CN1776944A - Method for improving conductivity of bipolar plate of high-conducting composite material - Google Patents

Method for improving conductivity of bipolar plate of high-conducting composite material Download PDF

Info

Publication number
CN1776944A
CN1776944A CNA2005100194915A CN200510019491A CN1776944A CN 1776944 A CN1776944 A CN 1776944A CN A2005100194915 A CNA2005100194915 A CN A2005100194915A CN 200510019491 A CN200510019491 A CN 200510019491A CN 1776944 A CN1776944 A CN 1776944A
Authority
CN
China
Prior art keywords
conductive filler
composite material
bipolar plate
adhesive
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100194915A
Other languages
Chinese (zh)
Other versions
CN100359732C (en
Inventor
沈春晖
潘牧
袁润章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CNB2005100194915A priority Critical patent/CN100359732C/en
Publication of CN1776944A publication Critical patent/CN1776944A/en
Application granted granted Critical
Publication of CN100359732C publication Critical patent/CN100359732C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

In procedure of fabricating bipolar plate from current conducting composite material, reasonable granule grading is carried out from electro-conductive fillers in two different sizes to increase conductivity of bipolar plate. When diameter D of electro-conductive fillers in larger size is determined, electro-conductive filler in smaller diameter d = (0.1-0.5) D is selected. weight percentage of electro-conductive fillers in smaller size is 10-30% of total weight of electro-conductive fillers. Adding electro-conductive filler in smaller size increases contact level among granules of electro-conductive filler in larger size so as to raise conductivity of bipolar plate. The invention also improves rheological behavior of current conducting composite material so as to be in favor of pressure forming and injection molding.

Description

A kind of method that improves conductivity of bipolar plate of high-conducting composite material
Technical field
The present invention relates to a kind of method that improves the conductivity of bipolar plate of high of Proton Exchange Membrane Fuel Cells, be specifically related to a kind of method that improves conductivity of bipolar plate of high-conducting composite material.
Background technology
Bipolar plates extensively adopts the machine work graphite cake at present as one of critical material of Proton Exchange Membrane Fuel Cells (PEMFC), thus but because its too high commercialization that limits PEMFC of cost of manufacture.What be expected to replace the machine work graphite cake is the conducing composite material bipolar plates, it is a present topmost research direction, promptly by conductive filler and fluoropolymer resin or the compound bipolar plates of making of other binding agent such as graphite or powdered carbons, general employing compression molding, adopt proper mold can disposablely obtain gas flowfield, such composite material can be regarded as a kind of high-load conductive filler packing material, and in order to satisfy the conductivity requirement of bipolar plates, the volume content of graphite must reach 45%.In order further to shorten the production cycle, for the conducing composite material bipolar plates that adopts thermoplastic macromolecule material as binding agent, desirable manufacture craft is to adopt injection moulding, this will differentiate replies condensation material by cable and has good flowability and processing and forming, therefore satisfying under the prerequisite of conductivity of bipolar plate of high, must use few conductive filler, the mechanical strength of bipolar plates also can improve greatly so as far as possible.In a word, the key issue of making bipolar plates by conducing composite material is: the conductivity of bipolar plates and mechanical strength must satisfy the instructions for use of fuel cell simultaneously, and have good processing and forming.
Making by conducing composite material in the process of bipolar plates, there are many patents to improve the conductivity of bipolar plates by the size of meticulous selection conductive particle, but what they mostly adopted is a kind of conductive filler with same size, so the conductivity raising is not very big.From Fig. 1 we as can be seen, in some zone that conductive filler is assembled, the conductivity that whether closely is certain to influence conducing composite material that conductive filler is piled up.The reasonable grit grading of carrying out the conductive filler of two kinds of different sizes of employing improves the method for conductivity of bipolar plate of high and does not also appear in the newspapers.
Summary of the invention
The objective of the invention is to carry out the conductivity that reasonable grit grading improves the conducing composite material bipolar plates, solve the difficult problem that conductivity of bipolar plate of high-conducting composite material and mechanical strength can not get both by the conductive filler of two kinds of different sizes.
Technical scheme of the present invention is: a kind of method that improves conductivity of bipolar plate of high-conducting composite material is characterized in that comprising the steps:
1). grind and the screening conductive filler, obtaining diameter is the large scale conductive filler of D and the small size conductive filler that diameter is d, D=80-100 μ m, d=0.1-0.5D;
2). the percentage by weight that accounts for the conductive filler total amount according to the small size conductive filler is 10-30%, respectively the conductive filler of two kinds of different sizes of weighing and carry out fully dried mix;
3). add adhesive in the conductive filler after dried the mixing, the shared percentage by weight of conductive filler is 50-60%, and adhesive institute percentage by weight is 40-50%, and adhesive is organic polymer adhesive or inorganic adhesive; Adopt banbury, stirring, concussion, ball mill or ultrasonic wave etc. to mix;
4). mixture is pressed at mould inner mould, and molding pressure is 10-15MPa, and molding temperature adopts corresponding temperature according to the adhesive difference of using, and gets product.
The percentage by weight that described small size conductive filler accounts for the conductive filler total amount is 10-20%.
Described conductive filler is graphite, Ti 3SiC 2Powder, TiB 2, carbon black, carbon nano-tube or carbon fiber etc.
Described organic polymer adhesive is Kynoar, polypropylene, unsaturated polyester (UP) or epoxy resin etc.; Inorganic adhesive is silicate or phosphate etc.
The present invention selects the conductive filler of two kinds of different sizes to make the conducing composite material bipolar plates as the hybrid conductive filler, by diameter ratio and the weight ratio of strictness control small size conductive filler with the large scale conductive filler, owing in the large scale conductive filler, add the small size conductive filler, further increase the exposure level (as shown in Figure 2) between the large scale conductive filler, thereby further improve the conductivity of conducing composite material bipolar plates.Compare with the existing bipolar plates of same size conductive filler that adopts, the present invention is under the prerequisite that does not have to increase of conductive filler content (promptly keeping the very strong mechanical strength of bipolar plates), and its conductivity is improved; The percentage by weight that accounts for the conductive filler total amount when employing small size conductive filler is 10-20%, and its conductivity improves more remarkable.Simultaneously, the conductive filler of two kinds of different sizes of employing carries out reasonable grit grading and also can improve the rheological property of conducing composite material, thereby helps mold pressing and injection moulding.
Description of drawings
Fig. 1 is the schematic diagram of the conducing composite material of the same size conductive filler of employing
Fig. 2 is the schematic diagram of the conducing composite material of two kinds of different size conductive fillers of employing
Among the figure: zero represents the large scale conductive filler, ● represent the small size conductive filler, Represent adhesive.
Embodiment
Embodiment 1:
Grind and the screening graphous graphite powder, obtain two kinds of graphite powders that size is respectively 45 μ m and 90 μ m, the percentage by weight that accounts for the conductive filler total amount according to the small size conductive filler is respectively 10%, 20%, and 30% weighing graphite powder is also done in ball mill and mixed.Add sodium silicate acid-resistant cement adhesive, and fully disperse by graphite powder by ultrasonic device.On vulcanizing press, adopt the compression molding of proper mold room temperature, molding pressure 12MPa at last.The conductivity of measuring samples, its test result such as table 1.
Table 1:
Small size graphite/graphite total content (wt%) Sodium silicate acid-resistant cement/conductivity of graphite (s/cm)
100 0 10 20 30 339.24 522.60 551.60 531.20 529.73
Table 1 is the test result of sodium silicate acid-resistant cement/graphite conducting composite material conductivity.Annotate: graphite total content 58wt%.
Embodiment 2:
Method is replaced by alumina cement to adhesive sodium silicate acid-resistant cement with embodiment 1.Its test result such as table 2.
Table 2:
Small size graphite/graphite total content (wt%) Alumina cement/conductivity of graphite (s/cm)
100 0 10 20 30 367.54 467.61 493.36 476.33 469.82
Table 2 is the test result of alumina cement/graphite conducting composite material conductivity.
Annotate: graphite total content 60wt%.
Embodiment 3:
Grind and screening Ti 3SiC 2Powder, Ti 3SiC 2The preparation method of powder can adopt patent 98114247.8 (a kind of preparation method of titaniferous silicon carbide powder).Obtain two kinds of Ti that size is respectively 45 μ m and 90 μ m 3SiC 2Powder, the percentage by weight that accounts for the conductive filler total amount according to the small size conductive filler is respectively 10%, 20%, 30% weighing Ti 3SiC 2Powder is also done in ball mill and is mixed.Add the Kynoar adhesive and further mix, on vulcanizing press, adopt proper mold compression molding, 180 ℃ of molding temperatures, molding pressure 10MPa at last.The conductivity of measuring samples, its test result such as table 3.
Table 3:
Small size Ti 3SiC 2/Ti 3SiC 2Total content (wt%) Kynoar/Ti 3SiC 2Conductivity (s/cm)
100 0 10 20 30 267.54 337.61 363.27 346.39 340.34
Table 3 is Kynoar/Ti 3SiC 2The test result of conducing composite material conductivity.
Annotate: Ti 3SiC 2Total content 50wt%.
Embodiment 4:
Method is with embodiment 3, conductive filler Ti 3SiC 2Powder is replaced by graphous graphite powder.Its test result such as table 4.
Table 4:
Small size graphite/graphite total content (wt%) Kynoar/conductivity of graphite (s/cm)
100 0 10 20 30 588.46 677.16 713.54 696.30 684.74
The test result of table 4 Kynoar/graphite conducting composite material conductivity.
Annotate: graphite total content 60wt%.
Embodiment 5:
Grind and the screening graphous graphite powder, selection is of a size of the graphite powder of 90 μ m as the large scale conductive filler, the carbon black powders that is of a size of 1 μ m is as the small size conductive filler, the percentage by weight that accounts for the conductive filler total amount according to the small size conductive filler is respectively 10%, 20% weighing graphite powder and carbon black powders and does mixed in ball mill.Add the Kynoar adhesive and further mix, on vulcanizing press, adopt proper mold compression molding, 180 ℃ of molding temperatures, molding pressure 10MPa at last.The conductivity of measuring samples, its test result such as table 5.
Table 5:
Small size carbon black/conductive filler total content (wt%) Kynoar/filler conductivity (s/cm)
100 0 10 20 550.74 677.16 725.75 703.70
The test result of table 5 Kynoar/filler conducing composite material conductivity.
Annotate: conductive filler total content 50wt%.
Embodiment 6:
Method is replaced by the carbon black powders that is of a size of 36 μ m to the carbon black powders small size conductive filler that is of a size of 1 μ m with embodiment 5.Its test result such as table 6.
Table 6:
Small size carbon black/conductive filler total content (wt%) Kynoar/filler conductivity (s/cm)
100 0 10 20 597.61 677.16 744.38 727.93
The test result of table 6 Kynoar/filler conducing composite material conductivity.
Annotate: conductive filler total content 50wt%.

Claims (4)

1. a method that improves conductivity of bipolar plate of high-conducting composite material is characterized in that comprising the steps:
1). grind and the screening conductive filler, obtaining diameter is the large scale conductive filler of D and the small size conductive filler that diameter is d, D=80-100 μ m, d=0.1-0.5D;
2). the percentage by weight that accounts for the conductive filler total amount according to the small size conductive filler is 10-30%, respectively the conductive filler of two kinds of different sizes of weighing and carry out fully dried mix;
3). add adhesive in the conductive filler after dried the mixing, the shared percentage by weight of conductive filler is 50-60%, and adhesive institute percentage by weight is 40-50%, and adhesive is organic polymer adhesive or inorganic adhesive; Adopt banbury, stirring, concussion, ball mill or ultrasonic wave to mix;
4). mixture is pressed at mould inner mould, and molding pressure is 10-15MPa, gets product.
2. a kind of method that improves conductivity of bipolar plate of high-conducting composite material according to claim 1 is characterized in that the percentage by weight that described small size conductive filler accounts for the conductive filler total amount is 10-20%.
3. a kind of method that improves conductivity of bipolar plate of high-conducting composite material according to claim 1 is characterized in that described conductive filler is graphite, Ti 3SiC 2Powder, TiB 2, carbon black, carbon nano-tube or carbon fiber.
4. a kind of method that improves conductivity of bipolar plate of high-conducting composite material according to claim 1 is characterized in that described organic polymer adhesive is Kynoar, polypropylene, unsaturated polyester (UP) or epoxy resin; Inorganic adhesive is silicate or phosphate.
CNB2005100194915A 2005-09-27 2005-09-27 Method for improving conductivity of bipolar plate of high-conducting composite material Expired - Fee Related CN100359732C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100194915A CN100359732C (en) 2005-09-27 2005-09-27 Method for improving conductivity of bipolar plate of high-conducting composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100194915A CN100359732C (en) 2005-09-27 2005-09-27 Method for improving conductivity of bipolar plate of high-conducting composite material

Publications (2)

Publication Number Publication Date
CN1776944A true CN1776944A (en) 2006-05-24
CN100359732C CN100359732C (en) 2008-01-02

Family

ID=36766323

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100194915A Expired - Fee Related CN100359732C (en) 2005-09-27 2005-09-27 Method for improving conductivity of bipolar plate of high-conducting composite material

Country Status (1)

Country Link
CN (1) CN100359732C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938466A (en) * 2012-10-30 2013-02-20 武汉理工大学 Method for controlling hole size and porosity of cement-based bipolar plate
CN105406092A (en) * 2015-11-04 2016-03-16 四川大学 Composite material for bipolar plate of fuel cell and preparation method of composite material
CN110137506A (en) * 2018-02-09 2019-08-16 上海电气集团股份有限公司 Bipolar plate of redox flow battery, preparation method and its material microballoon
CN111825938A (en) * 2019-04-18 2020-10-27 四川大学 High-thermal-conductivity polymer composite material with compact isolation structure prepared by embedding fibers
CN113036171A (en) * 2021-03-26 2021-06-25 赵冬冬 Fuel cell bipolar plate and forming process thereof
CN113644288A (en) * 2020-04-27 2021-11-12 恒大新能源技术(深圳)有限公司 Composite bipolar plate and preparation method thereof
CN113839061A (en) * 2021-11-30 2021-12-24 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Composite material for preparing fuel cell bipolar plate and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318967B2 (en) * 1992-05-29 2002-08-26 ソニー株式会社 Non-aqueous electrolyte secondary battery
US5885728A (en) * 1997-04-04 1999-03-23 Ucar Carbon Technology Corporation Flexible graphite composite

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938466A (en) * 2012-10-30 2013-02-20 武汉理工大学 Method for controlling hole size and porosity of cement-based bipolar plate
CN105406092A (en) * 2015-11-04 2016-03-16 四川大学 Composite material for bipolar plate of fuel cell and preparation method of composite material
CN105406092B (en) * 2015-11-04 2018-08-07 四川大学 A kind of fuel battery double plates composite material and preparation method
CN110137506A (en) * 2018-02-09 2019-08-16 上海电气集团股份有限公司 Bipolar plate of redox flow battery, preparation method and its material microballoon
CN110137506B (en) * 2018-02-09 2022-05-03 上海电气集团股份有限公司 Flow battery bipolar plate, preparation method and material microspheres thereof
CN111825938A (en) * 2019-04-18 2020-10-27 四川大学 High-thermal-conductivity polymer composite material with compact isolation structure prepared by embedding fibers
CN111825938B (en) * 2019-04-18 2021-09-24 四川大学 High-thermal-conductivity polymer composite material with compact isolation structure prepared by embedding fibers
CN113644288A (en) * 2020-04-27 2021-11-12 恒大新能源技术(深圳)有限公司 Composite bipolar plate and preparation method thereof
CN113036171A (en) * 2021-03-26 2021-06-25 赵冬冬 Fuel cell bipolar plate and forming process thereof
CN113839061A (en) * 2021-11-30 2021-12-24 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Composite material for preparing fuel cell bipolar plate and application thereof

Also Published As

Publication number Publication date
CN100359732C (en) 2008-01-02

Similar Documents

Publication Publication Date Title
CN105406092B (en) A kind of fuel battery double plates composite material and preparation method
CN1776944A (en) Method for improving conductivity of bipolar plate of high-conducting composite material
Boyaci San et al. A review of thermoplastic composites for bipolar plate applications
EP1869120B1 (en) Electrically conducting curable resin composition, cured product thereof and molded article of the same
KR100597897B1 (en) Molding material for fuel cell separator, manufacturing method thereof, fuel cell separator and fuel cell
US7049021B2 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
WO2001043217A1 (en) Fuel cell, fuel cell separator, and method of manufacture thereof
CN113571725B (en) Preparation process of graphite-based nanocomposite bipolar plate
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
CN113097521A (en) Graphite-based composite bipolar plate for fuel cell and preparation method thereof
JP4537809B2 (en) Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
CN1263187C (en) A bipolar plate for fuel cell with proton exchange membrane and preparation method thereof
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP2006164816A (en) Sheet manufactured by papermaking method and separator for fuel cell
Hui et al. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP4657000B2 (en) Conductive molding material and fuel cell separator
EP1995810B1 (en) Fuel cell separator resin composition and fuel cell separator
KR100660144B1 (en) Thermoplastic material for injection molding a fuel cell separator
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
US20090142645A1 (en) Bipolar plate, method for producing bipolar plate and PEM fuel cell
JP4933078B2 (en) Conductive sheet and fuel cell separator
US7413685B2 (en) Composition and method for making fuel cell collector plates with improved properties
US20060169952A1 (en) Composition and method for making fuel cell collector plates with improved properties
JP2005122974A (en) Fuel cell separator and fuel cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee