CN1772719A - Self-heating reforming method used for acetic acid and methyl alcohol integhal production - Google Patents

Self-heating reforming method used for acetic acid and methyl alcohol integhal production Download PDF

Info

Publication number
CN1772719A
CN1772719A CN 200410095782 CN200410095782A CN1772719A CN 1772719 A CN1772719 A CN 1772719A CN 200410095782 CN200410095782 CN 200410095782 CN 200410095782 A CN200410095782 A CN 200410095782A CN 1772719 A CN1772719 A CN 1772719A
Authority
CN
China
Prior art keywords
stream
gas stream
rich
method according
methanol
Prior art date
Application number
CN 200410095782
Other languages
Chinese (zh)
Inventor
D·M·蒂埃博
Original Assignee
埃塞泰克斯(塞浦路斯)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 埃塞泰克斯(塞浦路斯)有限公司 filed Critical 埃塞泰克斯(塞浦路斯)有限公司
Priority to CN 200410095782 priority Critical patent/CN1772719A/en
Publication of CN1772719A publication Critical patent/CN1772719A/en

Links

Abstract

One integral great capacity 1,000-20,000 MTPD methanol and 300-6,000 MTPD acetic acid producing system is disclosed. The synthetic gas is produced through auto thermal reforming of natural gas, and natural gas, oxygen and circular CO2 are fed to the auto thermal reformer (ATR). Partial synthetic gas is fed to the CO2 eliminator to obtain circular CO2 and fed to cooling box to obtain hydrogen flow and CO flow. The rest synthetic gas, the hydrogen flow and CO2 are fed to the methanol synthesizer to produce methanol. Methanol and CO are fed to the acetic acid synthesizer to produce acetic acid, and acetic acid is then fed to the VAM synthesizer. Oxygen for the ATR and the VAM may be provided with one common air separator, and some other equipment, such as water vapor generator, may be further integrated into the said apparatus.

Description

用于乙酸和甲醇一体化制造的自热重整方法 A method for autothermal reforming of acetic acid and methanol integrated manufacturing

技术领域 FIELD

概括地说,本发明涉及一种改进的由天然气制造甲醇、乙酸、以及其它化学物质如乙酸乙烯酯单体(VAM)的方法。 In summary, the present invention relates to an improved methanol, acetic acid, vinyl acetate monomer, and a method (VAM) manufacture of other chemicals such as from natural gas. 所述改进的方法将一氧化碳分离设备和用于使用单系(single-train)方法的大规模甲醇和乙酸生产的甲醇合成装置组合在一起。 The mass methanol and acetic acid improved method and apparatus for separating carbon monoxide using a single line (single-train) The method of producing a combined methanol synthesis apparatus.

背景技术 Background technique

甲醇是一种主要的原料化学物质。 Methanol is a major chemical raw material. 甲醇的主要用途包括制造乙酸、甲醛和甲基-叔丁醚。 The main uses of methanol include manufacture of acetic acid, formaldehyde and methyl - t-butyl ether. 在下一个十年中,全世界对甲醇的需求有望增长,因为甲醇的新用途,如将甲醇转化为气体(Mobil MTG方法)、将甲醇转化为轻烯烃(UOP和Norsk Hydro的MTO方法)、将甲醇用于发电、以及将甲醇用于燃料电池将要实现商业化。 In the next decade, the demand for methanol is expected to grow around the world, as new uses of methanol, such as methanol is converted to gas (Mobil MTG method), the conversion of methanol into light olefins (UOP and Norsk Hydro's MTO process), the methanol for power generation, and the methanol fuel cell to be used for commercialization. 这些用途的开发显然会关系到甲醇的生产成本。 The development of these applications would clearly related to the cost of production of methanol. 本发明能够建造高效的单系设备,以较低的成本大量地将天然气转化为甲醇。 The present invention can efficiently build a single system equipment, at low cost a large amount of natural gas is converted to methanol.

使用羰基化催化剂从一氧化碳和甲醇制造乙酸是本领域所熟知的。 Using hydroformylation catalysts for producing acetic acid from methanol and carbon monoxide are well known in the art. 公开该方法及类似方法的有代表性的参考文献包括Carlin等人的美国专利1,961,736(Tennessee Products)、Paulik等人的美国专利3,769,329(Monsanto)、Marston等人的美国专利5,155,261(Reilly Industries)、Garland等人的美国专利5,672,743(BP Chemicals)、Joensen等人的美国专利5,728,871(Haldor Topsoe)、Denis等人的美国专利5,773,642(Acetex Chimie)、Hinnenkamp等人的美国专利5,817,869(Quantum Chemical公司)、Ditzel等人的美国专利5,877,347和5,877,348(BPChemicals)、Denis等人的美国专利5,883,289(Acetex Chimie)和Sunley等人的美国专利5,883,295(BP Chemicals),它们各自的内容在本文中引用作为参考。 The method disclosed in U.S. Patent No., and the like Representative references include Carlin et al., 1,961,736 (Tennessee Products), Paulik et al., U.S. Patent No. 3,769,329 (Monsanto), Marston et al., U.S. Patent No. 5,155,261 (Reilly Industries), Garland et al., US Patent 5,672,743 (BP Chemicals), Joensen et al., US Patent 5,728,871 (Haldor Topsoe), Denis et al., US Patent 5,773,642 (Acetex Chimie), Hinnenkamp, ​​et al., US Patent 5,817,869 (Quantum Chemical company), Ditzel, etc. al U.S. Patent 5,877,347 and 5,877,348 (BPChemicals), Denis et al., U.S. Patent No. 5,883,289 (Acetex Chimie) Sunley et al., and U.S. Patent No. 5,883,295 (BP Chemicals), the contents of each incorporated herein by reference.

用于乙酸制造的基本原料通常为一氧化碳和甲醇。 The basic raw materials for acetic acid manufacture is generally from carbon monoxide and methanol. 在一般的乙酸制造设备中,输入甲醇,而一氧化碳由于其运输和存储有困难,故通常通过重整天然气或另一种烃与水蒸气和/或二氧化碳就位生成。 In a general apparatus for producing acetic acid, methanol input, but it is usually in place of carbon monoxide produced by reforming natural gas or another hydrocarbon with steam and / or carbon dioxide because of its transportation and storage difficulties. 有鉴于此,近来关注的是构造制造甲醇和乙酸的一体化设备。 In view of this, the recent concern is the integration of construction equipment manufacturing methanol and acetic acid. 新的乙酸制造设备的主要费用是对生成一氧化碳所需的设备的投资。 The main cost of the new acetic acid manufacturing equipment is an investment in equipment required to generate carbon monoxide. 极其理想的是该投资能够大幅度地降低或者至少显著地减少。 Extremely desirable that the investment can be greatly reduced or at least significantly reduced.

用于乙酸乙烯酯单体制造的基本原料是乙烯、乙酸和氧气。 The basic raw materials for vinyl acetate monomer manufacture are ethylene, acetic acid and oxygen. 反应中生成不利的副产物二氧化碳,必须将其从循环的乙烯中去除。 Formed in the reaction by-product carbon dioxide negative, must be removed from the circulation of ethylene. 新的合成气、甲醇、乙酸和乙酸衍生物如VAM的制造设备的主要费用是对所需设备的投资。 The new syngas, methanol, acetic acid and acetic acid derivatives such as VAM major cost manufacturing equipment investment is required for equipment. 其它主要费用包括操作费用(含原料费用)。 Other major costs include operating costs (including the cost of raw materials). 需要减少这些投资和操作费用。 These need to reduce capital and operating costs.

对于甲醇的制造,已经确认,对于大容量的合成气设备而言,自热重整是生成合成气经济的方法,因为巨额投资可以通过不构造巨大的主重整器或多个部分氧化反应器而节省下来。 For methanol production, it has been confirmed that, for a large capacity syngas apparatus, autothermal reforming is a method of generating synthesis gas economy, because of the huge investments can not be constructed by huge primary reformers or multiple partial oxidation reactor and saved. 但是无论如何,其缺点是不能用尽所有的碳分子,从而导致大量CO2的排放,这是不利的。 But in any case, the drawback is not exhausted all carbon molecules, resulting in a large amount of CO2 emissions, which is unfavorable. 事实上,需要在自热重整器的出口对合成气进行调节,因为表示为SN=[(H2-CO2)/(CO+CO2)]的化学计量数(SN)小于2,通常为1.7和1.9。 In fact, the need for adjustment of the synthesis gas at the outlet of the autothermal reformer, as expressed as SN = [(H2-CO2) / (CO + CO2)] chemical measurement number (SN) is less than 2, and typically 1.7 1.9. 目标是要得到最佳的合成气比例,它位于2.0-2.1之间,用以对甲醇合成循环进行补充。 The goal is to obtain the optimum syngas ratio, which lies between 2.0-2.1 for methanol synthesis cycle supplement. Lee等人在美国专利5,180,570中公开了一种制造甲醇和氨水的一体化方法,为的是接近甲醇反应循环中的化学计量条件。 Lee et al., Discloses a method of manufacturing an integrated methanol and ammonia in U.S. Patent No. 5,180,570 in order to be closer to stoichiometric conditions in the methanol reaction loop. McShea,III等人在美国专利4,927,857中公开了一种用于自热重整的催化剂,以及通过控制水蒸气与碳的比例和氧气与碳的比例来得到化学计量比例合成气的方法。 McShea, III, et al in U.S. Patent No. 4,927,857 discloses a catalyst for autothermal reforming, and by controlling the ratio and the oxygen to carbon ratio of steam to carbon in a method for obtaining synthesis gas stoichiometric proportions. Banquy在美国专利4,888,130和4,999,133中公开了一种适于以非常大的规模制造甲醇的方法,其中,通过使用主水蒸气重整器和自热反应器的组合来制造接近于甲醇制造所需的化学计量组成的合成气。 Banquy adapted discloses a very large scale method of producing methanol in U.S. Patent 4,888,130 and 4,999,133, wherein close to the methanol produced by using a combination produce the desired primary steam reformer and an autothermal reactor synthesis gas stoichiometric composition. 在一篇发表于在丹麦Copenhagen举行的“2000世界甲醇会议”(2000年11月8-10日)的文章中,Streb指出,容量非常大的甲醇制造设备需要一个特殊的工艺流程设计。 In an article published in the "2000 World Methanol Conference" (8-10 November 2000) to be held in Copenhagen, Denmark article, Streb pointed out that very large capacity methanol manufacturing equipment requires a special process design. Streb建议,当进料是轻天然气时,可以使用纯自热重整,但是他强调,在化学计量比小于2的情况下,可能需要抑制CO2的转化。 Streb recommended, when the feedstock is light natural gas, pure autothermal reforming can be used, but he stressed the stoichiometric ratio is smaller than 2, it may be necessary to suppress the conversion of CO2.

在美国专利6,495,609中,Searle公开了在由乙烯制造环氧乙烷的过程中,将CO2循环到甲醇合成反应器中。 In U.S. Patent No. 6,495,609, the Searle discloses a process for producing ethylene oxide from ethylene, the circulating CO2 to methanol synthesis reactor. 在美国专利6,444,712中,Janda公开了将CO2循环回到重整器或甲醇合成循环中,为的是将SN控制在1.6-2.1。 In U.S. Patent No. 6,444,712, the Janda discloses a CO2 recycled back to the reformer or the methanol synthesis loop in order to control the SN is 1.6-2.1. Searle和Janda都证实了可以通过使用水蒸气和部分氧化重整器来控制SN。 Searle and Janda have confirmed SN may be controlled by the use of steam and partial oxidation reformer. 通常,水蒸气重整器生成的合成气的SN大于2.8,而部分氧化重整器生成的合成气的SN为1.4-2.1。 Typically, the steam reforming synthesis gas generated by the SN greater than 2.8, while partial oxidation reformer to generate SN syngas is 1.4-2.1.

发明内容 SUMMARY

现已发现,将消耗对于特别是甲醇气流羰基化所用的一氧化碳的乙酸制造设备并入,可以将使用自热重整器的一般设备改造为适于甲醇的制造。 It has been found, the consumption of carbon monoxide acetic acid manufacturing equipment in particular methanol stream used in the carbonylation incorporated, may be used in a general transformation autothermal reformer apparatus is suitable for producing methanol. 一氧化碳从一部分重整器流出物中分离出来,回收的CO2循环到重整器中,而氢气返回去进行甲醇合成。 A portion of the carbon monoxide is separated from the reformer effluent, the recovery of CO2 recycled to the reformer, and the hydrogen gas be returned to the methanol synthesis. 对从其中回收CO的重整器流出物的量加以平衡,从而得到用于甲醇循环的补充合成气的所需SN。 Wherein the amount of the balance to be recovered from the CO reformer effluent to give the desired SN for the makeup syngas to the methanol loop.

本发明结合了甲醇合成方法和乙酸方法。 The present invention combines a methanol synthesis process and acetic acid. 本发明利用了位于甲醇反应器前面的一个一氧化碳分离设备,将剩余合成气的SN调节至2.0-2.1,更好是接近2.05。 The present invention utilizes a carbon monoxide separation equipment in front of the methanol reactor, the remaining SN synthesis gas is adjusted to 2.0-2.1, preferably closer to 2.05. 本发明提供了制造甲醇、乙酸、和任选的乙酸乙烯酯单体等的方法。 The present invention provides a method of manufacturing methanol, acetic acid and optionally vinyl acetate monomer and the like. 本发明还发现,可以通过一特定的方式将这些化合物的生产方法结合成一个一体化的、单系的方法来降低巨额投资成本。 The present inventors have also found, these compounds can be produced by a particular manner will be combined into an integrated, single-based method to reduce the costs of the investment.

在本发明的一个实施方式中,提供了一种制造甲醇和乙酸的方法,其特征是,该方法是以下步骤的一体化:用氧气、水蒸气和二氧化碳自热重整烃如天然气的气流,生成合成气流;将所述合成气流的5%至小于50%、较好是5-40%、更好是10-30%、再好是15-25%这一部分分离成为富含二氧化碳的气流、富含氢的气流、富含一氧化碳的气流和富含甲烷的气流;任选地使用富含甲烷的气流作为燃料;将富含二氧化碳的气流循环到自热重整步骤中;将至少50%至高达95%、较好是60-95%、更好是70-90%、再好是75-85%的合成气流剩余部分与至少一部分富含氢的气流进行压缩,将SN为2.0-2.1、较好是2.04-2.06的补充气流供给到甲醇合成循环中,得到甲醇产物;由至少一部分甲醇产物和富含一氧化碳的气流合成出乙酸。 In one embodiment of the present invention, there is provided a method of manufacturing methanol and acetic acid, characterized in that the method is integrated steps of: oxygen, water vapor and carbon dioxide gas stream autothermal reforming of hydrocarbons such as natural gas, generating a synthesis gas stream; 5% of the synthesis gas stream to less than 50%, preferably 5 to 40%, more preferably 10-30%, 15-25%, no matter how this part is separated into a carbon dioxide-rich gas stream, hydrogen rich gas stream, a carbon monoxide-rich stream and a methane-enriched stream; optionally used as a fuel gas stream enriched in methane; the carbon dioxide-rich stream is recycled to the autothermal reforming step; at least 50% to up to 95%, preferably 60-95%, preferably 70-90%, better 75 to 85% of synthesis gas stream with at least a portion of the remaining portion of the hydrogen-rich gas stream is compressed, the SN 2.0-2.1, 2.04-2.06 supplemental gas stream is preferably supplied to the methanol synthesis loop, resulting methanol product; at least a portion of the methanol product and the carbon monoxide-rich synthesis gas stream acetic acid.

该方法还可以包括将含氢的气流和含高级烃的天然气进料合并,形成含烃的进料气流,再将此进料气流与氢化催化剂在氢化温度下接触,制造高级烃的含量低的预处理气流。 The method may further comprise a hydrogen-containing gas stream and the feed containing higher hydrocarbons combined to form a hydrocarbon-containing feed gas stream, then this low feed gas stream in contact with a hydrogenation catalyst at a hydrogenation temperature, for producing higher hydrocarbons content pretreatment gas stream.

该方法可以包括将来自甲醇合成步骤的吹扫气流供给到预重整器、燃料和/或分离步骤中。 The method may include the step of methanol synthesis from a purge gas stream fed to the pre-reformer, the fuel and / or separation step. 在后一种情况下,惰性气体从富含甲烷的气流系统中吹扫出来,作为从例如冷箱中回收CO和氢后的尾气。 In the latter case, inert gas is purged from the methane-enriched gas flow system, as a tail gas recovered from a CO and hydrogen, for example the cold box.

较佳地,该方法使用单系自热重整器,能生成1,000-20,000公吨/天的甲醇,以及300-6,00公吨/天的乙酸。 Preferably, the method using a single autothermal reformer system can generate from 1,000 to 20,000 metric tons / day of methanol, and 300-6,00 metric tons / day acetic acid.

该方法还包括将二氧化碳气流和/或来自一个相关过程的二氧化碳气流供给到甲醇合成循环中。 The method further comprises the carbon dioxide stream and / or carbon dioxide stream from an associated process to the methanol synthesis loop is supplied. 例如,所述相关过程使用乙酸作为反应物,使用甲醇产物作为反应物,使用来自普通空气分离装置的氧气的一部分,共用一普通的设备(utility),或者它们的组合。 For example, the correlation process using acetic acid as a reactant, the use of the methanol product as a reactant, the use of an ordinary portion of the oxygen from the air separation unit, sharing a common device (Utility), or a combination thereof. 可以将至少一部分产生的乙酸供给到所述相关过程中的乙酸乙烯酯单体(VAM)合成循环中,用来与乙烯和氧气反应制造VAM。 At least a portion of the acetic acid produced can be supplied to the synthesis loop in the associated process of vinyl acetate monomer (VAM), the reaction for producing ethylene and oxygen with VAM. 可以将来自VAM合成循环的富含二氧化碳的气流送入甲醇合成循环中。 The carbon dioxide-rich gas stream may be from the VAM synthesis loop is fed to the methanol synthesis loop.

也可以通过氢化对进料气流进行预处理,以便使用水蒸气与碳的较低比例,同时避免在自热重整器以及相应的设施中形成烟灰。 It may also be pretreated by hydrogenation of the feed gas stream, in order to use a lower steam to carbon ratio while avoiding soot formation in the autothermal reformer and the corresponding facilities. 在该方法中,将富含氢的气流加入含有高级烃(2个或多个碳原子)的进料气流中,在氢化温度下让所得的混合物与氢化催化剂接触,然后将己氢化的混合物与水蒸气和氧气输入自热重整器形成合成气。 In this process, the hydrogen rich gas stream comprising feed gas stream is added higher hydrocarbons (2 or more carbon atoms), the mixture obtained is contacted with a hydrogenation catalyst at a hydrogenation temperature, and the mixture was hydrogenated with an already water vapor and oxygen enter the autothermal reformer synthesis gas formed. 所述富含氢的气流较佳是来自接收合成气或其一部分的甲醇合成循环的吹扫气体或其一部分。 The hydrogen-rich gas stream is preferably a purge gas or a portion thereof from a methanol synthesis loop receiving syngas or a portion thereof is. 较佳地,以提供至少化学计量的用于高级烃氢化的氢的速度,向甲烷中加入富含氢的气流。 Preferably, to provide at least a stoichiometric amount of higher hydrocarbons velocity for hydrogenation of hydrogen, hydrogen-rich gas stream is added to the methane. 较佳地,氢化温度为300-550℃。 Preferably, hydrogenation temperature is 300-550 ℃. 在该实施方式中,设备与物质包括:含高级烃的进料气;预氢化反应器,内有用来将所述高级烃转化形成高级烃含量低的气流的氢化催化剂(一般使用支撑在氧化铝或沸石上的基本金属如铂、钯、钴、钼、镍或钨作为催化剂);用来将高级烃含量低的气流与水蒸气和氧气反应形成合成气流的自热重整器;用来将来自合成气流的氢与一氧化碳反应形成甲醇的甲醇合成循环;来自甲醇合成循环的吹扫气流;以及用来将一部分吹扫气流供给到预氢化反应器中的管线。 In this embodiment, the device materials comprising: a feed gas containing higher hydrocarbons; pre-hydrogenation reactor, there are for the higher hydrocarbons formed in the hydrogenation catalyst a low content of higher hydrocarbons in the gas stream (typically using an alumina supported or base metals on a zeolite such as platinum, palladium, cobalt, molybdenum, nickel or tungsten as a catalyst); for the synthesis gas stream formed autothermal reformer a low content of higher hydrocarbons in the gas stream react with the oxygen and water vapor; used to reaction of hydrogen to carbon monoxide from the synthesis gas stream with methanol in methanol synthesis cycle is formed; purge stream from methanol synthesis loop; and for a portion of the purge gas stream fed to the pre-hydrogenation reactor line.

因为氢化反应是放热的,所述氢化过程可以在一个或几个反应器中进行,视需要可有中间的冷却装置。 Because the hydrogenation reaction is exothermic, the hydrogenation process may be performed in one or several reactors, can optionally have an intermediate cooling means. 此氢化步骤特别适合与进料中的水蒸气与碳的比例较低的自热重整器一起使用。 Used with a low ratio of this autothermal reformer is particularly suitable for the hydrogenation step with feed carbon with steam.

附图说明 BRIEF DESCRIPTION

图1是本发明的使用用来制造合成气的自热重整器制造甲醇、乙酸和乙酸乙烯酯单体的方法的一个实施方式的简化流程框图。 FIG 1 is a present invention is used for production of synthesis gas in an autothermal reformer for producing a simplified block flow diagram of one embodiment of methanol, acetic acid and vinyl acetate method monomers.

具体实施方式 Detailed ways

用于本发明方法的设备可以是一个新的设备,但是也可以是现有的制造甲醇、乙酸和/或VAM的设备的改型。 The apparatus used in the process of the present invention may be a new device, but may also be manufactured retrofitting of existing methanol, acetic acid and / or VAM device.

提供天然气102作为设备用的燃料103以及用于合成的进料气。 102 provides gas 103 as a fuel and equipment used in the synthesis feed gas. 将用于合成的所述天然气与富含氢的气流结合,供给到一常规的脱硫装置104中,并且任选地,与水蒸气108输入绝热的催化预重整器106中。 The synthesis gas will be used in conjunction with a hydrogen-rich gas stream is supplied to a conventional desulfurization apparatus 104, and optionally, catalyst and steam input adiabatic pre-reformer 106 108. 所述预重整器可用来减少后面的ATR(其中,天然气含有一定数量含两个碳原子的烃和高级的烃)中烟灰的形成。 The pre-reformer can be used to reduce the ATR later (wherein, the natural gas containing a certain amount of a hydrocarbon containing two carbon atoms and higher hydrocarbons) in the formation of soot. 空气在压缩机115中进行压缩,然后送入空气分离装置(ASU)116中,所述空气分离装置以常规的方式操作以便得到氧气流114。 Air is compressed in compressor 115 and then fed to the air separation unit (ASU) 116, the air separation plant in a conventional manner to obtain 114 oxygen stream. 将来自ASU 116的氧气114和循环的富含CO2的气流110送入预重整器的流出物112中。 In the CO2 rich stream 114 and loop 110 from the oxygen fed to the ASU 116 pre-reformer effluent 112. 将经预重整的天然气、二氧化碳、以及视需要,水蒸气的混合物连同氧气引入使用常规的自热重整设备和催化剂系统进行催化重整自热重整器118中,制造合成气流120。 The pre-reformed natural gas, carbon dioxide, and optionally, oxygen is introduced together with water vapor mixture using conventional autothermal reforming equipment and catalyst system for autothermal catalytic reformer 118 to produce a synthesis gas stream 120. 以常规方式冷却所述合成气120并与冷凝的液态水分离。 In a conventional manner and cooling the synthesis gas 120 is separated from the condensed liquid.

将一部分合成气流120经管线119送入CO2去除装置122中,产生前述的CO2循环气流110。 The portion of the synthesis gas stream 120 via line 119 into the CO2 removal unit 122, generates the aforementioned recycle stream 110 of CO2. 加入到气流119的合成气的量主要根据乙酸合成所需的CO的量来确定,但是要占气流120的至少5%至高达50%,较好是5-40%,更好是10-30%,再好是15-25%。 The amount added to the synthesis gas stream 119 is mainly based on the desired amount of CO in the synthesis of acetic acid is determined, but at least 5% to account for air flow up to 50 to 120%, preferably 5 to 40%, more preferably 10-30 %, no matter how good is 15-25%. 甲醇和乙酸的制造应当充分利用所生成的H2、CO和CO2,较佳的是甲醇的产量为1,000-20,000公吨/天,乙酸的产量为300-6,000公吨/天。 Manufacturing methanol and acetic acid should take advantage of the generated H2, CO and CO2, preferably methanol production is 1,000 to 20,000 metric tons / day, the production of acetic acid 300-6,000 tonnes / day. 对一给定的甲醇产量而言,有一个优化的乙酸产量,此时的SN符合目标SN值,例如2.05。 For a given for a methanol production, there is an optimal acetic acid production, consistent with the objective at this time SN SN value, for example 2.05. 如果相对于生产的甲醇,生产的乙酸更多,会产生比甲醇合成所需更多的氢气,例如,SN会太高或者过量的氢气送入燃料中。 If the relative methanol production, the production of more acid will produce more hydrogen than required for methanol synthesis, for example, the SN will be too high or excess of hydrogen into the fuel. 当然,如果有可以送入的二氧化碳,则多余的氢气在某种程度上也可以获得平衡。 Of course, if the carbon dioxide may be fed, the excess hydrogen can be balanced to some extent. 如果生产的乙酸较少,则氢气不足,例如SN会太低。 If less acetic acid production, the hydrogen is insufficient, e.g. SN will be too low. 如果甲醇和乙酸的总产量增加,会超出一个ASU的工艺容量限制,从而需要再次投资建造另一个ASU。 If the increase in total production methanol and acetic acid, the process would exceed the capacity limit of a ASU, ASU thus need to invest to build another again. 另一方面,如果总产量减少,会损失规模经济效益,并且单位产量的投资成本会增大。 On the other hand, if the total reduction will lose economies of scale and the investment costs per unit of production will increase.

CO2去除装置122可使用常规的CO2去除方法和设备来去除CO2,例如,溶剂吸收,然后解吸。 CO2 removal device 122 using conventional methods and apparatus for CO2 removal to remove CO2, e.g., solvent absorption, and desorption. 视需要,所有或部分甲醇合成循环吹扫气流124也可以经管线119送入CO2去除装置中。 If desired, all or a portion of the methanol synthesis loop purge gas stream 124 may be fed through line 119 CO2 removal device.

CO2去除装置产生富含CO2的气流110和基本上不含CO2的CO/H2混合气流128。 CO2 removal means generates CO2 rich stream 110 essentially free of CO2 and CO / H2 mixed gas stream 128. 将富含CO2的气流110引入位于自热重整器118前面的合成气流112。 The CO2 rich stream 110 is introduced 118 located in front of the autothermal reformer synthesis gas stream 112. 可以将通过管线126来自VAM合成过程,或者来自任何另一个相关过程,或者它们的结合的所有或一部分CO2与来自122的富含CO2的气流混合,并经所述自热重整器118前面的管线110输送。 Through line 126 may be derived from VAM synthesis process or another associated process from any or all or a combination thereof is mixed with a portion of the CO2 from the CO2 rich gas stream 122 and through the front autothermal reformer 118 110 pipeline transport.

分离装置130(较佳的是,它包含分子筛和常规的冷箱)将气流128分离成至少一股富含CO的气流135和一股富含H2的气流131,但是也可以包括少量的一种或多种用作燃料或者通过管线134输出的混合的氢气、甲烷和CO的残余气体或尾气。 Separating device 130 (preferably, it includes molecular sieves and a conventional cold box) an air stream is separated into at least a CO-rich stream 135 and an 131 H2 rich stream 128, but may also include minor amounts of one or more as a fuel or by mixing the output line 134 of the hydrogen, methane and CO residual gas or tail gas. 所述分离装置130可以是例如具有两根柱子的部分凝结箱。 The separation device 130 may be, for example, a column portion having two coagulation tank. 所述富含CO的气流135可以供给到乙酸合成装置136中,如下文所详细描述的。 The CO-rich stream 135 can be fed to the acetic acid synthesis unit 136, as described in detail below. 如果进料天然气的氮含量太高,可以加入用于去除氮气的柱子,将纯度大于97%的CO输送至乙酸合成装置中。 If the nitrogen content of the feed gas is too high, it can be added to the column for removing the nitrogen gas, the purity of greater than 97% CO fed to the acetic acid synthesis unit.

将来自管线120的剩余合成气,来自气流126的CO2和来自气流131的氢气,在压缩机138中压缩至甲醇合成的压力,然后作为补充气流123送入使用甲醇合成循环和本领域熟知的催化甲醇合成反应器的甲醇合成装置140中。 The remaining syngas from line 120, CO2 from the gas stream 126 and gas stream 123 is fed supplemental methanol synthesis loop and catalytic known in the art from the hydrogen gas stream 131, compressed in compressor 138 to the methanol synthesis pressure, then as methanol synthesis means 140 methanol synthesis reactor. 可以将来自所述合成装置140的吹扫气流124循环到所述CO2去除装置122中,如上所述。 May be from the synthesis plant purge gas stream is recycled to the 124,140 CO2 removal device 122, as described above. 众所周知,需要所述吹扫气流124,用来防止甲醇合成循环中惰性气体如氩气以及甲烷的积聚。 It is well known the need to purge gas stream 124, to prevent the accumulation of inert gas in the methanol synthesis loop such as argon and methane. 在CO2去除装置122和冷箱130中处理吹扫气体,具有循环来自所述吹扫气体的CO2、CO和氢气的优点,同时抑制了惰性气体进入残余气流134中。 In the CO2 removal device 122 and the cold box process in the purge gas 130, having the advantage of circulating the purge gas from CO2, CO and hydrogen, while suppressing an inert gas into the residue gas stream 134. 甲醇产物可以用蒸馏装置142或其它常规方法提纯。 Methanol product 142 can be purified by distillation or other conventional methods. 纯化的甲醇作为产品经管线144输出,或者其一部分可以经管线145供给到乙酸合成装置136中。 The purified product methanol as an output via line 144, or a portion thereof may be fed to the acetic acid synthesis unit 136 via line 145.

所述乙酸合成装置136使用本领域技术人员熟知的和/或可以购得的常规的乙酸制造设备和方法,由来自气流135的CO和来自气流145的甲醇形成乙酸,例如,根据一篇或多篇上述有关乙酸制造的专利。 The acetic acid synthesis unit 136 uses / or conventional acetic acid manufacturing equipment and methods well known to those skilled in the art and commercially available, and are formed from acetic acid from CO and methanol stream 135 from the gas stream 145, for example, according to one or more of For acetic acid manufacture articles above patents. 例如,可以使用常规的BP/Monsanto法,或者改进的利用BP-Cative技术(铱催化剂)、Celanese低水技术(铑-锂乙酸盐催化剂)、Millennium低水技术(铑-磷氧化物催化剂)和/或双重加工过程甲醇羰基化-甲酸甲酯异构化的BP/Monsanto法。 For example, a conventional BP / Monsanto process, or by using the improved BP-Cative technology (iridium catalyst), of Celanese low water technology (rhodium - lithium acetate catalyst), Millennium low water technology (rhodium - phosphorus oxide catalyst) and / or dual process methanol carbonylation - methyl formate isomerization BP / Monsanto process. 该反应通常包括:在包含一氧化碳的反应混合物、水、溶剂、以及包含至少一种卤化促进剂和至少一种铑、铱或它们的组合的化合物的催化剂系统存在的条件下,使甲醇、甲酸甲酯、或者它们的组合发生反应。 The reaction is typically comprising: a reaction mixture comprising carbon monoxide, water, a solvent, and comprising at least one halogenated promoter and at least one of rhodium, catalyst systems the presence of a compound of iridium or a combination thereof, methanol, methyl formate ester, reacted or combinations thereof. 较佳地,所述反应混合物的水含量高达20重量%。 Preferably, the water content of the reaction mixture up to 20 wt%. 当反应是简单的羰基化时,所述反应混合物中的较佳水含量约为14-15重量%。 When the reaction is simple carbonylation, the water content of the preferred reaction mixture is from about 14-15% by weight. 当反应是低水羰基化时,所述反应混合物中的较佳水含量约为2-8重量%。 When the reaction is a low water carbonylation, the water content in the mixture is preferably from about 2-8 wt% of the reaction. 当反应是甲酸甲酯异构化或者异构化与甲醇羰基化的组合时,所述反应混合物的较佳水含量至少大于0重量%,多达2重量%。 When the preferred water content in the reaction are methyl formate isomerization or an isomerization and methanol carbonylation combination, the reaction mixture is greater than at least 0 wt%, up to 2 wt%. 反应通常是连续的。 The reaction is typically continuous. 乙酸产物通过管线146来得到。 Acetic acid product is obtained via line 146.

视需要,一部分来自管线146的乙酸可以经管线147送入生产作为副产物的CO2的一种相关过程,如常规的乙酸乙烯酯(VAM)合成装置148中。 Optionally, a portion of the acetic acid may be fed from line 146 to produce a correlation process of CO2 as a by-product via line 147, such as conventional vinyl acetate (VAM) synthesis device 148. 所述乙酸与通过管线150输入的乙烯以及至少一部分来自空气分离装置116的氧气114反应。 The acetic acid and ethylene via line 150 and at least a portion of the oxygen in the input air separation device 116 from the 114 reaction. 在常规VAM蒸馏装置156中,液态产物气流152经过蒸馏,通过管线158输出基本纯(商品规格)的VAM。 In a conventional VAM distillation unit 156, the liquid product stream 152 by distillation, the output substantially pure (commercial specification) VAM via line 158 a. 来自VAM合成装置的二氧化碳副产物通过常规的CO2去除系统154从反应器流出物气体中分离出来,并经管线126循环到甲醇合成循环中。 Carbon dioxide byproduct from the VAM synthesis apparatus by conventional CO2 removal system 154 is separated from the reactor effluent gas, and recycled to the methanol synthesis loop via line 126. 例如,可以使用常规的(较佳是低温的)空气分离装置116得到管线114中的氧气,供给VAM合成装置148和自热重整器118的需要。 For example, using conventional (preferably cryogenic) of air separation plant 116 in line 114 to obtain the oxygen necessary to supply means 148 and VAM synthesis 118 autothermal reformer.

VAM的制造主要根据以下反应,通过乙烯的乙酸化来完成: VAM producing mainly according to the reaction to completion by acetoxylation of ethylene:

主要的副产物CO2通过以下反应生成: The main byproduct CO2 generated by the following reaction:

此过程的选择性为约7-8质量%的CO2。 Selectivity of this process is approximately 7-8% by mass of CO2. 产生约100,000公吨/年(MTY)的VAM设备需要约35,000MTY的乙烯,并产生5,000-10,000MTY的CO2。 Produce about 100,000 metric tons / year (MTY) of ethylene VAM requires approximately 35,000MTY device and generates a CO2 5,000-10,000MTY.

视需要,在一体化系统中提供设备160(它通常包括水蒸气系统、冷却系统、空气压缩机等),相对于各个单独的装置,这种一体化设备的大型供应系统带来了规模经济效益的优点。 Optionally, an apparatus 160 in an integrated system (which typically comprises a steam system, cooling system, an air compressor, etc.), with respect to each individual apparatus, a large supply of such an integrated system of devices brought economies of scale The advantages. 值得注意的是,可以使用回收自ATR 118、甲醇合成装置140、乙酸合成装置136和/或VAM合成装置148或者任何其它相关的一体化装置的废热所产生的水蒸气,将其供给到锅炉进料水泵、淡水冷却水泵、海水冷却水泵、天然气压缩机、ASU压缩机115、预重整器106、ATR 118、CO2去除装置122、补充压缩机138、甲醇合成气循环压缩机等设备中。 Notably, use can be recovered from the ATR 118, the waste heat steam or any other associated integrated unit 140, acetic acid synthesis unit 136 and / or VAM synthesis unit 148 to produce a methanol synthesis apparatus, and feeding it to the boiler feed feed pump, a cooling water pump fresh water, sea cooling water pump, natural gas compressor, the ASU compressor 115, pre-reformer 106, ATR 118, CO2 removal unit 122, the supplemental compressor 138, methanol syngas recycle compressor and other equipment. 与一般情况(通过水蒸气重整产生过量的水蒸气)不同的是,本发明的一体化系统并不输出水蒸气,这是有利的。 Generally with (an excess of water vapor produced by the steam reforming) is different, the system according to the present invention is not integrated steam output, which is advantageous. 视需要,辅助的锅炉可以为工艺过程提供附加的水蒸气。 Optionally, the auxiliary boiler may provide additional steam for the process.

实施例1:在该实施例中,除非另有说明,流量、组成和其它性质的值都为两位有效数字。 Example 1: In this embodiment, unless stated otherwise, the flow rate, composition, and other properties are values ​​of two significant figures. 除非另有说明,流量以标准立方米/小时(Nm3/h)计,组成以mol%计。 Unless otherwise stated, the flow rate in standard cubic meters / hour (Nm3 / h) of the constituent in mol%. 图1所示为根据本发明实施方式的MeOH/AcOH/VAM制造方法用来生产5,088公吨/天(MTPD)的甲醇和20,000Nm3/h乙酸合成用的CO的流程。 Figure 1 is used to produce 5,088 tonnes / day (MTPD) in accordance with MeOH / AcOH / VAM manufacturing method embodiment of the present invention methanol and 20,000Nm3 / h of CO synthesis process of acetic acid. 以190,000Nm3/h提供天然气102,作为用于设备的燃料103(16,000Nm3/h)以及过程进料气(175,000Nm3/h)。 In 190,000Nm3 / h 102 provide gas, as fuel 103 (16,000Nm3 / h) for the device, and process feed gas (175,000Nm3 / h). 将组成为大约89.5%甲烷、5%乙烷、1.0%丙烷、0.5%丁烷和重烃、4.0%氮气的天然气与甲醇合成循环吹扫气的一部分(8,300Nm3/h)合并,然后供给到脱硫装置104中去除硫化合物。 A composition of approximately 89.5% methane, 5% ethane, 1.0% propane, 0.5% butane and heavier hydrocarbons, a portion of the natural gas and 4.0% methanol synthesis loop purge gas of nitrogen (8,300Nm3 / h) were combined and then fed to the desulfurization apparatus 104 in removal of sulfur compounds. 对所述合并的气流(183,000Nm3/h)脱硫,然后与用于预重整装置106的水蒸气(180,000Nm3/h)合并,得到380,000Nm3/h包含1.8%氮气、2.3%CO2、小于0.1%的CO、6%氢气、小于44%的水蒸气、46%甲烷的流出物。 The combined gas flow (183,000Nm3 / h) desulfurization and water vapor (180,000Nm3 / h) for a pre-reformer 106 were combined to give 380,000Nm3 / h contains 1.8% nitrogen, 2.3% CO2, less than 0.1 % of CO, 6% hydrogen, less than 44% of steam, 46% methane effluent.

将管线112中经脱硫的天然气流出物(380,000Nm3/h)与经管线110送入的包含98%CO2和均少于1%的CO、氢气、水蒸气和甲烷的循环的CO2(12,000Nm3/h)送入自热重整器118中。 CO2 (12,000Nm3 / 98% CO2 and contains less than 1% each of CO.'S, hydrogen, methane and steam circulating in the 112 line of natural gas desulfurized effluent (380,000Nm3 / h) and fed via line 110 h) fed to the autothermal reformer 118. ATR 118再消耗110,000Nm3/h水蒸气,并消耗通过管线114来的99,000Nm3/h氧气(包含0.5%氩气),产生580,000Nm3/h包含9%CO2、23%CO、65%氢气、1.2%氮气和均少于1%的水蒸气、甲烷和氩气的流出物(其组成是干燥后的)。 ATR 118 consumes then 110,000Nm3 / h steam, via line 114 and to consume the 99,000Nm3 / h oxygen gas (argon gas containing 0.5%) to yield 580,000Nm3 / h containing 9% CO2,23% CO, 65% hydrogen, 1.2 % nitrogen and less than 1% each of water vapor, methane, and argon gas effluent (which is the composition after drying).

将125,000Nm3/h来自ATR 118的经干燥的流出物(占ATR118流出物的大约22%)供给到CO2去除装置122中。 The dried effluent 125,000Nm3 / h from the ATR 118 (accounting for about 22% ATR118 effluent) is supplied to the CO2 removal device 122. 富含CO2的气流110已如上所述,CO2含量低的气流是112,000Nm3/h,该气流的组成为:25%CO、72%氢气、1%甲烷、1.3%氮气和均少于1%的氩气和甲烷,该气流供给到冷箱130中。 CO2 rich stream 110 has been described above, a low content of CO2 gas stream is 112,000Nm3 / h, the composition of the gas stream is: 25% CO, 72% hydrogen, 1% methane, 1.3% nitrogen and less than 1% each argon and methane, the gas stream is supplied to the cold box 130.

所述冷箱130是去除氮气的凝结冷箱,产生20,000Nm3/h含98%CO和均少于1%的氢气、氮气、氩气和甲烷的气流131;4,700Nm3/h含26%CO、36%氢气、23%甲烷、15%氮气和均少于1%氩气的尾气流134;以及87,000Nm3/h含90%氢气、9%CO和均少于1%氮气、氩气和甲烷气流128。 The cold box 130 is to remove nitrogen cold box condensation, generating 20,000Nm3 / h 98% CO and less than 1% each of hydrogen, nitrogen, argon and methane containing gas stream 131; 4,700Nm3 / h containing 26% CO, 36% hydrogen, 23% methane, 15% nitrogen, and less than 1% each argon tail gas stream 134; and 87,000Nm3 / h containing 90% hydrogen, 9% CO and less than 1% each of nitrogen, argon and methane gas stream 128.

将气流120的剩余部分连同气流131的主要部分压缩为气流123,它的流量为541,000Nm3/h,是69%氢气、21%CO、8.4%CO2、1.0%甲烷和均少于1%的水蒸气、氮气和氩气的补充气体(SN=2.04),被通入供给到所述甲醇合成装置140中。 The remaining part of the flow stream 120 together with the main portion 131 of stream 123 is compressed, its flow 541,000Nm3 / h, 69% hydrogen, 21% CO, 8.4% CO2,1.0% methane and water are less than 1% supplementary gas vapor, nitrogen and argon (SN = 2.04), is fed into the methanol synthesis to the device 140. 该装置140产生前述吹扫气流124;248,000kg/h含有17.5%水、1.6%CO2和均少于1%的CO、氢气、氩气和甲烷的粗甲醇;以及212,000kg/h气流144和145中的市售纯甲醇。 The device 140 generates the purge stream 124; 248,000kg / h containing 17.5% water, 1.6% CO2 and CO.'S were less than 1%, hydrogen, methane, argon and crude methanol; and 212,000kg / h stream 144 and 145 the commercially pure methanol.

气流145将26,000kg/h甲醇供给到乙酸合成装置136中(气流145在经典的Monsanto过程中与通过管线135送入的CO反应),得到49,000kg/h纯度大于99.85重量%的经过蒸馏的市售冰乙酸。 The airflow 145 26,000kg / h methanol fed to the acetic acid synthesis unit 136 (stream 145 in the classical Monsanto process via line 135 and fed to a CO reaction), distilled to give the city of 49,000kg / h of a purity greater than 99.85% by weight sale of glacial acetic acid.

将一部分来自管线146的乙酸以22,000kg/h的流量送入VAM合成装置148中,在那里所述乙酸与10,000Nm3/h通过管线150的聚合级乙烯(包含超过99.9%乙烯和小于0.1%杂质)和6,000Nm3/h来自空气分离装置116的氧气反应,得到31,000kg/h市售的VAM产物气流152,其纯度超过99.9重量%。 A portion of the acetic acid from line 146 at a rate of 22,000kg / h fed to VAM synthesis unit 148 where the acid with 10,000Nm3 / h of polymerization grade ethylene through line 150 (containing more than 99.9% of ethylene and less than 0.1% impurities ) and VAM product 6,000Nm3 / h oxygen from air separation unit 116 the reaction, to give 31,000kg / h of commercially available gas stream 152, which purity of more than 99.9% by weight. VAM制造主要通过乙烯的乙酸化来完成。 VAM producing mainly through acetoxylation of ethylene. 纯度超过98%CO2的CO2气流以1,400Nm3/h生产出来,从CO2去除系统154中回收。 Purity exceeding 98% CO2 in the CO2 stream 1,400Nm3 / h produced, the system 154 is removed from the recovered CO2.

在该实施例中,CO2气流不通过管线126循环到甲醇合成循环中。 In this embodiment, CO2 is recycled to the gas line 126 without passing through the methanol synthesis loop. 视需要,可以取而代之或附加的是,经管线127输送的CO2补充经管线126所需的总CO2。 Optionally, may instead or additionally, the total CO2 needed in line 126 via transport 127 via line CO2 supplement.

用于此例举性方法的水蒸气平衡,需要一个在101bar和500℃产生180MT/h水蒸气的高压水蒸气辅助锅炉。 Exemplary steam balance for this method, it is necessary to generate a 180MT at 101bar and 500 ℃ / h high-pressure steam auxiliary boiler steam. 乙酸合成136和VAM合成148不计算在内的碳效率(包括VAM蒸馏156和CO2系统154)约为82%。 Acetic acid synthesis 136 and VAM synthesis 148, not including the carbon efficiency (including VAM distillation 156 and system 154 CO2) was about 82%.

实施例2:在此实施例中,各条件与前一实施例相同,不同的是将来自VAM过程的CO2经管线126循环到甲醇合成装置中。 Example 2: In this example, each of the conditions the same as the previous embodiment, except that the CO2 from VAM process via line 126 to the methanol synthesis loop means. 为了将SN调节到最优值2.05,这里是将131,000Nm3/h来自ATR 118的流出物送入CO2去除装置122和CO分离装置130中,并将来自冷箱130的富含氢的气流经131送入甲醇合成循环中。 In order to adjust to the optimum value SN 2.05, there is 131,000Nm3 / h The effluent from the ATR 118 is fed to CO2 removal means 122 and separating means 130 in the CO and hydrogen-rich gas stream from the cold box 130 via 131 into the methanol synthesis loop. 由于在该实施例中将整个富含氢的气流送入甲醇合成循环中,也使用压力回转吸附(PSA)装置来产生提纯的氢气流。 Since in this embodiment the entire embodiment will be fed into a hydrogen rich gas stream circulating in the methanol synthesis, it is also a pressure swing adsorption (PSA) apparatus to produce a purified hydrogen stream. 在正常的操作波动下,一部分所述提纯的氢气流可以任选地引入所述甲醇合成装置中来调节SN。 Under normal operating fluctuations in a portion of the purified hydrogen gas stream may optionally be introduced into the methanol synthesis apparatus to adjust the SN.

然后,将CO的产量增加到21,000Nm3/h,乙酸的产量增加5%,达到51MT/h,此时甲醇的产量为5,105MTPD。 Then, the CO production is increased 21,000Nm3 / h, acetic acid production is increased by 5% to 51MT / h, the yield of methanol at this time was 5,105MTPD.

在上文中,结合了用于说明和非限制性目的的具体实施方式描述了本发明。 In the above, a combination of specific embodiments for purposes of illustration and non-limiting description of the present invention. 对本发明的各种修改和变动在本领域技术人员的考虑范围之内。 Various modifications and variations of the present invention within the purview of the skilled artisan. 要求所有这些修改和变动是在所附的权利要求书所表达的范围和精神之内。 It claims all such modifications and variations are within the scope and spirit of the appended claims the expression.

Claims (36)

1.一种制造甲醇和乙酸的方法,其特征在于,它包括以下一体化的步骤:将烃气流与氧气、水蒸气和二氧化碳进行自热重整,生产合成气流;将一部分所述合成气流分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流;将所述富含二氧化碳的气流循环到自热重整步骤中;压缩剩余部分的合成气流与至少一部分富含氢的气流,将SN为2.0-2.1的补充气流供给到甲醇合成循环中,得到甲醇产物;由至少一部分所述甲醇产物和所述富含一氧化碳的气流合成乙酸。 A method of manufacturing methanol and acetic acid, characterized in that it comprises the following steps integration: the hydrocarbon gas stream with oxygen, water vapor and carbon dioxide autothermal reforming for producing synthesis gas stream; separating a portion of said synthesis gas stream carbon dioxide-rich stream to become rich stream and a hydrogen-carbon monoxide-rich stream; said carbon dioxide-rich recycle gas stream to the autothermal reforming step; the remaining portion of compressed syngas stream and a hydrogen rich gas stream at least a portion the SN of 2.0-2.1 supplementary airflow supplied to the methanol synthesis loop, resulting methanol product; acetic acid product from at least a portion of said methanol and said carbon monoxide-rich gas stream.
2.如权利要求1所述的方法,其特征在于,它还包括:合并含氢的气流和含高级烃的进料天然气,形成含烃的进料气流;使所述进料气流与氢化催化剂在氢化温度下接触,生成高级烃的含量低的预处理气流。 2. The method according to claim 1, characterized in that, further comprising: a combined hydrogen gas stream and a feed gas containing higher hydrocarbons, the hydrocarbon-containing feed gas stream is formed; contacting the feed stream with a hydrogenation catalyst contacting at hydrogenation temperature, generating a low content of higher hydrocarbons pretreated gas stream.
3.如权利要求1所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含5-50%的合成气流,剩余部分包含50-95%的合成气流。 3. The method according to claim 1, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream portion of the synthesis gas stream that comprises 5-50% of synthesis gas stream, the remaining portion comprises 50 to 95% of synthesis gas stream.
4.如权利要求1所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含5-40%的合成气流,剩余部分包含60-95%的合成气流。 4. The method according to claim 1, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream that comprises part of the synthesis gas stream 5 to 40% of synthesis gas stream, the remaining portion comprises 60-95% of the synthesis gas stream.
5.如权利要求1所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含10-30%的合成气流,剩余部分包含70-90%的合成气流。 5. The method according to claim 1, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream that comprises 10-30% portion of the synthesis gas stream of synthesis gas stream, the remaining portion comprises 70-90% of the synthesis gas stream.
6.如权利要求1所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含15-25%的合成气流,剩余部分包含75-85%的合成气流。 6. The method according to claim 1, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream that comprises 15-25% portion of the synthesis gas stream of synthesis gas stream, the remaining portion comprises 75-85% of the synthesis gas stream.
7.如权利要求1所述的方法,其特征在于,所述SN为2.04-2.06。 7. The method according to claim 1, wherein the SN is 2.04-2.06.
8.如权利要求1所述的方法,其特征在于,它还包括将来自甲醇合成循环的吹扫气流去作为燃料,供给到所述分离步骤、所述重整步骤或它们的结合中。 8. The method according to claim 1, characterized in that it further comprises a purge stream from the synthesis loop to the methanol as a fuel supplied to the separation step, said reforming step, or in a combination thereof.
9.如权利要求1所述的方法,其特征在于,它还包括将来自所述分离步骤的那部分富含氢的气流供给到预重整器中。 9. The method according to claim 1, characterized in that it further comprises that portion of the hydrogen rich stream from the separation step is supplied to the pre-reformer.
10.如权利要求1所述的方法,其特征在于,将所述来自甲醇合成步骤的吹扫气流在PSA装置中提纯,制造提纯的氢气流。 10. The method according to claim 1, wherein the purge gas stream from the methanol synthesis step in the PSA purification means, for producing purified hydrogen stream.
11.如权利要求10所述的方法,其特征在于,将一部分所述提纯的氢气流引入所述甲醇合成循环中,调节所述进料气流的SN。 11. The method according to claim 10, wherein a portion of the purified hydrogen stream is introduced into the methanol synthesis loop, adjusting the feed gas stream SN.
12.如权利要求1所述的方法,其特征在于,所述甲醇的产量为1,000-20,000公吨/天。 12. The method according to claim 1, characterized in that the methanol yield was 1,000 to 20,000 metric tons / day.
13.如权利要求1所述的方法,其特征在于,所述乙酸的产量为300-6,000公吨/天。 13. The method according to claim 1, wherein the yield of acetic acid is 300-6,000 tonnes / day.
14.如权利要求1所述的方法,其特征在于,所述重整步骤使用单系自热重整器。 14. The method according to claim 1, wherein said step of reforming system using a single autothermal reformer.
15.如权利要求1所述的方法,其特征在于,它还包括将输入的二氧化碳供给到所述甲醇合成循环中。 15. The method according to claim 1, characterized in that it further comprises carbon dioxide supplied to the methanol synthesis loop input.
16.如权利要求15所述的方法,其特征在于,所述输入的二氧化碳气流从一相关的过程供给到所述甲醇合成循环中。 16. The method according to claim 15, wherein the carbon dioxide stream from an associated input is supplied to the methanol synthesis process cycle.
17.如权利要求16所述的方法,其特征在于,所述相关的过程使用乙酸作为反应物,使用甲醇产物作为反应物,使用来自普通空气分离装置的氧气的一部分,共用普通的设备,或者它们的结合。 17. The method according to claim 16, characterized in that the correlation process using acetic acid as a reactant, the use of the methanol product as a reactant, the use of an ordinary portion of the oxygen from the air separation unit, the apparatus share a common, or their combined.
18.如权利要求17所述的方法,其特征在于,它还包括:向所述相关过程中的乙酸乙烯酯单体(VAM)合成循环中提供至少一部分生成的乙酸;将那部分乙酸与乙烯原料和氧气合并,制造乙酸乙烯酯单体。 18. The method according to claim 17, characterized in that it further comprises: providing at least a portion of the acid generated by the correlation process to vinyl acetate monomer (VAM) synthesis loop; a portion of the vinyl acetate The combined feed and oxygen, for producing vinyl acetate monomer.
19.如权利要求18所述的方法,其特征在于,将来自所述VAM合成循环的富含CO2的气流输入所述甲醇合成循环中。 19. The method according to claim 18, characterized in that, from the VAM synthesis loop CO2 rich stream to the methanol synthesis loop input.
20.如权利要求1所述的方法,其特征在于,所述分离步骤生成富含惰性气体的尾气流。 20. The method according to claim 1, wherein said separating step generates a tail gas stream enriched in inert gas.
21.一种制造甲醇和乙酸的方法,其特征在于,它包括以下一体化的步骤:将含氢气流与含高级烃的进料天然气合并,形成含氢进料水蒸气;使所述含氢进料气流与氢化催化剂在氢化温度下接触,消除所述高级烃的含量低的预处理气流;自热重整所述预处理气流与氧气、水蒸气和二氧化碳,消除合成气流;将一部分所述合成气流分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流;将所述富含二氧化碳的气流循环到自热重整步骤中;压缩剩余部分的合成气流与至少一部分富含氢的气流,将SN为2.0-2.1的补充气流供给到甲醇合成循环中,得到甲醇产物;从所述甲醇合成循环中回收吹扫气流;由至少一部分所述甲醇产物和所述富含一氧化碳的气流合成乙酸。 21. A method for manufacturing methanol and acetic acid, characterized in that it comprises the following steps integration of: a hydrogen-containing gas stream with the feed gas containing higher hydrocarbons combined to form a hydrogen-containing vapor feed; the hydrogen the feed gas stream with a hydrogenation catalyst at a hydrogenation temperature of the contact, to eliminate low levels of the higher hydrocarbons pretreated gas stream; autothermal reforming gas stream with the preconditioning of oxygen, water vapor and carbon dioxide, eliminating synthesis gas stream; and said portion synthesis gas stream is separated into a carbon dioxide-rich stream, a hydrogen rich stream and a carbon monoxide-rich stream; said carbon dioxide-rich recycle gas stream to the autothermal reforming step; the remaining portion of compressed syngas stream enriched in at least a portion hydrogen gas stream, the gas stream to complement 2.0-2.1 SN is supplied to the methanol synthesis loop, resulting methanol product; purge stream recovered from the methanol synthesis loop; at least a portion of the methanol product and the carbon monoxide-rich acetic acid stream.
22.如权利要求21所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含5-50%的合成气流,剩余部分包含50-95%的合成气流。 22. The method according to claim 21, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream portion of the synthesis gas stream that comprises 5-50% of synthesis gas stream, the remaining portion comprises 50 to 95% of synthesis gas stream.
23.如权利要求21所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含5-40%的合成气流,剩余部分包含60-95%的合成气流。 23. The method according to claim 21, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream portion of the synthesis gas stream that comprises 5-40% of synthesis gas stream, the remaining portion comprises 60-95% of the synthesis gas stream.
24.如权利要求21所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含10-30%的合成气流,剩余部分包含70-90%的合成气流。 24. The method according to claim 21, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream portion of the synthesis gas stream that comprises 10-30% of synthesis gas stream, the remaining portion comprises 70-90% of the synthesis gas stream.
25.如权利要求21所述的方法,其特征在于,所述分离成为富含二氧化碳的气流、富含氢的气流和富含一氧化碳的气流的那部分合成气流包含15-25%的合成气流,剩余部分包含75-85%的合成气流。 25. The method according to claim 21, wherein the stream separated into a carbon dioxide-rich, hydrogen-rich stream and a carbon monoxide-rich stream portion of the synthesis gas stream that comprises 15-25% of synthesis gas stream, the remaining portion comprises 75-85% of the synthesis gas stream.
26.如权利要求21所述的方法,其特征在于,它还包括将来自甲醇合成循环的吹扫气流去作为燃料、供给到所述分离步骤、所述重整步骤或它们的结合中。 26. The method according to claim 21, characterized in that it further comprises a purge stream from the synthesis loop to the methanol as a fuel supplied to the separation step, said reforming step, or in a combination thereof.
27.如权利要求21所述的方法,其特征在于,它还包括将一部分来自所述分离步骤的富含氢的气流供给到预重整步骤中。 27. The method according to claim 21, characterized in that it further comprises a portion of the gas stream from the separation step is supplied to the hydrogen-rich pre-reforming step.
28.如权利要求21所述的方法,其特征在于,将所述来自甲醇合成步骤的吹扫气流在PSA装置中提纯,制造提纯的氢气流。 28. The method according to claim 21, wherein the purge gas stream from the methanol synthesis step in the PSA purification means, for producing purified hydrogen stream.
29.如权利要求28所述的方法,其特征在于,将一部分所述提纯的氢气流引入所述甲醇合成循环中,调节所述进料气流的SN。 29. The method according to claim 28, wherein a portion of the purified hydrogen stream is introduced into the methanol synthesis loop, adjusting the feed gas stream SN.
30.如权利要求21所述的方法,其特征在于,所述SN为2.04-2.06。 30. The method according to claim 21, wherein the SN is 2.04-2.06.
31.如权利要求21所述的方法,其特征在于,所述甲醇的产量为1,000-20,000公吨/天。 31. The method according to claim 21, wherein the methanol yield 1,000 to 20,000 metric tons / day.
32.如权利要求21所述的方法,其特征在于,所述乙酸的产量为300-6,000公吨/天。 32. The method according to claim 21, wherein the yield of acetic acid is 300-6,000 tonnes / day.
33.如权利要求21所述的方法,其特征在于,所述重整步骤使用单系自热重整器。 33. The method according to claim 21, wherein said step of reforming system using a single autothermal reformer.
34.如权利要求21所述的方法,其特征在于,它还包括:向相关过程中的乙酸乙烯酯单体(VAM)合成循环中提供至少一部分生成的乙酸;将那部分乙酸与乙烯原料和氧气合并,制造乙酸乙烯酯单体。 34. The method according to claim 21, characterized in that it further comprises: providing at least a portion of the acetic acid produced during the relevant vinyl acetate monomer (VAM) synthesis loop; a portion of the acetic acid and ethylene feed The combined oxygen, producing vinyl acetate monomer.
35.如权利要求34所述的方法,其特征在于,所述相关过程使用乙酸作为反应物,使用甲醇产物作为反应物,使用来自普通空气分离装置的氧气的一部分,共用普通的设备,或者它们的结合。 35. The method according to claim 34, characterized in that the correlation process using acetic acid as a reactant, the use of the methanol product as a reactant, the use of an ordinary portion of the oxygen from the air separation unit, share a common equipment, or they combination.
36.如权利要求34所述的方法,其特征在于,将来自所述VAM合成循环的富含CO2的气流输入所述甲醇合成循环中。 36. The method according to claim 34, characterized in that, from the VAM synthesis loop CO2 rich stream to the methanol synthesis loop input.
CN 200410095782 2004-11-12 2004-11-12 Self-heating reforming method used for acetic acid and methyl alcohol integhal production CN1772719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410095782 CN1772719A (en) 2004-11-12 2004-11-12 Self-heating reforming method used for acetic acid and methyl alcohol integhal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410095782 CN1772719A (en) 2004-11-12 2004-11-12 Self-heating reforming method used for acetic acid and methyl alcohol integhal production

Publications (1)

Publication Number Publication Date
CN1772719A true CN1772719A (en) 2006-05-17

Family

ID=36759882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410095782 CN1772719A (en) 2004-11-12 2004-11-12 Self-heating reforming method used for acetic acid and methyl alcohol integhal production

Country Status (1)

Country Link
CN (1) CN1772719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442883A (en) * 2008-07-31 2012-05-09 国际人造丝公司 Ethanol production from acetic acid utilizing a cobalt catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442883A (en) * 2008-07-31 2012-05-09 国际人造丝公司 Ethanol production from acetic acid utilizing a cobalt catalyst
US8853122B2 (en) 2008-07-31 2014-10-07 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
CN102442883B (en) * 2008-07-31 2015-11-18 国际人造丝公司 Preparation of ethanol from acetic acid using a cobalt catalyst

Similar Documents

Publication Publication Date Title
EP0926096B1 (en) Production of synthesis gas by mixed conducting membranes
US4553981A (en) Enhanced hydrogen recovery from effluent gas streams
CA2282142C (en) Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
CA1084583A (en) Using a fuel cell to oxidise the off-gas generated by a catalytic process
EP2024304B1 (en) Mixed alcohol synthesis with enhanced carbon value use
US7550215B2 (en) Autothermal reformer-reforming exchanger arrangement for hydrogen production
US6632971B2 (en) Process for converting natural gas to higher value products using a methanol refinery remote from the natural gas source
AU2002300205B2 (en) Method of manufacturing methanol
NL1033051C2 (en) Production of hydrocarbons from natural gas.
AU696238B2 (en) Process for the preparation of hydrogen and carbon monoxide containing mixtures
US8354457B2 (en) Hydrocarbon synthesis
CN1239442C (en) Optimum integration of fischer-tropsch synthesis and syngas production
AU2003276396B2 (en) Production of hydrocarbons
US7772292B2 (en) Synthesis gas production and use
EP0946475B1 (en) Process and plant for the production of methanol
DE60027453T2 (en) Process for retrofitting a methanol plant for the production of acetic acid
US6512018B2 (en) Hydrocarbon conversion process using a plurality of synthesis gas sources
US6495610B1 (en) Methanol and hydrocarbons
EP1923380A1 (en) Process for the conversion of hydrocarbons to alcohols
CN101184714B (en) Methanol synthesis
EP1916233A1 (en) Process for the conversion of hydrocarbons to alcohols
US3940428A (en) Methanol production
EP0342610A2 (en) Process for co-production of higher alcohols, methanol and ammonia
AU2002300204B2 (en) Method of manufacturing methanol
CA2293288A1 (en) Process for the preparation of methanol and hydrogen

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent