110532A1 (en) Electro-wetting apparatus, varifocal lens, optical pick-up apparatus, optical recording/reproducing apparatus, droplet operating apparatus, optical device, zoom lens, imaging apparatus, light modulator, display apparatus, strobe apparatus, and method of driving electro-wetting apparatus
US20070247724A1 (en) Liquid lens with curved contact surface
WO2004099845A1 (en) Electrowetting module
WO2005006029A1 (en) Variable lens
US20100202054A1 (en) Liquid Lens System
US7508566B2 (en) Switchable optical element
US20040227838A1 (en) Optical system and image pickup apparatus
WO2004099847A1 (en) Electrowetting cells
WO2004099844A1 (en) Electrowetting module
US7298559B2 (en) Variable focus lens and optical device using the same as well as method of manufacturing variable focus lens

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted