CN1782128A - 利用冷喷涂的超合金修补 - Google Patents

利用冷喷涂的超合金修补 Download PDF

Info

Publication number
CN1782128A
CN1782128A CNA2005101289537A CN200510128953A CN1782128A CN 1782128 A CN1782128 A CN 1782128A CN A2005101289537 A CNA2005101289537 A CN A2005101289537A CN 200510128953 A CN200510128953 A CN 200510128953A CN 1782128 A CN1782128 A CN 1782128A
Authority
CN
China
Prior art keywords
scfm
scopes
helium
nozzle
pounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101289537A
Other languages
English (en)
Inventor
A·德比卡里
J·D·海恩斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN1782128A publication Critical patent/CN1782128A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • F05B2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/80Repairing, retrofitting or upgrading methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种用于修补由超合金材料形成的部件的方法,所述方法包括以下步骤:提供由超合金材料形成且具有要进行修补的缺陷的部件并且利用非氧化性载气将修补材料沉积到部件表面上,以使得修补材料在与表面碰撞后产生塑性变形且粘结到表面上,并由此覆盖缺陷。

Description

利用冷喷涂的超合金修补
技术领域
本发明涉及一种用于修补由超合金材料形成的部件,例如涡轮机引擎零件的方法。
背景技术
已利用熔焊,例如气体保护钨极电弧焊对超合金结构进行修补。然而,采用这种类型的修补技术常常会导致产生例如所不希望的扭曲变形等问题。通常情况下,要进行修补的部件已被机加工成它们的最终尺寸。结果是,不能容许任何扭曲变形。即使扭曲变形是可接受的,但许多超合金,最有名的是Waspaloy(一种耐热镍基合金),和粉末金属如IN100,由于存在焊接工艺所致的高拉伸残余应力而在应力消除过程中倾向于发生应变时效开裂。事实上,IN100被认为不可采用熔焊方法进行焊接。对于这种合金不存在有效的修补方法。
发明内容
因此,本发明的目的在于提供一种用于修补由超合金材料形成的部件的方法。
前述目的通过本发明的方法而实现。
根据本发明,用于修补由超合金材料形成的部件的方法广泛包括以下步骤:提供由超合金材料形成且具有要进行修补的缺陷的部件并且利用非氧化性载气将修补材料沉积到部件表面上,以使得修补材料在与表面碰撞后产生塑性变形而不熔化且粘结到表面上,并由此覆盖缺陷。
在下列详细描述和附图中阐述了利用冷喷涂进行的超合金修补的其它细节及其所附的其它目的和优点,在所述附图中使用相似的参考标记表示相似的元件。
附图说明
图1示出了一种用于修补部件上的缺陷的系统。
具体实施方式
本发明涉及对由超合金材料形成的部件或零件的修补。正如在此所使用地,术语“超合金材料”涉及较大范围的材料,所述材料包括,但不限于,镍基合金和钴基合金。要进行修补的部件或零件可包括,但不限于,涡轮机引擎部件。
在过去数年中,已经开发出一种公知为冷气体动力喷涂(“冷喷涂”)的技术。该技术的优点在于所述技术提供了足够大的能量以将微粒加速至足够高的速度,以使得微粒在碰撞后产生塑性变形并粘结到正进行沉积所述微粒的部件表面上,以便形成相对致密的涂层或结构沉积物。冷喷涂并没有在冶金学意义上转变微粒的固体状态。已经发现冷喷涂工艺在实施对由超合金材料形成的部件的修补方面最为有用。例如,冷喷涂在补缺由于腐蚀、热气体所致的侵蚀、摩擦配合部件、或与小微粒物质撞击以及普通磨损而已失去材料的零件方面是有效的。进一步地,某些类型的裂纹可利用冷喷涂进行修补。
在沉积各种修补材料前,如果存在破损的话,可通过本领域中已公知的任何适当方法消除所述破损,所述方法包括,但不限于,喷砂、磨削和铣削。通过获得平缓倾斜的表面,从而接收冷喷涂沉积修补材料,消除破损区域。可使用喷砂或其它已公知的方法制备表面以进行冷喷涂,但这并非对于所有的修补都是必要的。随后可利用本领域中已公知的任何适当技术,例如空气吹洗或溶剂(例如丙酮)清洗而清除表面上的残余砂粒和其它污染物。零件可随后被安放在适当的固定装置(如果需要的话)中,且材料被沉积。在一些实例中,可能所希望的是保持零件静止并操纵喷涂喷嘴。在其它实例中,喷涂喷嘴可以是静止的且通过人手或机械手而操纵零件。在一些情况下,零件和喷嘴可都进行操纵。
现在参见图1,图中示出了用于在超合金部件或零件上实施修补的系统。该系统包括具有收缩/扩张喷嘴20的喷枪22,修补材料通过所述收缩/扩张喷嘴被喷涂到要进行修补的零件或部件10的表面24上。所述零件或部件可保持静止或可通过本领域已公知的任何适当装置(未示出)使所述零件或部件旋转。
在本发明的方法中,修补原材料是粉末状金属材料。粉末状金属材料可具有与制成零件或部件的组成相同的组成,或其可以是相容组成。例如,粉末金属材料可以是粉末状镍基超合金,例如IN 718、IN625、IN 100、WASPALOY、IN 939或GATORIZED WASPALOY。用以在表面24上形成修补材料的沉积物的粉末状金属材料微粒优选具有在约5微米至50微米(0.2-2.0密耳)范围内的直径。更小的微粒尺寸使得能够获得更高的微粒速度。在直径小于5微米的情况下,由于表面24上的弓形激波层,使得微粒有被吹扫离开表面24的风险,即质量不足以推进微粒通过弓形激波。微粒尺寸分布越窄,微粒速度就越均匀。这是因为射流/羽流中小的微粒将打到更慢更大的微粒上且有效地降低二者的速度。
可利用压缩气体,例如氦气、氮气、其它惰性气体及其混合物将修补材料的微粒加速至超音速。氦气是优选的气体,这是因为氦气由于其低分子量而产生了最高速度。
本发明的方法所采用的用于将粉末状修补材料转变成沉积物的粘结机制是严格的固态,这意味着微粒进行塑性变形但不熔化。微粒上形成或部件表面上存在的任何氧化层发生破裂且在非常高的压力下形成新鲜金属-金属接触。
可利用本领域中已公知的任何适当装置,例如改进的热喷涂进料装置将用以形成沉积物的粉末状金属修补材料供给至喷枪22。可使用的一种常规设计的进料装置由俄亥俄州克利夫兰市的Powder FeedDynamics制造。该进料装置具有螺旋型进料机构。还可使用流化床进料装置和具有有角狭缝的筒形辊进料装置。
在本发明的工艺中,可利用从包括氦气、氮气、其它惰性气体及其混合物的组群中选择出来的气体对进料装置进行加压。进料装置压力通常比主气体压力或头压(head pressure)高15磅/平方英寸,所述主气体压力或头压通常在200磅/平方英寸至500磅/平方英寸的范围内,这取决于粉末状修补材料的组成。主气体优选被加热以使得气体温度在600华氏度至1200华氏度的范围内。如果需要,主气体可被加热至高达约1250华氏度,这取决于被沉积的材料。气体可被加热以防止其一旦膨胀通过喷嘴20的喉部则产生快速冷却和冻结。净效应是被修补的部分上的表面温度在沉积过程中为约115华氏度。本领域中已公知的任何适当装置可被用以加热气体。
为了沉积修补材料,喷嘴20可不止一次地在被修补的零件10的表面24上通过。所需的通过次数是要施加的修补材料厚度的函数。本发明的方法能够形成具有任何所需厚度的沉积物。当建立起修补材料的沉积层时,所希望的是限制每次操作循环的厚度,以避免残余应力的快速累积和沉积层之间所不希望的剥离。
用以将修补材料微粒沉积到表面24上的主气体可经由入口30和/或入口32以0.001标准立方英尺/分钟(SCFM)至50标准立方英尺/分钟范围内,优选在15标准立方英尺/分钟至35标准立方英尺/分钟范围内的流速通过喷嘴20。如果使用氦气作为主气体,那么前述流速是优选的。如果氮气被单独使用或与氦气组合用作主气体,那么氮气可以0.001标准立方英尺/分钟至30标准立方英尺/分钟,优选4标准立方英尺/分钟至30标准立方英尺/分钟范围内的流速下通过喷嘴20。另一种可选方式是,喷嘴20可具有单个入口,所述入口被连接到阀上以在两种气体之间进行切换。
主气体温度可在600华氏度至1200华氏度,优选700华氏度至1000华氏度,且最优选725华氏度至900华氏度的范围内。
喷枪22的压力可在200磅/平方英寸至500磅/平方英寸,优选200磅/平方英寸至400磅/平方英寸,且最优选275磅/平方英寸至375磅/平方英寸的范围内。优选通过管线34以在10克/分钟至100克/分钟范围内,优选15克/分钟至50克/分钟范围内的速度将粉末状修补材料从料斗供应至喷枪22,所述料斗处于比具体主气体压力高10至50磅/平方英寸,优选高15磅/平方英寸的压力下。
优选使用非氧化性载气将粉末状修补材料供给至喷枪22。可经由入口30和/或入口32以在0.001标准立方英尺/分钟至50标准立方英尺/分钟,优选8标准立方英尺/分钟至15标准立方英尺/分钟范围内的流速下引入载气。如果氦气被用作载气,那么前述流速是有用的。如果氮气单独或与氦气混合被用作载气,那么可使用在0.001标准立方英尺/分钟至30标准立方英尺/分钟,优选4标准立方英尺/分钟至10标准立方英尺/分钟范围内的流速。
喷涂喷嘴20优选与表面24保持一定距离。该距离已公知为喷涂距离。喷涂距离优选在10毫米至50毫米的范围内。
离开喷涂喷嘴20的粉末状修补材料微粒的速度可在825米/秒至1400米/秒,优选850米/秒至1200米/秒的范围内。
每个操作循环的沉积厚度可在0.001英寸至0.030英寸的范围内。
沉积后,可能需要进行随后的精加工操作以使修补部分回到所需尺寸。在绝大多数实例中,可能还需要进行热处理。在这些实例中,可对沉积材料进行标准热处理。
冷喷涂提供了超过其它金属化工艺的许多优点。由于用于修补材料的金属粉末未被加热至高温,因此原材料没有发生氧化、分解或其它降解。在沉积过程中的粉末氧化还受到控制,这是因为微粒被包含在加速非氧化性气体流内。冷喷涂还保持住原料的微观结构。进一步地,因为原料没有发生熔化,因此对于由于在冷却后或在随后的热处理过程中脆性金属间化合物的形成或开裂倾向而因此不能进行常规喷涂的材料来说,冷喷涂提供了沉积所述材料的能力。
由于冷喷涂是一种固态工艺,因此冷喷涂不会使零件显著变热。尽管载气受到加热,但是微粒在气体中保持相对较短的时间且因此未达到载气温度。此外,随着气体膨胀通过喷嘴的扩张部分,其冷却下来。结果是,零件未被显著加热且任何所致热变形被最小化。由于冷喷涂引起压缩表面残余应力,因此消除了应变时效开裂的驱动力。消除应变时效开裂的潜在可能导致更坚固的修补。
尽管已经在使用冷喷涂工艺的背景下对本发明进行了描述,但是可使用其它工艺以实施修补。这些工艺提供了足够大的能量以将微粒加速至足够高的速度,从而使得在撞击后,所述微粒进行塑性变形且粘结到表面上,并形成相对致密的涂层或结构沉积物。这些工艺没有在冶金学意义上改变微粒的固体状态。这些工艺包括,但不限于,动力学金属化、电磁微粒加速、改进的高速空气燃料喷涂和高速冲击熔化。
本发明的修补工艺可被用以修补大范围的部件和零件,例如由镍基超合金制造的各种超合金涡轮机部件和耐蚀泵。

Claims (17)

1、一种用于修补由超合金材料形成的部件的方法,包括以下步骤:
提供由超合金材料形成且具有要进行修补的缺陷的部件;并且
利用非氧化性载气将修补材料沉积到所述部件表面上,以使得所述修补材料在与所述表面碰撞后产生塑性变形而不熔化且粘结到所述表面上,并由此覆盖所述缺陷。
2、根据权利要求1所述的方法,其中所述沉积步骤包括将超合金材料沉积到所述表面上。
3、根据权利要求1所述的方法,其中所述部件提供步骤包括提供由镍基超合金形成的部件,且所述沉积步骤包括沉积镍基超合金修补材料。
4、根据权利要求1所述的方法,其中所述沉积步骤包括以微粒形式提供所述修补材料,所述微粒具有在5微米至50微米范围内的微粒大小,并将所述微粒加速至825米/秒至1400米/秒范围内的速度,并且利用从包括氦气、氮气、惰性气体及其混合物的组群中选择出来的载气,在200磅/平方英寸至500磅/平方英寸范围内的压力下,以10克/分钟至100克/分钟范围内的进料速度将所述金属粉末供应至喷涂喷嘴。
5、根据权利要求4所述的方法,其中所述进料步骤包括以15克/分钟至50克/分钟范围内的进料速度将所述金属粉末供给至所述喷涂喷嘴。
6、根据权利要求4所述的方法,其中所述载气包括氦气且所述进料步骤包括以0.001标准立方英尺/分钟至50标准立方英尺/分钟范围内的流速将所述氦气供给至所述喷嘴。
7、根据权利要求6所述的方法,其中所述进料步骤包括以8至15标准立方英尺/分钟范围内的流速将所述氦气供给至所述喷嘴。
8、根据权利要求4所述的方法,其中所述载气包括氮气且所述进料步骤包括以0.001标准立方英尺/分钟至30标准立方英尺/分钟范围内的流速将所述氮气供给至所述喷嘴。
9、根据权利要求8所述的方法,其中所述进料步骤包括以4至10标准立方英尺/分钟范围内的流速将所述氮气供给至所述喷嘴。
10、根据权利要求4所述的方法,其中所述沉积步骤进一步包括利用从包括氦气、氮气及其混合物的组群中选择出来的主气体使所述金属粉末微粒通过所述喷嘴,所述主气体处于600华氏度至1200华氏度的范围内的主气体温度下且处于200磅/平方英寸至500磅/平方英寸范围内的喷涂压力下。
11、根据权利要求10所述的方法,其中所述通过步骤包括在700华氏度至1000华氏度范围内的主气体温度下且在200磅/平方英寸至400磅/平方英寸范围内的喷涂压力下使所述金属粉末微粒通过所述喷嘴。
12、根据权利要求10所述的方法,其中在275磅/平方英寸至375磅/平方英寸范围内的喷涂压力下,所述主气体温度在725华氏度至900华氏度的范围内。
13、根据权利要10所述的方法,其中所述主气体包括氦气且所述通过步骤包括以0.001标准立方英尺/分钟至50标准立方英尺/分钟范围内的速度将所述氦气供给至所述喷嘴。
14、根据权利要求13所述的方法,其中所述氦气供给步骤包括以15至35标准立方英尺/分钟范围内的速度供给所述氦气。
15、根据权利要求10所述的方法,其中所述主气体包括氮气且所述通过步骤包括以0.001标准立方英尺/分钟至30标准立方英尺/分钟范围内的速度将所述氮气供给至所述喷嘴。
16、根据权利要求15所述的方法,其中所述氮气供给步骤包括以4至8标准立方英尺/分钟范围内的速度将所述氮气供给至所述喷嘴。
17、根据权利要求4所述的方法,进一步包括使所述喷嘴与所述表面保持10毫米至50毫米的距离。
CNA2005101289537A 2004-12-03 2005-12-02 利用冷喷涂的超合金修补 Pending CN1782128A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/003140 2004-12-03
US11/003,140 US20060121183A1 (en) 2004-12-03 2004-12-03 Superalloy repair using cold spray

Publications (1)

Publication Number Publication Date
CN1782128A true CN1782128A (zh) 2006-06-07

Family

ID=35789259

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101289537A Pending CN1782128A (zh) 2004-12-03 2005-12-02 利用冷喷涂的超合金修补

Country Status (7)

Country Link
US (1) US20060121183A1 (zh)
EP (1) EP1666635A1 (zh)
JP (1) JP2006161160A (zh)
KR (1) KR20060063637A (zh)
CN (1) CN1782128A (zh)
MX (1) MXPA05013002A (zh)
SG (1) SG122924A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267907A (zh) * 2017-06-02 2017-10-20 中国航发北京航空材料研究院 一种超音速火焰喷涂薄板形零件的变形补偿方法
CN112323057A (zh) * 2019-07-20 2021-02-05 通用电气公司 发动机零件的冷喷涂维修
CN112643033A (zh) * 2020-11-23 2021-04-13 合肥通用机械研究院有限公司 一种加氢反应器堆焊裂纹的增材制造修复方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367488B2 (en) * 2005-05-10 2008-05-06 Honeywell International, Inc. Method of repair of thin wall housings
US20080286459A1 (en) * 2007-05-17 2008-11-20 Pratt & Whitney Canada Corp. Method for applying abradable coating
US8597724B2 (en) * 2007-07-06 2013-12-03 United Technologies Corporation Corrosion protective coating through cold spray
DE102007056451A1 (de) * 2007-11-23 2009-05-28 Mtu Aero Engines Gmbh Verfahren zur Reparatur eines Gasturbinenbauteils
KR100951652B1 (ko) * 2008-01-04 2010-04-07 한양대학교 산학협력단 저온분사코팅을 이용한 다이캐스팅 금형 보호 방법
EP2177643A1 (de) * 2008-10-07 2010-04-21 Siemens Aktiengesellschaft Verfahren zum Reparieren einer Superlegierung mit dem gleichen Superlegierungspulver und Keramik
DE102008057162A1 (de) * 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Verfahren zur Reparatur des Bauteils einer Gasturbine
CN102191445B (zh) * 2010-03-04 2013-03-13 宝山钢铁股份有限公司 结晶辊冷喷涂修复的预处理方法
US20120168320A1 (en) * 2010-12-30 2012-07-05 Monique Chauntia Bland System and method for scale removal from a nickel-based superalloy component
US20130047394A1 (en) * 2011-08-29 2013-02-28 General Electric Company Solid state system and method for refurbishment of forged components
US9598774B2 (en) 2011-12-16 2017-03-21 General Electric Corporation Cold spray of nickel-base alloys
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US10000851B2 (en) 2014-10-21 2018-06-19 United Technologies Corporation Cold spray manufacturing of MAXMET composites
US20170073806A1 (en) * 2015-09-10 2017-03-16 General Electric Company Article treatment methods
US20170114466A1 (en) * 2015-10-21 2017-04-27 General Electric Company Article, turbine component and airfoil treatment methods
US11235405B2 (en) 2019-05-02 2022-02-01 General Electric Company Method of repairing superalloy components using phase agglomeration
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
KR102523509B1 (ko) 2019-09-19 2023-04-18 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 콜드 스프레이 침착물의 현장 접착 테스트를 수행하기 위한 장치 및 사용 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533B1 (en) * 1990-05-19 1995-01-25 Anatoly Nikiforovich Papyrin Method and device for coating
US6491208B2 (en) * 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
US8252376B2 (en) * 2001-04-27 2012-08-28 Siemens Aktiengesellschaft Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane
US6465039B1 (en) * 2001-08-13 2002-10-15 General Motors Corporation Method of forming a magnetostrictive composite coating
US6759085B2 (en) * 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
CA2444917A1 (en) * 2002-10-18 2004-04-18 United Technologies Corporation Cold sprayed copper for rocket engine applications
US6905728B1 (en) * 2004-03-22 2005-06-14 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267907A (zh) * 2017-06-02 2017-10-20 中国航发北京航空材料研究院 一种超音速火焰喷涂薄板形零件的变形补偿方法
CN112323057A (zh) * 2019-07-20 2021-02-05 通用电气公司 发动机零件的冷喷涂维修
CN112643033A (zh) * 2020-11-23 2021-04-13 合肥通用机械研究院有限公司 一种加氢反应器堆焊裂纹的增材制造修复方法

Also Published As

Publication number Publication date
SG122924A1 (en) 2006-06-29
KR20060063637A (ko) 2006-06-12
US20060121183A1 (en) 2006-06-08
MXPA05013002A (es) 2006-06-07
EP1666635A1 (en) 2006-06-07
JP2006161160A (ja) 2006-06-22

Similar Documents

Publication Publication Date Title
CN1782128A (zh) 利用冷喷涂的超合金修补
Yin et al. Cold spray additive manufacturing and repair: Fundamentals and applications
EP1674595B1 (en) Structural repair using cold sprayed aluminum material
EP1674594A1 (en) Blade platform restoration using cold spray
CN1782127A (zh) 真空冷喷涂工艺
US8349396B2 (en) Method and system for creating functionally graded materials using cold spray
EP2011964B1 (en) Method of Repairing a Turbine Component
EP1705266B1 (en) Applying bond coat to engine components using cold spray
US20060090593A1 (en) Cold spray formation of thin metal coatings
JP2006176880A (ja) コールドスプレープロセスおよび装置
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
US6602545B1 (en) Method of directly making rapid prototype tooling having free-form shape
CN101711290A (zh) 为涡轮发动机部件上的热障涂层形成粘合层的方法
CN101218369A (zh) 用于材料沉积的方法和装置
MXPA06004176A (en) Method and system for creating functionally graded materials using cold spray

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication