CN1769277A - Epichlorohydrin production process - Google Patents

Epichlorohydrin production process Download PDF

Info

Publication number
CN1769277A
CN1769277A CN 200510032373 CN200510032373A CN1769277A CN 1769277 A CN1769277 A CN 1769277A CN 200510032373 CN200510032373 CN 200510032373 CN 200510032373 A CN200510032373 A CN 200510032373A CN 1769277 A CN1769277 A CN 1769277A
Authority
CN
China
Prior art keywords
reactor
propenyl chloride
hydrogen peroxide
production process
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510032373
Other languages
Chinese (zh)
Inventor
周继承
肖立明
罗和安
曾令平
赵虹
刘敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUNAN BAILI TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
HUNAN BAILI TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUNAN BAILI TECHNOLOGY DEVELOPMENT Co Ltd filed Critical HUNAN BAILI TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN 200510032373 priority Critical patent/CN1769277A/en
Publication of CN1769277A publication Critical patent/CN1769277A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention discloses a process for producing epichlorohydrin, which comprises proportioning chloropropene and titanium-silicon molecular sieve catalyst, charging into helical channel type revolving beds or rotary filling bed hypergravity reactor, continuously charging liquid phase or gas phase chloropropene and hydrogen peroxide solution simultaneously for direct epoxidation reaction, the non-reacted chloropropene and a small amount of produced gas condensating and returning proportioning tank for continuing use, the slurry in the reactor flowing into the proportioning tank, pressurizing part of the materials and circulating into the reactor, loading part of the materials into separator, loading the separated crude epichlorohydrin for refining, and returning slurry containing catalyst to proportioning tank for later use again.

