CN1748229A - 低成本超级采样光栅化 - Google Patents

低成本超级采样光栅化 Download PDF

Info

Publication number
CN1748229A
CN1748229A CN200380109732.4A CN200380109732A CN1748229A CN 1748229 A CN1748229 A CN 1748229A CN 200380109732 A CN200380109732 A CN 200380109732A CN 1748229 A CN1748229 A CN 1748229A
Authority
CN
China
Prior art keywords
pixel
pattern
sampling
gpu
sample point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200380109732.4A
Other languages
English (en)
Other versions
CN100353382C (zh
Inventor
E·莱德菲尔特
F·托尔夫
M·莱文
T·阿克尼内-默勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN1748229A publication Critical patent/CN1748229A/zh
Application granted granted Critical
Publication of CN100353382C publication Critical patent/CN100353382C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour

Abstract

公开了一种覆盖抗锯齿系统中使用的像素阵列的采样模式,其中每个像素具有位于像素边缘的采样点模式。此外,每个像素的采样点模式是镜像,且不同于直接相邻像素的模式。

Description

低成本超级采样光栅化
技术领域
本发明一般涉及图形处理,并更具体地说,涉及用于以低计算成本、高帧速率产生高质量抗锯齿图形图像的方法和装置。
背景技术
自从早期的计算机图形学以来,当在显示器上呈现静止或活动图像时锯齿就已经成为一个问题。
一种防止锯齿图像的低视觉质量的方法是使用通常所说的超级采样。超级采样会提供良好的图像质量,但是由于计算负担重,因此其具有低帧速率的缺点。更具体地说,超级采样以比显示在屏幕上的最终分辨率更高的分辨率再现图像。这是通过再现要显示的每个像素的多个子像素采样来实现的,即,每个像素值都将是子像素采样值的加权和。例如,每个显示的像素可包括像素内的一组四个子像素采样的过滤加权和。容易理解到,这意味着图形硬件必须处理四倍于每个显示像素的采样。
专利文件WO-00/33256公开了使用超级采样方案的系统。每个像素被分为定义子像素栅格的或多或少的细网格栅格,其中采样点可位于其中。可以许多不同构形在像素边界内排列子像素采样点。然后对要再现的每个像素重复采样点构形模式。根据上述讨论,每个像素的终值都包括位于子像素中的三个或更多个采样的加权和。
专利文件US-6057855公开了确定抗锯齿像素值的系统。类似上述文件,该系统使用超级采样方案来确定多个子像素采样位置的采样值。
为了降低产生抗锯齿像素的计算负担,可使用改进的超级采样方案。该超级采样方案的主导思想是将子像素采样点放在使一个或多个采样点的值可用于计算多于一个像素的终值的这种位置。这种超级采样方案也称为采样共享方案。
来自美国圣克拉拉的NVIDIA公司的GeForce3图形处理单元提供了支持像素之间子采样的超级采样和共享的硬件。该超级采样方案称为“5点形”,并在模(die)上呈现“5”形式的子像素采样模式,即,5个子像素采样用于计算最终像素的值。然而,由于采样位置的放置,只需要计算每像素两个采样;从相邻像素获得其余采样值。中心子像素采样给0.5的加权,而每个外围子像素采样给0.125的加权。在随后的步骤中,以与普通超级采样方案相同的方式过滤子像素采样。
在来自NVIDIA公司的“技术摘要,HRAA:通过多级采样的高分辨率抗锯齿技术”中可找到有关5点形方案的详细信息。该文档可从NVIDIA公司网址“www.nvidia.com”检索到。
白色和黑色(单色方案中)之间的灰度级数取决于使用多少子像素采样点。在使用四个子像素采样位置的情况下,在黑白之间最多会有三个灰影。因此,上面的5点形方案最多将提供四个灰影。然而,如下所述,5点形方案的有效灰影数可低至2个。
因此,在现今计算机图形系统中,产生抗锯齿像素的计算负担是个问题。容易理解到,如果抗锯齿方案要用于在具有简化计算能力的设备(诸如移动电话或PDA(个人数字助理))上产生活动图像,则上述问题更大。
发明内容
本发明设法提供以低计算成本产生高质量抗锯齿图像的方法和装置。
这个目的通过覆盖像素阵列的采样模式来实现,其中每个像素具有在该像素边缘的采样点模式(pattern),并且其中每个像素的采样点模式都是镜象,且不同于直接相邻像素的模式。
附图说明
现在参考附图描述本发明的优选实施例,附图中:
图1是示出用于创建抗锯齿图像的图形系统的示意性框图;
图2是示出根据本发明的子像素采样位置的计算的示意图;
图3是根据本发明优选实施例的镜象步骤的示意性图示;
图4是根据本发明优选实施例的镜像步骤的另一示意性图示;
图5是示出根据本发明产生抗锯齿图像的方法的示意性流程图;
图6是说明与现有技术方案比较根据本发明的像素值计算的示意图;
图7是非抗锯齿的现有技术方案和根据本发明的抗锯齿方案之间的图形比较。
具体实施方式
图1是绘制线或多边形的系统示例的框图。CPU(中央处理单元)201通过数据总线203连接到存储器202。存储器202包括在系统上运行的应用程序,如计算机游戏或CAD(计算机辅助设计)程序。和大多数计算机系统一样,CPU 201取出存储器202中的指令,并执行这些指令以便执行特定任务。本文中,CPU 201的任务是为GPU(图形处理单元)204提供关于要在显示器205上绘制的对象的信息。要强调的是,GPU 204可以处理器形式,如DSP(数字信号处理器),或以ASIC(专用集成电路)、FPGA(现场可编程门阵列)、硬连线逻辑等形式,或者可在CPU 201上执行。GPU 204还连接到总线203,但在大量信息要在CPU 201和GPU 204之间传送的情况下,GPU204还可通过单独的高速总线206连接到处理器。在单独的高速总线206上传送数据不会干扰普通总线203上的数据通信。
此外,显示存储器207也连接到总线203,并存储从GPU 204发送的有关要在显示器205上绘制的图像(帧)的信息。更具体地说,显示存储器包含采样缓冲器207a和颜色缓冲器207b。如下所述,根据本发明,采样缓冲器207a包含的采样大约是最终采样缓冲器207b中有的像素的两倍。在完成图像渲染之后,颜色缓冲器207b拥有要在屏幕上显示的像素颜色。和CPU 201和GPU 204之间的互连一样,显示存储器207可通过单独的高速总线直接连接到GPU 204。由于GPU 204和显示存储器207通常用于产生活动图像,因此这两个单元之间的链路最好尽可能快,并且不妨碍总线203上的正常业务。
显示存储器207通过共享总线203或单独的高速总线209连接到VDAC 208(视频数模转换器),该VDAC 208读取来自颜色缓冲器207b的信息,并将其转换为模拟信号,例如RGB(红、绿、蓝)合成信号,该信号被提供给显示器205以便在屏幕上绘制各个像素。
如上所述,已使用多种不同技术来产生线和多边形的抗锯齿表示。如图2a和2b所示,本发明使用多种超级采样方案。和5点形方案一样,子像素采样位置303-306放在像素301、302边缘。如上所述,这允许在显示存储器207中不同像素301、302之间采样共享。
然而,这些采样不像5点形方案那样放在像素301、302的拐角上。相反,在优选实施例中,以旋转正方形构形为像素301、302的每条边定义一个子像素采样位置,并给每个子像素采样位置一个0.25的加权。这在图2a和2b中通过在像素301、302上叠加栅格以及在栅格与像素301、302的边缘交叉的任何地方定义可能的采样点来说明。分别在图2a和2b的下方示出了用于确定精确的子像素采样位置的等式。备选地,在以任何方向平移采样模式的情况下,可用一个或多个镜面来替代以上讨论的像素边缘。镜面通常随后将与像素的边缘平行,并与等于像素边缘之间距离的间隔平行。例如,可将采样模式向左边平移一点,其中子像素采样位置不再位于像素的边缘。在此情况下,仍可定义创建根据本发明的采样模式的一个或多个镜面。这通过以下关于图3的讨论将变得明显。
采样位置303-310的放置将破坏构形的对称性,该对称性会增加靠近垂直线和靠近水平线的抗锯齿效应。为了说明这个,假设在显示器上绘制的多边形的接近水平的边穿过一个或多个像素301、302。如果例如5点形方案用于产生线的抗锯齿表示,则将使用4个采样点,像素301、302的每个拐角各一个。对于一些像素301、302而言,边缘将仅覆盖顶部,但将仍然覆盖两个最上面的子像素采样位置。因此,通过检验来自像素301、302中子像素采样位置的值,该像素的抗锯齿值将是0.25,即使像素的一半被边缘覆盖了也一样(即,直到覆盖了中心的子像素采样为止)。该像素因此将被错误地呈现在屏幕上。
如果同样情况应用于本发明的使用,则由于采样位置的放置,接近水平的线(覆盖像素301、302顶部的一小部分)不会覆盖子像素采样位置,而只会覆盖像素301、302最上面水平边上的采样位置。下面将讨论每隔一个像素反射采样位置的原因。
图3示出了本发明的重要特征。根据以上所述,最左边的像素401的子像素采样位置403-406不放在像素的拐角中,这和5点形方案不同。在下文中,该子像素采样构形称为“四边形A”。相应地,呈现子像素采样构形的像素402(其是“四边形A”的镜像)称为“四边形B”。从图3中可看出,最右边的像素402中的子像素采样位置对应于根据以上描述的四边形B。如上所述,通过并排检查四边形A和四边形B的构形,显然,四边形B的子像素采样位置406-409是在四边形A的右侧垂直边410(并因而是四边形B的左侧垂直边)反射的四边形A中的对应位置403-406的镜像。
通过反射子像素采样位置403-409的位置,可共享两个像素之间的采样406,并且仍然打破了构形的对称性,且根据以上所述获得了更好的抗锯齿结果。另一重要特征是,每行和每列仅有一个采样。在例如5点形中,顶行有两个采样。
图4进一步示出了根据本发明的抗锯齿方案。左上方像素501包含四边形A构形的四个子像素采样点510-513。该像素501右侧的像素502也包含四边形B构形的四个子像素采样位置513-516,这四个子像素采样点是在最左侧的像素501的右侧边反射的。此外,第三像素503还包含四边形A构形的四个子像素采样点516-519。从图4中可以看出,像素501-503的上行共享在每对像素501-502、502-503之间的一个子像素采样位置513、516。
下一行始于呈现子像素采样点511、520-522的四边形B构形的像素504。在上述行上的像素504和像素501之间共享采样位置511。通过并排检查四边形A(最上方像素501)和四边形B(下方像素504)的构形,很明显,四边形B的子像素采样位置511、520-522是在像素501的底部水平边530(并因而是像素504的顶部水平边)反射的四边形A中对应位置510-513的镜像。
第二行的下一个像素505包含四边形A构形的四个子像素采样点515、522-524。重要的是要注意,该像素505与上述行的像素502共享一个采样点515,并与左侧的像素504共享一个采样点522。第二行上最右侧的像素506同样,它也与相邻像素503、505共享两个采样点517、524。
因此,通过使用本发明的反射方案,当确定像素501-506的最终值时,除显示器205上最上方和最左侧的像素501-504以外的所有像素都仅需要计算两个新子像素采样位置值。备选地,除最右列和最下一行以外的所有像素仅需要两个采样。
可通过从左到右扫描线来遍历像素中的采样位置。备选地,可每隔一条线就改变扫描方向,以便更有效地再现存储器使用率。要理解到,可结合根据本发明的超级采样方案来实现任何遍历方案。
图5a是说明产生根据本发明优选实施例的高质量抗锯齿图像的方法的流程图。在步骤610中,CPU运行应用程序(例如计算机游戏),并在显示器上生成将转换为2D显示的3D对象(一般是以三角形形式的多边形)。
接下来,在步骤620中,CPU或GPU/硬件计算影响显示器上对象外观的不同视觉效果,诸如照明、剪辑、变换、投影等。由于在计算机图形学中创建3D对象时通常使用三角形,因此最终计算三角形顶的像素坐标。
在步骤630中,CPU或GPU/硬件在多边形上插入纹理坐标,以便确保获得正确的投影。除此以外,CPU或GPU/硬件还可插入一种或多种颜色、另一纹理坐标集、雾等。它还执行Z缓冲器测试,并确保最终像素获得正确的颜色。
图5b是说明图5a步骤630的更详细流程图。为增加图5b流程图的可理解性还参考图6a。步骤631是多边形(三角形)建立阶段,其中CPU或GPU/硬件计算在整个多边形801上使用的内插数据。
在步骤632中执行扫描转换,其中CPU或GPU/硬件标识位于多边形701的边界705内的像素703或采样点704。存在多种不同的执行该标识的方式。一种简单方法是逐个扫描水平行。
所有可见采样点704被传送到步骤633,步骤633通过纹理和插入的颜色来计算每个可见像素701的颜色。每个采样的颜色被写入采样缓冲器207a。在处理了所有多边形之后,采样缓冲器207a将包含高分辨率格式的图像(最终图像的2个采样像素)。在该阶段仅处理可见采样。不可见的采样(即,先前绘制的多边形背后的采样)不会对最终图像起作用。在最终阶段,过滤采样以产生正确大小的图像。更具体地说,将每像素四个采样平均,以形成存储在颜色缓冲器207b中的最终像素颜色。
参考图6a和6b,现在在5点形方案和根据本发明方案间作个比较。在图6a中示出了根据本发明的子像素采样模式,并在图6b中示出了根据5点形方案的子像素采样模式。
假设三角形内变为白色(编码为1.0),而三角形外变为黑色(编码为0.0)。0.0和1.0之间的任何数都表示灰度级。再者,应该注意的是,同样也可应用彩色或任何其它表示。从该例的图中可以看到,多边形(在本例是三角形)覆盖了6×6的像素矩阵。然而,像素的数量并不局限于这个数,并且取决于具体应用,即,台式计算机系统将使用比例如移动电话更高的分辨率(更多像素)。同样的工作原理可应用于任何不考虑系统分辨率的系统。在图6a和6b中,完全在三角形内的像素将获得值1(完全白色)。在5点形方案中,这由拐角采样(每个具有0.125的加权)与中心采样(具有0.5的加权)的求和产生。相应地,在根据本发明的方案中,相同的值由四个边采样位置(每个具有0.25的加权)的求和产生。
在图6a中,最左列将获得值(从上至下):0.25、0.5、0.5、0.5、0.5和0.25,其中每个数表示灰度级颜色。也就是说,三角形的顶将具有比该三角形的左边的中心部分略暗的灰影。
相应地,在图6b中,最左列将获得值:0.125、0.75、0.75、0.25、0.25和0.125。重要的是,该列中第三和第四像素之间的突然跳变。如上所述,当使用5点形方案时,即使理论上有可能获得0.375、0.5和0.625的值,但接近垂直线的所计算的像素值将总是产生从0.25到0.75的突然跳变。另一方面,根据本发明的镜像方案将给出不同可能像素值之间的较平滑过渡。
当绘制几乎垂直线和几乎水平线时,锯齿现象是非常值得注意的,并由此重要的是,当边接近垂直或接近水平时,抗锯齿方案产生了良好结果。
在图7a-c中进一步说明了以上推理,在这些图中示出了无抗锯齿7a、5点形方案7b和根据本发明的方案之间的比较。这些图清楚示出了通过根据本发明的方案增强了接近垂直线以及对角线的抗锯齿效果。更具体地说,由5点形方案呈现的有效灰度级数降低为2,如上所述,而根据本发明的方案呈现了黑白之间的3个灰度级。
以上已经参考优选实施例描述了本发明。然而,在所附独立权利要求定义的本发明的范围内,除本文所公开的实施例之外其它实施例也是可能的。

Claims (26)

1.一种覆盖供抗锯齿系统使用的像素阵列的采样模式,其中在所述像素阵列内每个像素具有位于一个或多于一个镜面的采样点模式,其特征在于:
每个像素的所述采样点模式是镜像,且不同于直接相邻像素的所述模式。
2.如权利要求1所述的采样模式,其中所述镜面位于所述像素的边缘。
3.如权利要求1或2所述的采样模式,其中所述模式具有每像素镜面一个采样点。
4.如权利要求1-3中任一项所述的采样模式,其中根据(0,a)、(a,1)、(b,0)和(1,b),像素的采样点坐标(x,y)相关。
5.如权利要求1-3所述的采样模式,其中根据(0,b)、(a,0)、(b,1)和(1,a),像素的采样点的(x,y)坐标相关。
6.如权利要求4或5所述的采样模式,其中和“a+b”在0.5-1.5的范围内。
7.如权利要求4-6所述的采样模式,其中a=1/3且b=2/3。
8.如权利要求1-7中任一项所达的采样模式的使用,是在像素抗锯齿系统中。
9.如权利要求8所述的采样模式的使用,用于处理静止图像。
10.如权利要求8所述的采样模式的使用,用于处理视频序列。
11.一种创建覆盖抗锯齿系统中使用的像素阵列的采样模式的方法,其中每个像素具有位于所述像素边缘的采样点模式,其特征在于:
定义每个像素的所述采样点模式,以使它是镜像,且不同于直接相邻像素的所述模式。
12.如权利要求11所述的方法,其中所述模式具有每像素边缘一个采样点。
13.如权利要求11或12所述的方法,其中根据(0,a)、(a,1)、(b,0)和(1,b),像素的采样点的(x,y)坐标相关。
14.如权利要求11或12所述的方法,其中根据(0,b)、(a,0)、(b,1)和(1,a),像素的采样点的(x,y)坐标相关。
15.如权利要求13或14所述的方法,其中和“a+b”在0.5-1.5的范围内。
16.如权利要求13-15所述的方法,其中a=1/3且b=2/3。
17.一种抗锯齿图像,是通过根据步骤11-16中任一项处理图像来创建的。
18.一种包括GPU的抗锯齿系统,其中所述GPU适于定义在像素边缘的采样点模式,其特征在于:
所述GPU适于定义每个像素的所述采样点模式,以使其是镜像,且不同于直接相邻像素的所述模式。
19.如权利要求18所述的系统,其中用硬件实现所述GPU。
20.如权利要求18所述的系统,其中用软件实现所述GPU。
21.如权利要求18-20所述的系统,其中根据(0,a)、(a,1)、(b,0)和(1,b),像素的采样点的(x,y)坐标相关。
22.如权利要求18-20所述的系统,其中根据(0,b)、(a,0)、(b,1)和(1,a),像素的采样点的(x,y)坐标相关。
23.如权利要求21或22所述的系统,其中和“a+b”在0.5-1.5的范围内。
24.如权利要求21-23所述的系统,其中a=1/3且b=2/3。
25.一种可直接加载到与CPU相关联的内部存储器的计算机程序产品,所述CPU操作上耦合到定义在像素边缘的采样点模式的GPU,所述计算机程序产品包括程序代码,所述代码用于:
定义每个像素的所述采样点模式,以使它是镜像,且不同于直接相邻像素的所述模式。
26.如权利要求22所定义的计算机程序产品,在计算机可读媒体上实施。
CNB2003801097324A 2002-12-20 2003-11-25 低成本超级采样光栅化 Expired - Fee Related CN100353382C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02028537.5 2002-12-20
EP02028537A EP1431920B1 (en) 2002-12-20 2002-12-20 Low-cost supersampling rasterization
US60/436,162 2002-12-23

Publications (2)

Publication Number Publication Date
CN1748229A true CN1748229A (zh) 2006-03-15
CN100353382C CN100353382C (zh) 2007-12-05

Family

ID=32338060

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801097324A Expired - Fee Related CN100353382C (zh) 2002-12-20 2003-11-25 低成本超级采样光栅化

Country Status (4)

Country Link
EP (1) EP1431920B1 (zh)
CN (1) CN100353382C (zh)
AT (1) ATE425517T1 (zh)
DE (1) DE60231523D1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458916B (zh) * 2007-12-14 2011-09-07 深圳迈瑞生物医疗电子股份有限公司 波形抗锯齿方法及波形抗锯齿处理装置
CN104040589A (zh) * 2012-01-16 2014-09-10 英特尔公司 使用随机光栅化生成随机采样分布
CN105405103A (zh) * 2014-09-10 2016-03-16 辉达公司 通过在空间上和/或在时间上改变采样模式增强抗锯齿
CN104952047B (zh) * 2005-05-27 2018-11-13 Ati技术公司 抗锯齿系统及方法
US10147203B2 (en) 2014-09-10 2018-12-04 Nvidia Corporation Enhanced anti-aliasing by varying sample patterns spatially and/or temporally

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348996B2 (en) 2004-09-20 2008-03-25 Telefonaktiebolaget Lm Ericsson (Publ) Method of and system for pixel sampling
EP1659536A1 (en) * 2004-11-19 2006-05-24 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for pixel sampling
CN114640796B (zh) * 2022-03-24 2024-02-09 北京字跳网络技术有限公司 视频处理方法、装置、电子设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127516T2 (de) * 1990-06-29 1998-02-26 Philips Electronics Nv Verfahren und Gerät zur Bilderzeugung
US20020140706A1 (en) * 2001-03-30 2002-10-03 Peterson James R. Multi-sample method and system for rendering antialiased images

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952047B (zh) * 2005-05-27 2018-11-13 Ati技术公司 抗锯齿系统及方法
CN101458916B (zh) * 2007-12-14 2011-09-07 深圳迈瑞生物医疗电子股份有限公司 波形抗锯齿方法及波形抗锯齿处理装置
CN104040589A (zh) * 2012-01-16 2014-09-10 英特尔公司 使用随机光栅化生成随机采样分布
CN104040589B (zh) * 2012-01-16 2018-05-25 英特尔公司 使用随机光栅化生成随机采样分布的图形处理方法和设备
US10762700B2 (en) 2012-01-16 2020-09-01 Intel Corporation Generating random sampling distributions using stochastic rasterization
CN105405103A (zh) * 2014-09-10 2016-03-16 辉达公司 通过在空间上和/或在时间上改变采样模式增强抗锯齿
CN105405103B (zh) * 2014-09-10 2018-08-24 辉达公司 通过在空间上和/或在时间上改变采样模式增强抗锯齿
US10096086B2 (en) 2014-09-10 2018-10-09 Nvidia Corporation Enhanced anti-aliasing by varying sample patterns spatially and/or temporally
US10147203B2 (en) 2014-09-10 2018-12-04 Nvidia Corporation Enhanced anti-aliasing by varying sample patterns spatially and/or temporally
US10957078B2 (en) 2014-09-10 2021-03-23 Nvidia Corporation Enhanced anti-aliasing by varying sample patterns spatially and/or temporally

Also Published As

Publication number Publication date
EP1431920A1 (en) 2004-06-23
CN100353382C (zh) 2007-12-05
ATE425517T1 (de) 2009-03-15
EP1431920B1 (en) 2009-03-11
DE60231523D1 (de) 2009-04-23

Similar Documents

Publication Publication Date Title
CN100357972C (zh) 计算机绘图之颜色资料的压缩系统及方法
US6819793B1 (en) Color distribution for texture and image compression
JP5722761B2 (ja) 動画圧縮装置、画像処理装置、動画圧縮方法、画像処理方法、および動画圧縮ファイルのデータ構造
CN1171181C (zh) 用于图形子系统的模块描绘方法
RU2312404C2 (ru) Аппаратное ускорение графических операций при построении изображений на основе пиксельных подкомпонентов
CN101061518A (zh) 嵌入式装置中的灵活抗混叠
WO2006080115A1 (ja) 描画方法、画像生成装置、および電子情報機器
JPH04233086A (ja) 画像生成方法
GB2457646A (en) Data decompression of textures including large colour discontinuities
CN1809840B (zh) 创建采样图案的方法和设备
CN1893564A (zh) 图像特效设备、图形处理器和记录介质
CN1950877A (zh) 图像数据的误差累加抖动
CN100353382C (zh) 低成本超级采样光栅化
WO2011126424A1 (en) Texture compression and decompression
CN101061517A (zh) 通过像素采样抗锯齿的方法和系统
KR101030825B1 (ko) 샘플링 패턴을 이용하는 방법, 샘플링 패턴을 생성하는 방법, 안티 에일리어싱 시스템, 및 컴퓨터 판독 가능한 기록매체
CN1130666C (zh) 图形涂抹装置
KR101222360B1 (ko) 픽셀 샘플링용 방법 및 장치
CN116843736A (zh) 场景渲染方法及装置、计算设备、存储介质和程序产品
CN1728183A (zh) 图像转换设备、图像转换电路及图像转换方法
CN1225717C (zh) 纹理映射方法
JP4024072B2 (ja) ミップマップデータの高速読出方式
US20030095130A1 (en) Texture mapping method
JP4766576B2 (ja) 描画方法、画像生成装置、および電子情報機器
CN1165019C (zh) 三线性图纹过滤方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071205

Termination date: 20161125

CF01 Termination of patent right due to non-payment of annual fee