Description

Epichlorohydrin production process
One, technical field
The present invention relates to a kind of epichlorohydrin production process, specifically, relate to by propenyl chloride and hydrogen peroxide under the super gravity field effect directly catalysis epoxidation produce the technology of epoxy chloropropane.
Two, background technology
Epoxy chloropropane is a kind of important basic Organic Chemicals and intermediate, epoxy chloropropane is owing to contain active epoxy group(ing) and chlorine atom in its molecule, being widely used in synthetic epoxy resin, glycerine, ammonia hydrin rubber, medicine, agricultural chemicals, tensio-active agent, ion exchange resin and softening agent etc., is the third-largest epoxy compounds that output is only second to oxyethane and propylene oxide.At present, epoxy chloropropane is raw material production with the propylene, and production technique mainly contains propylene high-temperature chlorination process and propylene acetate method.The propylene high-temperature chlorination process is the main method of industrial production epoxy chloropropane, technical maturity, and production process is flexible.But there are some serious defectives in this production technique, and many as by product, energy consumption is big, and equipment corrosion is serious, the equipment maintenance cost height, and production process produces a large amount of calcium chloride (CaCl that contain 2) and the waste water of organochlorine, the serious harm environment, the investment of administering waste water accounts for the 15%-20% of gross investment, thereby causes the production cost of epoxy chloropropane to raise significantly.The propylene acetate method is compared with the propylene high-temperature chlorination process, material consumption, energy consumption, amount of by-products and wastewater flow rate all have decline in various degree, but technical process is longer, the problem of equipment corrosion and a large amount of discharge of wastewater does not still solve, and the expense of the maintenance of the equipment and the disposal of three wastes has still surpassed 10% of gross investment.
In order to solve corrosion and the environmental issue in the epoxy chloropropane production process effectively, US4,833,260 disclose a kind of is catalyzer with the HTS, directly alkene (comprising haloolefin) is carried out the production technique that epoxidation is produced epoxide with hydrogen peroxide.Because have strong polar compound such as water or alcohol in the reaction system, the catalysis ring-opening reaction will partly take place in the epoxide of generation, reduce the yield of epoxide.For this reason, US4,824,976, CN1319099 and CN1131152A disclose some and improved the assist measure of epoxidised yield, as added alkaline organic or inorganic compound etc.In addition, this class exothermic heat of reaction is bigger, and heat-obtaining is untimely, easy temperature runaway, the invalid rate of decomposition of increase hydrogen peroxide, therefore, CN1219536A slows down reaction by add solid inert diluents in catalyzer, be beneficial to temperature control, but the useful volume of reactor descends obviously.EP0659473A1 discloses a kind of trickle-bed reactor and production technique thereof that is used for chloro propylene epoxidation, this reactor structure complexity, the working pressure height, temperature control relies on the systemic circulation material and realizes, needing also after reaction finishes that solvent is evaporated separation recycles with realization, therefore, energy consumption is very high.In addition, granules of catalyst is too big, has increased diffusional resistance, has reduced the effective rate of utilization of catalyzer.CN1534030A discloses a kind of epichlorohydrin production process, and propenyl chloride, hydrogen peroxide, solvent and titanium-silicon molecular sieve catalyst fine particle carry out epoxidation reaction in tank reactor.This production technique adopts the direct epoxidation of hydrogen peroxide, can solve corrosion and pollution problem that chlorohydrination technology exists, but the reactor volume is big, and the reactor useful volume is little, and flow process is longer, invests still higherly, is unfavorable for the production of epoxy chloropropane.
Produce investment in order to reduce, CN2581060A discloses a kind of structural shape of reactor, and CN1059105A discloses the structural shape of another reactor.The front is a kind of to be the rotating bed with helix channel supergravity reactor, and the back is a kind of to be the rotating packed bed supergravity reactor.Two-phase or multiphase logistics can be in these two kinds of supergravity reactors adverse current or and the stream contact carry out mass transfer or mass transfer-reaction, these two kinds of supergravity reactors can both reinforcing mass transfer process or mass transfer-reaction process.
Three, summary of the invention
The purpose of this invention is to provide a kind of epichlorohydrin production process, just provide a kind of flow process is simple, energy consumption the is low direct epoxidation of propenyl chloride to prepare the technology of epoxy chloropropane on the basis of existing technology.
Epichlorohydrin production process: after liquid phase propenyl chloride and titanium-silicon molecular sieve catalyst configured, add supergravity reactor from the liquid phase feeding mouth, hydrogen peroxide enters reactor by another one liquid phase feeding mouth.Propenyl chloride can liquid phase or the gas phase form enter supergravity reactor, in reactor, carry out epoxidation reaction with hydrogen peroxide.A small amount of gas of unreacted propenyl chloride and generation returns material-compound tank through condensation to be continued to use, slurries in the reactor flow into material-compound tank, reactor is squeezed in partial material circulation after the pump pressurization, partial material is sent separator, thick epoxy chloropropane after the separation is sent to refining, and the slurries that contain catalyzer return material-compound tank to be continued to use.
Technology provided by the invention comprises: propenyl chloride, hydrogen peroxide and titanium-silicon molecular sieve catalyst fine particle react by supergravity reactor, a small amount of gas of unreacted propenyl chloride and generation returns material-compound tank through condensation to be continued to use, slurries in the reactor flow into material-compound tank, reactor is squeezed in partial material circulation after the pump pressurization, partial material is sent separator, thick epoxy chloropropane after the separation is sent to refining, and the concentrated slurry that contains catalyzer returns material-compound tank to be continued to use.The concentration of the concentration ratio hydrogen peroxide of propenyl chloride is high 1 to 2 times in the reactor.
Described hydrogen peroxide can be pure product, in order to keep the safety in production, considers economic factors simultaneously, preferably uses the aqueous solution of hydrogen peroxide, and its concentration is selected from 5%~90%, and the present invention selects industrial common concentration 27.5%.
Described HTS is with inorganic titanium source such as titanous chloride (TiCl 3), titanium tetrachloride (TiCl 4) and titanium tetrafluoride (TiF 4) wait and be raw material, silicon sol is as the silicon source, use ammoniacal liquor (or organic bases such as hexanediamine, n-Butyl Amine 99, tetrapropyl oxyammonia) to be alkali source, with a spot of tetrapropyl amine bromide (TPABr) or tetrapropyl oxyammonia (TPAOH) as template, prepare glue, the big crystallite titanium-silicon molecular sieve that hydrothermal crystallizing makes in autoclave then earlier.The synthetic cost of this catalyzer is low, is used for catalyzed reaction and is easy to product and catalyst separating.
Positively effect of the present invention is: because the reactor that adopts is rotating bed with helix channel supergravity reactor or rotating packed bed supergravity reactor, though in reaction system, do not add any solvent, but under the hypergravity effect, immiscible propenyl chloride also can contact closely with hydrogen peroxide, can strengthen the mass transfer-reaction process of propenyl chloride and hydrogen peroxide epoxidation reaction, guarantee to react and carry out fast, can realize the direct epoxidation continuous production of propenyl chloride and hydrogen peroxide, improve the hydrogen peroxide utilization ratio, cut down the consumption of energy, reduce investment outlay, heavy corrosion and pollution problem that chlorohydrination technology exists can have fundamentally been solved, because solubilizing agent not, can also a large amount of economy system working costs, reduce production costs.Technical process of the present invention is simple, the reaction conditions gentleness, and mass-and heat-transfer is effective, and reactor throughput is big, adopts the HTS of big crystal grain, helps product and catalyst separating, adopts the spinning liquid isolation technique, has simplified the separating technology of catalyzer.
Four, description of drawings
Accompanying drawing 1 is the synoptic diagram of epichlorohydrin production process provided by the invention, 1-well heater among the figure, 2-supergravity reactor, 3-condenser, 4-material-compound tank, the 5-pump, 6-wet cyclone, 7-catalyzer, 8,9-liquid phase propenyl chloride, the 10-hydrogen peroxide, 11-liquid phase propenyl chloride, 12-non-condensable gas, the thick product of 13-.
Five, embodiment
Below in conjunction with accompanying drawing production technique provided by the present invention is further detailed, but not thereby limiting the invention.
When producing epoxy chloropropane in gas phase propenyl chloride mode, in material-compound tank 4, catalyst raw powder and liquid phase propenyl chloride are disposed in proportion, after mixing to a certain degree, with pump 5 mixture is squeezed into supergravity reactor 2, another one liquid phase feeding mouth by reactor feeds hydrogen peroxide, continuously propenyl chloride is fed reactor through well heater 1 heating back from the gas-phase feed mouth by a certain percentage simultaneously, gas propenyl chloride and hydrogen peroxide carry out cyclization in reactor.Temperature of reaction is 50 ℃~80 ℃, and preferred 60 ℃~70 ℃, the reaction absolute pressure is 0.1MPa~0.5MPa, preferred 0.1MPa~0.3MPa.A small amount of gas of unreacted propenyl chloride and generation enters condenser 3 coolings, non-condensable gas emptying, and phlegma returns material-compound tank.Slurries in the reactor flow into material-compound tank, and reactor is squeezed in partial material circulation after pump 5 pressurizations, and partial material is sent separator 6, and the concentrated slurry that contains catalyzer returns material-compound tank to be continued to use, and thick epoxy chloropropane product is sent to refining and solvent recuperation.
When producing epoxy chloropropane in liquid phase propenyl chloride mode, in material-compound tank 4, catalyst raw powder and liquid phase propenyl chloride are disposed in proportion, after mixing to a certain degree, with pump 5 mixture is squeezed into supergravity reactor 2, continuously hydrogen peroxide and liquid phase propenyl chloride are fed reactor by a certain percentage, propenyl chloride and hydrogen peroxide carry out cyclization in reactor.Temperature of reaction is 35 ℃~60 ℃, and preferred 40 ℃~50 ℃, the reaction absolute pressure is 0.1MPa~0.5MPa, preferred 0.1MPa~0.3MPa.A small amount of gas of unreacted propenyl chloride and generation enters condenser 3 coolings, non-condensable gas emptying, and phlegma returns material-compound tank.Slurries in the reactor flow into material-compound tank, and reactor is squeezed in partial material circulation after pump 5 pressurizations, and partial material is sent separator 6, and the concentrated slurry that contains catalyzer returns material-compound tank to be continued to use, and thick epoxy chloropropane product is sent to refining and solvent recuperation.
To the present invention's further instruction in addition, but therefore do not limit the present invention below by example.
Embodiment 1
Catalyzer is a HTS, and the grain graininess scope is 200 μ m~0.5 μ m, and reaction raw materials is 27.5% industrial hydrogen peroxide and the industrial propenyl chloride of content more than 97%.Catalyst levels is 1% of a propenyl chloride weight, is warmed up to 45 ℃ under normal pressure, and 2: 1 in molar ratio ratio adds propenyl chloride and hydrogen peroxide, the mass space velocity 2.0h of propenyl chloride -1Result: hydrogen peroxide transformation efficiency 100%, the epoxidised selectivity 95.5% of hydrogen peroxide.
Embodiment 2
Catalyzer is a HTS, and the grain graininess scope is 200 μ m~0.5 μ m, and reaction raw materials is 27.5% industrial hydrogen peroxide and the industrial propenyl chloride of content more than 97%.Catalyst levels is 1% of a propenyl chloride weight, is warmed up to 65 ℃ under normal pressure, and 2: 1 in molar ratio ratio adds propenyl chloride and hydrogen peroxide, the mass space velocity 2.5h of propenyl chloride -1The vapour-liquid ratio of charging is 1.5~6: 1.Result: hydrogen peroxide transformation efficiency 100%, the epoxidised selectivity 95% of hydrogen peroxide.
Embodiment 3
Catalyzer is a HTS, and the grain graininess scope is 200 μ m~0.5 μ m, and reaction raw materials is 27.5% industrial hydrogen peroxide and the industrial propenyl chloride of content more than 97%.Catalyst levels is 1% of a propenyl chloride weight, is warmed up to 60 ℃ under the pressure (absolute pressure) of 0.15MPa, and 2: 1 in molar ratio ratio adds propenyl chloride and hydrogen peroxide, the mass space velocity 1.5h of propenyl chloride.The vapour-liquid ratio of charging is 1.5~6: 1.Result: hydrogen peroxide transformation efficiency 100%, the epoxidised selectivity 96% of hydrogen peroxide.

Claims (6)

1. epichlorohydrin production process, it is characterized in that: liquid phase propenyl chloride and titanium-silicon molecular sieve catalyst are configured back adding supergravity reactor, add liquid phase or gas phase propenyl chloride and hydrogen peroxide simultaneously continuously, propenyl chloride and hydrogen peroxide directly carry out epoxidation reaction under katalysis, a small amount of gas of unreacted propenyl chloride and generation returns material-compound tank through condensation to be continued to use, slurries in the reactor flow into material-compound tank, partial material pressurization back circulation enters reactor, partial material is sent separator, thick epoxy chloropropane after the separation is sent to refining, and the slurries that contain catalyzer return material-compound tank to be continued to use.
2. epichlorohydrin production process according to claim 1 is characterized in that reactor used be helical channel rotating bed pattern or rotating packed bed pattern supergravity reactor.
3. epichlorohydrin production process according to claim 1 is characterized in that propenyl chloride and hydrogen peroxide directly carry out epoxidation reaction under katalysis, can not add solvent.
4. epichlorohydrin production process according to claim 1, it is characterized in that propenyl chloride can liquid phase or the gas phase form add supergravity reactor, in reactor, carry out quick epoxidation reaction with hydrogen peroxide.
5. epichlorohydrin production process according to claim 1 is characterized in that catalyzer is the HTS of the big crystal grain of inorganic titanium silicon raw material synthetic, and its size range is 200 μ m~0.5 μ m.
6. epichlorohydrin production process according to claim 1 is characterized in that catalyst levels is 0.2%~3% (weight) of propenyl chloride.
CN 200510032373 2005-11-14 2005-11-14 Epichlorohydrin production process Pending CN1769277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510032373 CN1769277A (en) 2005-11-14 2005-11-14 Epichlorohydrin production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510032373 CN1769277A (en) 2005-11-14 2005-11-14 Epichlorohydrin production process

Publications (1)

Publication Number Publication Date
CN1769277A true CN1769277A (en) 2006-05-10

Family

ID=36750853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510032373 Pending CN1769277A (en) 2005-11-14 2005-11-14 Epichlorohydrin production process

Country Status (1)

Country Link
CN (1) CN1769277A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434586B (en) * 2007-11-15 2012-07-18 中国石油化工股份有限公司 Propylene chloride epoxidation process in the presence of hydrogen and oxygen
TWI427072B (en) * 2008-03-17 2014-02-21 Momentive Specialty Chem Inc Process for the preparation of epichlorohydrin
US8735614B2 (en) 2011-01-27 2014-05-27 Solvay Sa Process for the manufacture of 1,2-epoxy-3-chloropropane
US8796478B2 (en) 2011-01-27 2014-08-05 Solvay Sa Process for the manufacture of 1,2-epoxy-3-chloropropane
CN112625008A (en) * 2020-12-25 2021-04-09 北京化工大学 System and method for preparing epichlorohydrin
CN113527037A (en) * 2021-08-20 2021-10-22 浙江迪邦化工有限公司 Method for continuously producing chloroethane by using supergravity reactor
CN113856407A (en) * 2021-10-28 2021-12-31 山东新龙集团有限公司 Method for treating tail gas in process of preparing epoxy chloropropane by oxidation method
CN116514741A (en) * 2023-07-04 2023-08-01 山东民基新材料科技有限公司 Process for producing epoxy chloropropane by utilizing micro-interface reaction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434586B (en) * 2007-11-15 2012-07-18 中国石油化工股份有限公司 Propylene chloride epoxidation process in the presence of hydrogen and oxygen
TWI427072B (en) * 2008-03-17 2014-02-21 Momentive Specialty Chem Inc Process for the preparation of epichlorohydrin
US8735614B2 (en) 2011-01-27 2014-05-27 Solvay Sa Process for the manufacture of 1,2-epoxy-3-chloropropane
US8796478B2 (en) 2011-01-27 2014-08-05 Solvay Sa Process for the manufacture of 1,2-epoxy-3-chloropropane
CN112625008A (en) * 2020-12-25 2021-04-09 北京化工大学 System and method for preparing epichlorohydrin
CN112625008B (en) * 2020-12-25 2022-07-15 北京化工大学 Preparation system and method of epichlorohydrin
CN113527037A (en) * 2021-08-20 2021-10-22 浙江迪邦化工有限公司 Method for continuously producing chloroethane by using supergravity reactor
CN113856407A (en) * 2021-10-28 2021-12-31 山东新龙集团有限公司 Method for treating tail gas in process of preparing epoxy chloropropane by oxidation method
CN116514741A (en) * 2023-07-04 2023-08-01 山东民基新材料科技有限公司 Process for producing epoxy chloropropane by utilizing micro-interface reaction
CN116514741B (en) * 2023-07-04 2023-09-26 山东民基新材料科技有限公司 Process for producing epoxy chloropropane by utilizing micro-interface reaction

Similar Documents

Publication Publication Date Title
CN1769277A (en) Epichlorohydrin production process
CN103159703B (en) Method of continuously producing epichlorohydrin by directly epoxidizing chloropropene
CN101279958B (en) Method for preparing epoxy chloropropane by epoxidation of propylene chloride
CN102471298A (en) Process for producing an oxirane
WO2015028593A1 (en) Process for the conversion of saccharide-containing feedstock
CN1275952C (en) Production method of epoxy chloropropane
JP5196696B2 (en) Method for producing oxirane using peroxide compound
CN109970511B (en) Method for synthesizing 1, 3-propylene glycol by resource utilization of HPPO byproduct
CN103772326B (en) A kind of method of producing epoxy chloropropane
CN1239449C (en) Catalytic process for producing an alkylene glycol with reactor-output recycle
CN1249042C (en) Suspension catalyst distillation process for epoxidizing alkene directly
CN102442979B (en) Preparation method of epoxypropane
CN1286826C (en) Catalytic distillation method of olefine direct epoxidation
CN110357835B (en) Preparation method of epichlorohydrin
CN110003140B (en) Device and method for synthesizing epichlorohydrin and regenerating catalyst on line
CN111072598A (en) Process for producing epichlorohydrin by direct oxidation of titanium silicalite molecular sieve catalyst
CN1285554C (en) Process for producing alkylene glycol
CN206318907U (en) A kind of device for preparing expoxy propane
WO2022135564A1 (en) System and method for preparing epoxy chloropropane
CN212120009U (en) Etherification-free intelligent system for preparing propylene oxide by intensified propylene epoxidation
CN113004226B (en) Method for continuously synthesizing epichlorohydrin based on reaction control phase transfer catalysis system
CN112500373A (en) Micro-interface strengthening system and process for preparing ethylene oxide from ethylene
CN1721384A (en) Process for producing alkylene glycol
CN213506681U (en) Micro-interface strengthening system for preparing ethylene oxide from ethylene
CN106518614A (en) Methods for preparing halogenated ethanol and ethylene oxide by dry gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication