CN1748033B - 改变植物生长特性的方法 - Google Patents

改变植物生长特性的方法 Download PDF

Info

Publication number
CN1748033B
CN1748033B CN2004800036652A CN200480003665A CN1748033B CN 1748033 B CN1748033 B CN 1748033B CN 2004800036652 A CN2004800036652 A CN 2004800036652A CN 200480003665 A CN200480003665 A CN 200480003665A CN 1748033 B CN1748033 B CN 1748033B
Authority
CN
China
Prior art keywords
plant
map
nucleic acid
proteic
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800036652A
Other languages
English (en)
Other versions
CN1748033A (zh
Inventor
V·米罗诺夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CropDesign NV
Original Assignee
CropDesign NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CropDesign NV filed Critical CropDesign NV
Publication of CN1748033A publication Critical patent/CN1748033A/zh
Application granted granted Critical
Publication of CN1748033B publication Critical patent/CN1748033B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及通过改变植物中编码甲硫氨酸氨肽酶(MAP蛋白)的核酸的表达和/或改变植物中MAP蛋白的水平和/或活性来改变植物的生长特性的方法。本发明也涉及具有改变的生长特性的转基因植物,该植物具有改变的编码MAP蛋白的核酸的表达。本发明特别揭示了一种提高植物产量的方法,优选提高谷类作物的产量,例如稻或玉米。

Description

改变植物生长特性的方法
本申请涉及一种改变植物的生长特性的方法。更为具体地说,本发明涉及通过改变编码甲硫氨酸氨肽酶(MAP蛋白)的核酸的表达和/或通过改变植物中MAP蛋白的水平和/活性,来改变植物生长特性的方法。本发明还涉及具有编码MAP蛋白的核酸的表达改变和/或MAP蛋白水平和/或活性改变的植物,该植物具有相对于相应的野生型植物发生改变的生长特性。
基于不断增长的世界人口,提高农业效率仍然是农业研究的一个主要目标。农作物和园艺提高的传统方式采用选择育种技术来识别具有需要的特性的植物。然而,这种选择育种技术具有几个缺点,即,这些技术通常是劳动密集型的,因此导致经常含有异源性遗传组分的植物,可能不总是具有从亲本植物传承的需要的性质。相反,分子生物学的进步已经允许人类更精确地改变植物的胚质。植物的遗传工程学使分离和操纵遗传材料(通常以DNA或RNA的形式)以及随后将遗传材料导入植物成为可能。这种技术已经导致具有例如提高的产量的多种改良的经济学、农艺学或园艺学特性的植物的产生。
影响一个或更多的植物生长特性的能力将在多个领域具有许多应用,例如产量提高、作物育种、生产观赏植物、树木的培植、园艺、林学、生产藻类或作物(例如用作生物反应器、生产医药品例如抗体或疫苗、或有机废料的生物转化、或在高产藻类或植物的情形下用作燃料)等领域。
现在已经发现改变植物中编码MAP蛋白的核酸的表达和/或改变植物中MAP蛋白的水平和/或活性使植物具有改良的生长特性。
相应地,本发明提供了一种相对于相应的野生型植物改变植物生长特性的方法,包括改变植物中编码甲硫氨酸氨肽酶(MAP)蛋白核酸的表达和/或改变植物中MAP蛋白的水平和/或活性。
这里所用的术语“改变”用来指位置和/或时间的提高、减少和/或改变。改变编码MAP蛋白的核酸的表达或改变MAP蛋白本身的水平和/或活性,包括在特定的细胞或组织中,与相应野生型植物中MAP基因或蛋白的表达、水平和/或活性相比较时,改变基因的表达和/或基因产物,即多肽的水平和/或活性。改变的基因表达可以由改变内源性MAP基因的表达产生和/或可以由改变预先导入植物的MAP基因的表达而产生。类似地,改变MAP蛋白的水平和/或活性可以由于改变内源性MAP核酸或蛋白的表达和/或可以由于改变预先导入植物的MAP核酸或蛋白的表达。可以通过例如化学方法和/或重组方法来达到改变核酸/基因的表达和/或改变基因产物/蛋白的水平和/或活性的效果。
根据本发明的一个优选的具体实施方案,改变编码MAP蛋白的核酸的表达和/或改变MAP蛋白的水平和/或活性可以通过重组方法来实现。这种重组方法可以包括直接和/或间接方法。
例如,一种间接重组方法可以包括向植物中导入能够改变MAP基因表达的核酸和/或能够改变MAP蛋白水平和/或活性的核酸。这些能被导入植物中的核酸的例子包括编码与MAP基因启动子结合或与MAP蛋白相互作用的转录因子或活化剂或抑制剂的核酸。检测这些类型的相互作用的方法和分离编码这种相互作用者的核酸的方法包括酵母单杂交或酵母双杂交筛查,其中MAP基因/蛋白用作诱饵。因此,改变编码MAP蛋白的核酸的表达和/或改变MAP蛋白水平和/或活性可以通过降低或增高控制MAP基因表达或直接或间接使MAP蛋白活化(失活)的因子的水平而实现。进一步地,改变MAP蛋白的水平和/或活性可以通过改变能够与MAP蛋白相互作用的因子的水平而实现。这种因子可以包括MAP蛋白的配体或天然靶标/底物。这种靶标的例子包括真核起始因子eIF2,是蛋白翻译起始复合物的一部分。
还包括一种改变MAP基因的表达和/或改变MAP蛋白的水平和/或活性的间接重组方法,即提供抑制或刺激驱动例如内源性MAP基因的MAP基因表达的调控元件。例如,导入植物的调控元件可以是能够驱动内源性MAP基因表达的启动子。
优选的改变编码MAP蛋白的核酸的表达和/或改变MAP蛋白的水平和/或活性的重组方法包括向植物中导入能够改变编码MAP蛋白的核酸的表达的核酸和/或能够改变MAP蛋白水平和/或活性的核酸。
相应地,本发明提供了一种如上所述的改变植物生长特性的方法,其中改变表达、水平和/或活性通过向植物中导入能够改变编码MAP蛋白的核酸的表达和/或能够改变MAP蛋白的水平和/或活性的核酸。根据该方法一个更直接和优选的具体实施方式,如下所述,该核酸是一种编码MAP蛋白或其变体的核酸,或是编码MAP蛋白的核酸的变体。编码MAP蛋白的核酸可以是野生型,即,天然的或内源性的。或者,该核酸可以是异源性的,即,来自同种或另一物种,该核酸可以作为转基因导入。该转基因的组成和/或基因组环境可以通过精密的人工操作而从其天然形式充分地改变。
另外地或可选地,可以通过化学方法达到改变编码MAP蛋白核酸的表达和/或改变MAP蛋白本身的水平和/或活性的效果。这种化学方法可以涉及外源性应用一种或多种能改变MAP核酸(内源性基因或导入植物)的表达和/或能够改变MAP蛋白(内源性基因或导入植物)的水平和/或活性的化合物或元件。这里定义的术语“外源性应用”用来表示将合适的化合物或元件与植物接触或给予植物、植物细胞、组织或器官。该化合物或元件可以以适合植物摄入的方式外源性地应用于植物(例如通过施用到土壤中通过根来吸收,或在一些植物中直接施用于叶子,如通过喷雾)。外源性应用可能在野生型植物或预先用MAP核酸/基因或其它转基因转化的转基因植物中进行。
适合外源性应用的合适化合物或元件包括MAP蛋白或MAP核酸。可选地,合适的化合物和元件包括那些能够直接或间接与MAP蛋白结合或使其活化或失活的物质。合适的化合物还包括能够识别或模拟MAP蛋白功能的抗体。这些抗体可以包括“植物抗体(plantibodies)”、单链抗体、IgG抗体和重链camel抗体及其片段。其它合适的化学改变MAP基因或蛋白表达、活性和/或水平的化合物和元件包括诱导突变的物质,例如N-亚硝基-N-乙基脲(N-nitroso-N-ethylurea)、吖丙啶(ethylene imine)、甲磺酸乙酯(ethyl methanesulphonate)和硫酸二乙酯。突变形成也可以通过暴露于离子放射,例如X线或γ线或紫外光来实现。引入突变和检测突变效果的方法(例如通过监测基因表达和/或蛋白活性)是现有技术中熟知的。
因此,根据本发明的一个方面,提供了一种改变植物生长特性的方法,包括外源性应用一种或多种能改变MAP基因的表达和/或能够改变MAP蛋白的水平和/或活性的化合物或元件。
文献中描述甲硫氨酸氨肽酶(MetAP或MAP)负责在蛋白质合成期间去除肽的起始甲硫氨酸残基(Bradshaw和Yi,2002,EssaysBiochem38:65-78)。甲硫氨酸氨肽酶是属于金属酶家族的一种特异性的和普遍存在的酶。已经发现真核细胞具有两类甲硫氨酸氨肽酶(MAP1和MAP2),而原核细胞只有一种。已知MAP2也已知为真核起始因子2α(eIF2α)相关蛋白p67。已经证明大鼠p67除了它的肽酶功能外,也通过防止起始因子2的α亚基的磷酸化而在翻译调控中发挥重要作用。相应地,除了其肽酶活性外,MAP2蛋白具有非蛋白水解功能,以保护eIF2α不被磷酸化(POEP),eIF2α在磷酸化状态时是没有活性的(DattaR等人Biochimie.2001 83:919-31)。已经研究了多种生物体的MAP蛋白,关于它们的功能和它们的结构。基于序列分析,已经发现MAP蛋白具有MAP标签以及肽酶结构域。例如,MAP1蛋白的典型的结构特性是一个MAP1标签(PROSITE PS00680=[MFY]-x-G-H-G-[LIVMC]-[GSH]-x(3)-H-x(4)-[LIVM]-x-[HN]-[YWVH])以及一个pFAM PEPTIDASE_M24结构域。MAP2蛋白的典型的结构特性包括一个MAP2标签(PROSITE PS01202=[DA]-[LIVMY]-x-K-[LIVM]-D-x-G-x-[HQ]-[LIVM]-[DNS]-G-x(3)-[DN])以及一个pFAM PEPTIDASE_M24结构域。MAP2蛋白,例如植物MAP2蛋白,另外在N末端还包括至少一个富含赖氨酸的结构域。在Li和Chang,(1995)Proc Natl Acad Sci USA.92(26):12357-61中已经描述了从酵母中分离的MAP蛋白,在Li和Chang,(1996)Biochem Biophys Res Commun 227:152-159中已经描述了人MAP蛋白,且从鼠耳芥(Arabidopsis thaliana)中克隆了6个MAP cDNAs,而且在体内和体外鉴定了相应的蛋白(Giglione等人EMBO J.200019:5916-29)。一个鼠耳芥MAP蛋白的例子在此由SEQ ID NO 2表示,SEQ ID NO 1表示其编码序列。另一个鼠耳芥MAP蛋白的例子在此由SEQ ID NO 4表示,SEQ ID NO 3表示其编码序列。
这里采用的术语“MAP蛋白”包括甲硫氨酸氨肽酶(MAP),例如SEQID NO 2或4的MAP及其变异体(或基本与其类似的蛋白)。术语“MAP基因”或“MAP核酸”或“编码MAP蛋白的核酸”这里可以交互使用,也包括MAP核酸变体,例如SEQ ID NO 1或3的变体,术语“变体”、“基本类似”这里可以交互使用。变体MAP蛋白或编码MAP蛋白的变体核酸包括:
(i)MAP核酸,例如SEQ ID NO 1或3的MAP核酸的功能部分;
(ii)能够与MAP核酸,例如与SEQ ID NO 1或3的MAP核酸杂交的序列;
(iii)MAP核酸,例如SEQ ID NO 1或3的MAP核酸的可变剪接变体;
(iv)MAP核酸,例如SEQ ID NO 1或3的MAP核酸的等位基因变体;以及
(v)MAP蛋白,例如SEQ ID NO 2或4的MAP蛋白的同源物、衍生物和活性片段。
有利地,根据本发明的方法也可以用变体MAP蛋白或变体MAP核酸实行。合适的变体包括SEQ ID NO 2或4和/或SEQ ID NO 1或3的变体,然而,应当清楚本发明的应用既不限于SEQ ID NO 1或3代表的核酸的应用也不限于编码SEQ ID NO 2或4所代表的氨基酸序列的核酸的应用,而是其它编码SEQ ID NO 2变体的核酸均可以用于本发明的方法。
对于根据本发明的方法的应用,MAP蛋白优选包括下列结构域的任意一个或两个:
a)MAP标签(Signature)
b)肽酶_M24结构域
优选的MAP蛋白包含上述级别顺序的所有结构域。
术语“变体”也包括以互补物、DNA、RNA、cDNA或基因组DNA形式的变体。变体核酸可以被全部或部分合成,可以为双链核酸或单链核酸。术语“变体”也包括由于遗传密码的简并性的变体;基因或蛋白的家族成员;以及被一个或多个例如内含子或转座子的插入序列中断的变体。
一种编码MAP蛋白的变体核酸为编码MAP蛋白的核酸的功能部分。简便地,本发明的方法也可以用编码MAP蛋白的核酸的部分进行操作。功能部分指来源于或制备于原始(较大)的DNA分子的DNA片段,该部分保留原始DNA至少一部分的功能,当植物中表达时,赋予植物改变的生长特性。该部分可以包括许多基因,含有或没有附加的调控元件或可以包括间隔序列。该部分可以通过在核酸中生成一个或多个缺失和/或截短而形成。现有技术中熟知向核酸引入截短和缺失的技术。通过用要测验功能的部分简单地替代实际实施例所采用的序列,可以按照实施例部分的描述的方法容易地确定适合本发明的方法的部分。
另一种编码MAP蛋白的核酸的变体为能够与编码MAP的核酸杂交的序列,例如,与编码SEQ ID NO 2或4所代表的蛋白的任意核酸杂交。可以容易地确定适合用于本发明方法的杂交序列,例如按照实施例部分描述的方法,用杂交序列简单地替代实际实施例所采用的序列。
这里采用的术语“杂交”指在杂交过程中与基本同源互补核苷酸序列退火。杂交过程可以完全在溶液中进行,即,互补核酸都在溶液中。依赖于这一过程的分子生物学工具包括聚合酶链反应(PCR;以及所有以此为基础的方法)、差减杂交、随机引物延伸、核酸酶S1作图、引物延伸、反转录、cDNA合成、RNAs差异显示、以及DNA序列确定。杂交过程的发生也可以其中一个互补核酸固定于基质,例如磁珠、琼脂糖凝胶或其它树脂。依赖于这一过程的分子生物学工具包括分离聚腺苷酸(A+)mRNA。此外,杂交过程的发生可以其中一个互补核酸固定于固体支持物,例如硝酸纤维素或尼龙膜,或者用如照相平版的方式固定于例如硅玻璃支持物(后者已知为核酸阵列或微阵列或核酸芯片)。依赖于这一过程的分子生物学工具包括RNA和DNA凝胶印迹分析、克隆杂交、斑点杂交、原位杂交和微阵列杂交。为了允许杂交的发生,核酸分子通常被加热或用化学方法变性从而由双链熔解为两条单链和/或从单链核酸中去除发卡结构或其它的二级结构。例如温度、钠盐浓度和杂交缓冲液成分的条件都影响着杂交的严格性。杂交的高度严格性条件包括较高的温度和/或低盐浓度(包括NaCl和柠檬酸钠(Na3-citrate)的盐)和/或杂交缓冲液中甲酰胺的存在和/或降低杂交缓冲液中例如SDS(十二烷基硫酸钠去垢剂)的化合物的浓度和/或从杂交缓冲液中排除葡聚糖硫酸盐或聚乙二醇(提高分子拥挤度)等化合物。常规的杂交条件参见,例如Sambrook(2001)分子克隆:
实验室手册,第3版,冷泉港实验室出版社,CSH,纽约,但熟练技术人员将认识到根据核酸序列的已知或期望的同源性和/或长度可以设计许多不同的杂交条件。特别优选足够低的杂交严格度条件(至少在第一种情形)来分离与本发明先前定义的不同的核酸。低严格度条件的例子为4-6x SSC/0.1-0.5%w/v SDS,37-45℃,2-3小时。根据杂交中涉及核酸的来源和浓度,可以采用可选的严格度条件,例如中等严格度条件。中等严格度条件的例子包括1-4x SSC/0.25%w/v SDS,≥45℃,2-3小时。特异性杂交表示在严格条件下杂交。高严格度条件的例子包括0.1-2XSSC,0.1XSDS,以及1X SSC,0.1X SDS,60℃,2-3小时。
本发明的方法也可以应用编码MAP蛋白的核酸的可变剪接变体,例如SEQ ID NO 1或3的可变剪接变体。这里应用的术语“可变剪接变体”包括核酸序列的变体,其中选择的内含子和/或外显子已经被切除、替代或加入。这种剪接变体可以在自然界中找到或人工制造。现有技术中熟知制造这种剪接变体的方法。可以容易地确定适合用于本发明方法的剪接变体,例如,可以按照实施例部分描述的方法,用剪接变体简单地替代实际实施例所采用的序列。
另一个在本发明的改变植物生长特性方法的实践中可应用的MAP核酸变体为MAP基因的等位基因变体,例如SEQ ID NO 1或3的等位基因变体。自然界中存在的以及本发明的方法所包含的等位基因变体为这些天然等位基因的应用。等位基因变体也包括单核苷酸多态性(SNPs),以及小插入/缺失多态性(INDELs)。INDELs的大小通常小于100bp。在多数生物体的自然发生的多态系中,SNPs和INDELs组成了最大一组的序列变体。适合用于本发明方法的等位基因变体可以容易地被确定,例如按照实施例部分描述的方法,用等位基因变体简单地替代实际实施例所采用的序列。
本发明提供了改变植物生长特性的方法,包括改变植物中编码MAP蛋白的核酸的可变剪接变体或等位基因变体的表达和/或改变植物中可变剪接变体或等位基因变体编码的MAP蛋白的水平和/或活性。
本发明方法的实践中可采用的变体MAP蛋白的一个例子为MAP蛋白的同源物。特定MAP蛋白的“同源物”包括相对于特定MAP蛋白而言具有氨基酸的替代、缺失和/或插入的肽、寡肽、多肽、蛋白质和酶,且具有与MAP蛋白类似的生物学和功能活性。MAP蛋白的同源物可以通过基因工程和/或蛋白工程技术人工制造。为生产这种同源物,蛋白质的氨基酸可以被其他具有类似性质(例如类似的疏水性、亲水性、抗原性、形成或打破α-螺旋结构或β-片层结构的倾向性)的氨基酸替代。现有技术中熟知保守的替代目录(参见如Creighton(1984)蛋白质,W.H.Freeman and Company)。
另外和/或可选地,特定MAP蛋白的同源物存在于自然界,且可以在与特定MAP蛋白来源相同或不同物种中找到。两种特殊类型的同源物,直向同源物(orthologues)和共生同源物(paralogues)是用来描述基因的遗传关系的进化概念。术语直向同源物(orthologues)涉及在不同的生物体中根据遗传关系确定的同源性基因。术语“共生同源物”涉及在物种的基因组内导致共生同源(paralogues)基因的基因副本。因此这里采用的术语MAP的“同源物”(homologue)也包括了可用于对本发明方法的实践中的MAP蛋白的共生同源物(paralogues)和种直向同源物(orthologues)。
本发明的方法中应用的同源物具有以渐增的优选顺序的至少20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的与SEQ ID NO 2或SEQID NO4的序列同一性,优选在SEQ ID NO 2或4的全长范围。
序列同一性的百分比可以用成对整体对比程序,执行Needleman-Wunsch算法(J.Mol.Biol.48:443-453,1970),使匹配数目最大化以及缺口数目最小化来计算。为计算上述的百分比,采用Align X程序(Vector NTI Suite5.5的一部分),采用标准参数和可变参数缺口开放罚分10(Gap opening penalty10)和缺口延伸罚分0.1(Gap extension penalty0.1)。
多种来源的MAP蛋白的多重序列对比用标准固定参数和可变参数缺口开放罚分10(GAP opening penalty10)和缺口延伸罚分0.2(GAPextension penalty0.2)的ClustalX程序产生。用BoxShade软件(可在http://www.isrec.isb-sib.ch/ftp-server/boxshade/获得)计算该多重线性对比的蛋白之间的同一性百分比。表I给出了这些百分比的总览。
表I:不同MAP蛋白之间的序列同一性
  概要   %同一性   计算的序列
  双子叶植物MAP2之间   90%   2个鼠耳芥属序列
  单子叶植物MAP2之间   80%   2个稻和1个玉米序列
  双子叶植物和单子叶植物MAP2之间   76%   3个单子叶植物和2个双子叶植物序列
  植物和动物MAP2之间   65%   5个植物和4个动物序列
  MAP1和MAP2之间   20%   11个MAP2和6个MAP1序列
本发明的方法有用的同源物可以从任何来源获得(直接或间接,即如果随后进行改变),只要当在植物中表达时,导致生长特性的改变。该核酸可以从微生物来源中分离,例如细菌、酵母或真菌,或来源于植物、藻类、昆虫或动物(包括人类)。
编码MAP同源物的核酸优选分离自植物。更优选的,该核酸来自双子叶植物,优选来十字花科(Brassicaceae),进一步优选来自鼠耳芥(Arabidopsis thaliana)。基于序列同源性的水平,鼠耳芥属MAP蛋白已经再分为不同的种类(Giglione et al.(2000,EMBO J.19:p5916-5929)。在鼠耳芥属中识别了MAP1类(具有A、B、C和D异构体)和MAP2类(具有A和B异构体)。这些种类和异构体(isoform)也包括在这里采用的术语“同源物”中。方便地,这些MAP蛋白的不同种类或异构体或它们的编码核酸均可以用于本发明的方法。相应地,本发明提供了这里前文描述的方法,其中MAP核酸或MAP蛋白从植物中获得,优选来自双子叶植物,进一步优选来自十字花科(Brassicaceae),更加优选来自鼠耳芥(Arabidopsis thaliana)。根据另一具体实施方式,MAP核酸或蛋白为MAP2核酸或蛋白或MAP1核酸或蛋白。根据本发明的另一具体实施方式,MAP核酸密码子或MAP蛋白为SEQ ID NO2或4所代表的MAP蛋白的异构体。根据本发明的另一具体实施方式,MAP核酸密码子或MAP蛋白为SEQ ID NO2所代表的鼠耳芥(Arabidopsis thaliana)MAP2B蛋白。
其它优选的MAP同源物和其编码序列可以在(公共)序列数据库中得到,在序列数据库中检索和识别MAP同源物的方法完全在本领域技术人员所掌握的技术范围内。这种方法,涉及用本发明提供的序列,例如SEQ ID NO2或4(或SEQ ID NO1或3),优选用计算机可读形式,筛查序列数据库。可用的序列数据库包括但并不限于Genbank(http://www.ncbi.nlm.nih.gov/web/Genbank),欧洲分子生物学实验室核酸数据库(EMBL)(http:/w.ebi.ac.uk/ebi-docs/embl-db.html)或其版本或MIPS数据库(http://mips.gsf.de/)。现有技术中已知不同的序列比对和对比的检索法和软件。这种软件包括例如GAP、BESTFIT、BLAST、FASTA和TFASTA。优选采用BLAST软件,其计算序列一致性的百分比并对两个序列间的相似性进行统计分析。涉及BLAST的一套程序具有5个不同的执行工具:3个为核苷酸序列查询设计(BLASTN、BLASTX、和TBLASTX),两个为蛋白质序列查询设计(BLASTP和TBLASTN)(Coulson,Trends in Biotechnology:76-80,1994;Birren et al.,GenomeAnalysis,1:543,1997)。执行BLAST分析的软件可以通过National Centre for Biotechnology Information公共获得。
其它植物物种的MAP蛋白的直向同源物(orthologues)可以通过进行一个互补Blast检索而容易地找到。该方法包括采用诸如BLAST的程序,用感兴趣的基因或蛋白质(例如SEQ ID NO 1、2、3或4)查询一个或多个基因数据库。接着用从搜索中得到的最高级别的目标基因作为查询序列再进行类似的BLAST搜索。只有那些与原始查询序列(SEQ ID NO 1、2、3或4)具有最高度匹配的基因被认为是真正的直向同源物(orthologous)基因。例如,为了找到鼠耳芥基因的稻直向同源物(orthologues),可以对稻数据库进行BLASTN或TBLASTX分析,例如(但并不限于)在NCBI网站(http://www.ncbi.nlm.nih.gov)可获得的稻Nipponbare数据库,或稻的基因组序列(indica或japonica品种)。下一步,得到的稻序列被用来用鼠耳芥属数据库进行反向BLAST分析。该方法可以被用来识别来自其它许多不同的物种得到的直向同源物(orthologues),例如从玉米。
通过对与MAP蛋白来源的同样物种的序列进行Blast搜索可以容易地找到MAP蛋白的共生同源物(paralogues)。从通过Blast搜索选择的序列,可以通过寻找序列之间的一致性或保守的典型MAP结构域来识别真正的共生同源物(paralogues)。对鼠耳芥MAP蛋白共生同源物(paralogues)的搜索已经由Giglione等人完成(2000,EMBO J.19:p5916-5929)。
采用缺省参数和采用SEQ ID NO 2或SEQ ID NO 1作为搜索序列进行BLAST,导致下列MAP核酸和蛋白的识别。实质上与SEQ ID NO1(AtMAP2B)相同的序列已经以Genbank登录号NM-115862(基因组DNA)、BT000063(At3g59990mRNA)、AY084710、AY065161和AF300880公开。SEQ ID NO 1和2的异构体,这里命名为AtMAP2A,在数据库中以Genbank登录号AF250964找到。另一不同种类的异构体在数据库中以Genbank登录号AF250960((AtMAP1A以及这里用SEQ ID NO 3和SEQ ID NO 4表示)、AF250961(AtMAP1B)、AF250962(AtMAP1C)和AF250963(AtMAP1D)找到。
已经识别了来自不同植物品种的MAP同源物,该同源物可用于本发明的方法。植物中的MAP蛋白具有很高程度的保守性(参见表I)。这种同源物包括例如来自稻的MAP蛋白,在Genbank数据库中以登录号BAD03108公开,登录号为AK122063的稻蛋白,登录号为AK107616的稻蛋白以及登录号为AY105027的玉米蛋白。编码农作物的MAP同源物的基因可以特异地用于本发明的方法在农作物中的实践。在本发明的另一具体实施方式中,编码双子叶植物MAP同源物的基因可以用于在单子叶植物中实践本发明的方法,反之亦然。
鼠耳芥和稻的基因组序列现在在公共数据库中可以获得,例如Genbank,其它基因组目前正在测序。因此,期望通过采用Blast X或BlastP程序或其它程序与SEQ ID NO 1或3或与SEQ ID NO 2或4的序列比对将容易地确认更多同源物。
可以用上述详细说明的所有同源物、共生同源物(paralogues),和直向同源物(orthologues)构建种系发生树。按照上面的描述用ClustalX 进行多重序列比对。用在http://evolution.genetics.washington.edu/phylip.html可获得的Phylip软件包构建种系发生树。一个或更多的鼠耳芥6MAP蛋白附近的序列簇鉴定适合用于本发明的方法的蛋白及其相应的基因。
上述对比序列、计算序列一致性、搜索同源物、直向同源物或共生同源物或构建种系发生树的分析,优选用全长序列。可选地,这些软件分析可以在MAP蛋白或DNA序列的保守区域内进行。相应地,这些分析可以基于保守区域、功能结构域、基序或盒之间的序列一致性的对比和计算的基础上。
对例如SEQ ID NO 5(MAP1标签)、SEQ ID NO 6(MAP2标签)、SEQID NO 7(AtMAP1A的肽酶_M24结构域)、SEQ ID NO 8(AtMAP2B的肽酶_M24结构域)、SEQ ID NO 9(AtMAP2B的富含赖氨酸结构域)所代表的这种结构域或基序的识别,也在本领域熟练技术人员的技术领域内,并涉及筛查计算机可读形式的MAP蛋白中保守的蛋白质结构域、基序和盒的存在。蛋白质结构域信息在PRODOM(http://www.biochem.ucl.ac.uk/bsm/dbbrowser/jj/prodomsrchjj.html)、PIR(http://pir.georgetown.edu/)、PROSITE(http://au.expasy.org/PROSITE/)或pFAM(http://pfam.wustl.edu/)数据库中可以获得。为检索这种结构域而设计的软件程序包括但并不限于MotifScan、MEME、SIGNALSCAN和GENESCAN。MotifScan一种优选的软件程序,且在(http://hits.isb-sib.ch/cgi-bin/PFSCAN)中可以获得,该程序利用PROSITE和pFAM的蛋白结构域信息。MEME算法(版本3.0)可以在GCG软件包中找到;或在http://www.sdsc.edu/MEME/meme中。SIGNALSCAN版本4.0的信息可以在http://biosci.cbs.umn.edu/software/sigscan.html获得。GENESCAN可以在http://gnomic.stanford.edu/GENESCANW.html找到。
术语“MAP标签(signature)”表示MAP特异性的结构域。这种MAP标签的例子是MAP1或MAP2标签。MAP1标签在PROSITE数据库中描述,登录号为PS00680,这里用共有序列SEQ ID NO 5:[MFY]-x-G-H-G-[LIVMC]-[GSH]-x(3)-H-x(4)-[LIVM]-x-[HN]-[YWVH]表示。在MAP1蛋白中,MAP1标签可以位于肽酶结构域内。MAP2标签进一步在PROSITE数据库中描述,登录号为PS01202,这里用共有序列SEQ ID NO 6:[DA]-[LIVMY]-x-K-[LIVM]-D-x-G-x-[HQ]-[LIVM]-[DNS]-G-x(3)-[DN]表示。对于MAP2蛋白,MAP2标签优选位于肽酶结构域的上游。本领域技术人员将认识到MAP标签可以不同于上述的共有MAP标签,而不失去其功能,例如具有1或2个错配。在Drosophila MAP2蛋白中发现了一个例子(参见图3),在MAP2标签的第十二个位置具有一个K,而不是D、N或S。
这里采用的术语“肽酶_M24结构域”指一种肽酶结构域,存在MAP蛋白中。肽酶_M24结构域在pFAM数据库中描述,登录号为PF00557。该结构域的共有序列没有在pFAM数据库中给出,但是接近500个蛋白分类为具有PEPTIDASE_M24结构域。该结构域可以通过其折叠和三级结构识别,而不是通过其一级结构,该一级结构为可变的。因此,不同的MAP蛋白也表现出该肽酶_M24结构域一级结构(氨基酸序列)的实质上的可变(参见图3)。本领域技术人员将容易地知道怎样在蛋白序列中确定肽酶_M24结构域的存在。一个例子是将蛋白序列提交到能够确定保守结构域的软件程序中,例如这里前述的MotifScan程序。肽酶_M24结构域的一个例子在SEQ ID NO 7中给出,它是AtMAP1A的肽酶_M24结构域。另一个例子在SEQ ID NO 8中给出,它是AtMAP2B的肽酶_M24结构域。优选地,本发明的方法采用的MAP蛋白具有肽酶_M24结构域,其与SEQ ID NO 7或SEQ ID NO 8至少70%相同。
任选地,例如MAP2蛋白的情况,本发明采用的MAP蛋白具有至少一个富含赖氨酸结构域。优选这种富含赖氨酸结构域位于N端和MAP标签之间。术语“富含赖氨区域”指富含赖氨酸氨基酸的氨基酸区域。典型地,富含赖氨酸结构域为多于50%的氨基酸为赖氨酸(K)的氨基酸序列。例如,在AtMAP2B中,富含赖氨酸结构域的14个连续残基的12个为赖氨酸,相当于85%的赖氨酸。任意地,可以出现连续赖氨酸的一段序列,例如,一段至少3个赖氨酸残基,例如4、5、6或更多的赖氨酸残基。相应地,存在不同MAP蛋白的富含赖氨酸结构域之间的实质性的变异,如图3中所示。鼠耳芥MAP2B蛋白的富含赖氨酸结构域用SEQ ID NO 9表示。
基于上述结构域的的存在和保守性,本领域技术人员已经能够容易地识别不同生物体的MAP蛋白,例如从植物中(参见Giglione等人,(2000),EMBO J.19:p 5916-5929)。
这里上述的一些变体可以自然发生。一旦已知变体的序列及其相应的编码序列,本领域技术人员将能够从生物材料中分离相应的MAP基因或变体,例如通过PCR技术。实施例1中描述了这种试验的一个例子。
可选地和/或另外地,上文提到的变体可以通过包括如突变(替代、插入或缺失)或衍生的技术人工制造。这些变体在这里指“衍生物”,该衍生物也可以用于本发明的方法。蛋白的衍生物可以容易地用现有技术中已知的肽合成技术制成,例如固相肽合成以及类似的技术,或通过重组DNA操作。现有技术中熟知操作DNA序列来产生蛋白的替代、插入或缺失变体的方法。例如,在DNA中预先确定的位点产生替代突变的技术为本领域技术人员熟知,包括M13诱变,T7-Gen体外诱变(USB,Cleveland,OH),QuickChange定点诱变(Stratagene,San Diego,CA),PCR-介导的定点诱变或其它定点诱变方案。
衍生物的一个例子为替代变体。术语蛋白质的“替代变体”指那些氨基酸序列中至少一个残基被去除且一个不同的残基插入该位置的变体。氨基酸的替代通常为单个残基,但可以根据位于多肽的功能限制而成簇替代;插入将通常以大约1-10个氨基残基的顺序,缺失可以在1-20个残基的范围。氨基酸替代优选包括保守氨基酸的替代。
其它衍生物为“插入变体”,其中MAP蛋白的预先确定的位置插入了一个或多个氨基酸残基的蛋白质。插入可以包括氨基端和/或羧基端的融合以及序列内单个或多个氨基酸的插入。通常在氨基酸序列内的插入为大约1到10个氨基酸的顺序。氨基端或羧基端融合的例子包括在酵母双杂交系统采用的转录活化剂的结合结构域或活性结构域、噬菌体包膜蛋白,(组氨酸)6-标签,谷胱甘肽S转移酶标签,蛋白A,麦芽糖结合蛋白,双氢叶酸还原酶,标签·100抗原决定簇,c-myc表位,FLAG-表位,lacZ,CMP(钙调蛋白(calmodulin)结合肽),HA表位,蛋白C表位和VSV表位。
其它MAP蛋白的衍生物为“缺失变体”,以从蛋白中去除一个或多个氨基酸为特征。
与天然发生的MAP蛋白相比,MAP蛋白的另一“衍生物”以替代、和/或缺失和/或添加自然发生或非自然发生的氨基酸为特征。与其来源的氨基酸序列相比,一个衍生物也可以包括一个或多个非氨基酸替代。这种非氨基酸替代包括例如,非自然发生的氨基酸、报告分子或其它配基、与氨基酸序列共价或非共价的连接。可以结合这种报告分子以有助于MAP蛋白的检测。
另一个可用于本发明的方法的MAP蛋白的变体为MAP蛋白的活性片段。MAP蛋白的活性片段包括MAP蛋白质的至少5个连续的氨基酸残基,该残基保留了与天然发生的蛋白质或其一部分类似的生物学和/或功能活性。合适的片段包括起始自第2或第3或更远的内部的甲硫氨酸残基的MAP蛋白片段。这些片段源于蛋白质翻译,自内部的ATG密码子开始。用于本发明方法的实践的MAP蛋白的功能片段可以具有一个或多个MAP蛋白的保守结构域,而保留它在本发明的方法中的功能。
根据本发明的一个优选实施方式,改变植物生长特性的方法包括提高或增加编码MAP蛋白的核酸表达。获得提高或增加基因表达或基因产物的方法现有技术中已经有许多文件记载,包括例如通过强启动子驱动的过表达,运用转录增强子或翻译增强子。这里采用的术语“过表达”表示比原始野生型表达水平增加的任意形式的表达。考虑到它所可操作地连接的启动子,优选将核酸引入植物和/或在植物中过表达的核酸为有义方向。本发明的方法中编码MAP蛋白的核酸优选在植物中过表达,例如SEQ ID NO 1的MAP核酸或其变体,例如SEQ ID NO 1的一部分或能够与其杂交的序列。然而,必须清楚本发明的应用并非局限于SEQ ID NO 1所示的核酸的应用,也不局限于编码SEQ ID NO 2的氨基酸序列的核酸序列,而其它编码SEQ ID NO 2的同源物、衍生物或活性片段的核酸序列均可应用于本发明的方法中。
可选地和/或另外地,植物细胞中增加的MAP基因的表达或提高的MAP蛋白的水平和/或活性可通过突变而达到。例如这些突变可能是造成MAP基因的调控改变的原因,导致基因相对于野生型基因更多地表达。突变也可以导致蛋白构象的改变,导致MAP蛋白更多的活性和/或更高的水平。为了获得具有改变的生长特性的植物,这种突变或这种突变基因可以被选择或分离和/或导入同一或不同的植物种类。这种突变子的例子包括MAP基因的显性阳性突变株。
改变基因的表达(通过直接或间接方法)包括改变基因的转录水平。改变的转录水平可能足够诱发一定的表型效应,例如通过共抑制机理。这里过表达转基因的总体效应是,细胞中的与引入的转基因有同源性的天然基因编码的蛋白质具有较小的活性。因此根据本发明的另一个实施方式,提供了一种改变植物生长特性的方法,包括抑制或降低编码MAP蛋白的基因的表达或降低MAP蛋白的水平和/或活性。降低细胞中蛋白的表达、水平和/或活性的例子在现有技术中已经有许多文件说明,包括,例如通过反义技术,RNAi技术,小干扰RNAs(siRNAs)和微RNA(miRNA)下调表达。
另一个下调基因表达或基因静默的方法包括采用核酶,如Atkins等人1994(WO94/00012),Lenee等人1995(WO95/03404),Lutziger等人2000(WO00/00619),Prinsen等人1997(WO97/3865)以及Scott等人1997(WO97/38116)所描述的。
基因静默也可以通过插入突变而达到(例如,T-DNA插入或转座子插入),或通过Angell和Baulcombe 1998(WO98/36083),Lowe等人1989(WO98/53083),Lederer等人1999(WO99/15682)或Wang等人1999(WO99/53050)所描述的基因静默策略。
内源性MAP基因的表达也可以通过突变下调。为了得到具有改良的生长特性的植物,这样的突变或突变基因可以被分离并引入同样或不同的植物物种。这种突变体的例子为MAP基因显性失活突变体。
以基因表达静默为目的的遗传构建体可以包括编码MAP蛋白的核酸,例如相对于启动子序列的有义和/或反义方向的SEQ ID NO 1所示的核酸(或其变体)。正向或反向重复的形式或发夹形式的内源基因的至少一部分有义或反义拷贝也可以在本发明的方法中利用。植物的生长也可以通过向植物中引入编码MAP蛋白的核苷酸序列的反义形式的至少一部分而改变。
根据本发明的另一方面,提供了有助于向植物细胞导入和/或有助于表达和/或有助于维持能够改变编码MAP蛋白的核酸的表达和/或能够改变MAP蛋白的水平和/或活性的核苷酸序列的遗传构建体和载体,因此根据本发明的另一方面,提供了一种构建体,包括:
(a)编码植物MAP蛋白或其变异体的核酸或编码植物MAP蛋白的核酸变体;
(b)能够驱动植物中的核酸(a)的表达的一个或多个控制序列;以及可选地
(c)转录终止序列。
用于本发明的方法的构建体可以用本领域技术人员熟知的重组DNA技术建立。该基因构建体可以插入载体,载体可以购买得到,适合于转化入植物并适合MAP基因在转化细胞的维持和表达。遗传构建体优选为植物表达载体。
根据(a)的核酸可以为这里前文描述的任意核酸。优选的核酸为SEQ ID NO 1或3所代表的核酸或其前文定义的变体,或者编码SEQ IDNO 2或4所代表蛋白的核酸序列或其前文定义的变体。
术语“调控序列”和“控制序列”这里可互换使用,且在广泛的情形下使用,指能够驱动和/或调控它们所操作性连接的序列的表达的调节核酸。控制序列(b)优选为植物中可操作的,最优选调控序列来自植物序列。术语“控制序列”包括启动子。“启动子”包括来源于经典的真核基因组基因的转录调节序列(包括精确的转录起始所必需的TATA盒,具有或不具有CCAAT盒序列)以及附加的调控元件(即,上游活化序列,增强子,静默子),该序列根据发育和/或外部刺激而改变基因的表达,或以组织特异性的方式表达。也包含在该术语范围内的为一种经典的原核基因的转录调控序列,在该情形下,它可以包括一个-35盒序列和/或-10盒转录调节序列。术语“调控序列”也包含赋予、活化或增强细胞、组织或器官中核酸分子表达的合成融合分子或衍生物,这里采用的术语“操作性连接”指在启动子序列和目的基因之间的功能性连接,从而使启动子序列能够起始目的基因的转录。目的基因优选以有义方向(sense orientation)与启动子操作性连接。
任意类型的启动子可以方便地用于本发明的方法。例如一种分生组织特异性启动子,如RNR(核苷酸还原酶)、cdc2a启动子和cyc07启动子;或种子特异性启动子,如2S2白蛋白、醇溶谷蛋白、或油质蛋白启动子。为了提高在萌芽时期的MAP蛋白的表达可以选择启动子。或者,可以采用仅在一种或多种种子组织,例如糊粉、胚、盾片(scutellum)或胚乳中表达的启动子。如果需要的结果是在花器官中改变MAP基因的表达,可以采用花特异性的启动子,例如叶启动子。一种花粉特异性启动子可以用于改变雄性生殖器官中MAP的表达。另外,可以采用根特异性启动子,特别在收获根的农作物中;这种农作物包括糖用甜菜、萝卜、胡萝卜以及马铃薯。可以采用脉管特异性启动子或结节(nodule)特异性启动子或应激诱导启动子。可以采用一种细胞壁特异性启动子或优先在一种或多种植物地上组织中表达的启动子,例如绿色组织、芽、茎、叶子、果实以及早期膨胀(expanding)组织。
根据本发明的一个优选具体实施方式,如上所述,基因构建体中的MAP核酸与一个组成性启动子可操作性地连接。这里定义的术语“组成性”指在和基本上在植物的所有组织中持续地充分表达的启动子。可用的组成性启动子的例子选自稻GOS2启动子、玉米GOS2启动子、CaMV35S启动子、泛素启动子、烯醇化酶启动子、肌动蛋白-2启动子和L-41启动子或其它具有类似表达模式的启动子。通过在植物的不同组织中将它们与报告基因相偶联并检测报告基因的功能,可以找到具有类似表达模式的启动子。一个合适的报告基因是β-葡糖醛酸酶,且在植物组织中比色GUS染色以显示β-葡糖醛酸酶活性为本领域技术人员熟知。
任意地,一个或多个终止子序列也可以导入基因构建体中。术语“转录终止序列”包括在转录单位末端的控制序列,它给予初级转录本3’端处理和聚腺苷酸化和转录终止的信号。其它调控元件如转录或翻译增强子,可以包含在基因构建体中。本领域技术人员已知适合用于本发明的终止子和增强子序列。本领域技术人员可以知道并容易得到这种序列。
本发明的基因构建体可以进一步包括复制源点,它是在特定细胞类型中保持和/或复制所必需的。一个例子是当一个基因构建体在细菌细胞中作为游离体(episomal)遗传元件(如,质粒或粘粒分子)需要保持的时候。优选的复制源点包括,但并不限于f1-ori和colE1 ori。
该遗传构建体可以任选地包括选择标志基因,这里采用的术语“选择标志基因”包括赋予它所表达的细胞表型的任意基因,以协助识别和/或选择用本发明的遗传异构体转染或转化的细胞。合适的标志物可以选自导致抗生素或除草剂抗性的标志物。含有重组DNA的细胞因此将能够在杀灭未转化细胞浓度的抗生素和除草剂存在的情况下存活。选择性标志基因的例子包括,导致对抗生素(如编码能够磷酸化新霉素和卡那霉素的新霉素磷酸转移酶的nptII,或编码能够磷酸化潮霉素的潮霉素磷酸转移酶的hpt),对除草剂(例如bar,提供Basta抗性;aroA或gox,提供草甘膦抗性)产生抗性的基因,或提供新陈代谢特性的基因(如manA,允许植物利用甘露糖作为唯一的碳源)。可见的标志基因导致颜色的形成(例如β葡糖醛酸酶,GUS),发光(例如萤光素酶)或荧光(绿色荧光蛋白,GFP,和其衍生物)。合适的选择标志基因的其它例子包括,氨苄青霉素抗性基因(Ampr),四环素抗性基因(Tcr),细菌卡那霉素抗性基因(Kanr),膦丝菌素抗性基因,以及氯霉素乙酰基转移酶(CAT)基因等等。
根据本发明的另一方面,提供了生产相对于相应的野生型植物具有改变的生长特性的植物的方法,包括在植物中改变编码MAP蛋白的核酸的表达和/或改变MAP蛋白的水平和/或活性。根据本发明的一个实施方式,该方法包括将能够改变编码MAP蛋白的核酸表达和/或能够改变MAP蛋白的水平和/或活性的核酸导入植物细胞中。
根据本发明的另一具体实施方式,提供了生产具有改变的生长特性的植物的方法,该方法包括:
(a)向植物细胞中导入编码MAP蛋白或其变体的核酸,或导入编码MAP蛋白的核酸的变体;且
(b)在促进植物生长的条件下培养所述的植物细胞。
根据另一优选具体实施方式,(a)的核酸为SEQ ID NO 1或2代表的核酸或其变体,或(a)的核酸编码SEQ ID NO 2或4代表的MAP蛋白或其变体。
在促进植物生长的条件下培养植物细胞,可以包括或不包括将植物细胞再生为植物。在促进植物生长的条件下培养植物细胞,可以包括或不包括生长成熟,包括例如果实产生、种子形成、种子成熟和种子安置(setting)。
在植物细胞中改变MAP核酸的表达和/或改变MAP蛋白的水平和/或活性的方法包括将蛋白直接导入所述的细胞,例如通过显微注射或冲击(ballistic)方式。可选地,这些方法包括瞬时将编码MAP蛋白的核酸导入植物细胞。
优选通过转化将MAP核酸导入植物。这里涉及的术语“转化”,包括将外源性多核苷酸转移到宿主细胞中,而不考虑用来转移的方法。
无论通过器官形成或胚形成,均可以用本发明的基因构建体来转化能够继发无性繁殖的植物组织。根据被转化的特定植物种类而选择组织。代表性的目标组织包括叶片、花粉、胚、子叶、下胚轴、雌配子体、愈伤组织、现存的分生组织(例如,顶点分生组织,叶腋芽,以及根部分生组织),和诱导的分生组织(例如,子叶分生组织和下胚轴分生组织)。可以瞬时或稳定地将核酸导入植物细胞,并可以非整合保持,例如,作为质粒。优选将编码MAP蛋白的核酸稳定地导入转化植物细胞的基因组。可以达到植物细胞基因组的稳定导入,例如,通过采用具有T-DNA边界的植物转化载体或植物表达载体,T-DNA侧翼包围欲被导入基因组的核酸。
目前植物物种的转化是一种相当常规的技术,可以方便的采用一些转化方法的任意一种来将MAP核酸导入植物细胞。转化方法包括运用脂质体、电穿孔、增加自由DNA摄入的化学物质、向植物中直接注射DNA、粒子枪轰击、用病毒或花粉转化,或显微发射。方法可以选自对于原生质体钙/聚乙二醇法(Krens,F.A.等人,1882,Nature296,72-74;Negrutiu I.等人,June 1987,Plant Mol.Biol.8,363-373);原生质体电穿孔(Shillito R.D.等人,1985 Bio/Technol3,1099-ll02);向植物材料微注射(Crossway A.等人,1986,Mol.Gen Genet202,179-185);DNA或RNA包被粒子轰击(Klein T.M.等人,1987,Nature327,70);用病毒等注射(非整合)。生产根据本发明转基因植物的优选的转化方法为农杆菌属(Agrobacterium)介导的转化方法。
优选通过农杆菌属(Agrobacterium)介导的转化来采用任何一种已知的稻转化方法来生产转基因稻植物,例如下列文献任一篇所描述的方法:公开的欧洲专利申请EP1198985 A1,Aldemita和Hodges(Planta,199,612-617,1996);Chan等人(Plant Mol.Biol.22(3)491-506,1993);Hiei等人(Plant J.6(2)271-282,1994);这些公开作为参考在这里引入,如同完全列举一样。在玉米转化的情形下,优选的方法为Ishida等人(Nat.Biotechnol.1996Jun;14(6):745-50)或Frame等人(Plant Physiol.2002May;129(1):13-22)所描述的,这些公开作为参考在这里引入,如同完全列举一样。
通常转化后,筛选植物细胞或细胞组中一个或多个上述选择标志物的存在,该标志物与MAP基因共转化。
接着得到的转化植物细胞、细胞组或植物组织可以用于通过本领域技术人员熟知的技术再生为完整的植株。
随后,可以测定推定的转化细胞或植物中目的基因的存在、拷贝数和/或基因组组成,例如运用Southern分析。可选地或另外地,导入的核酸的表达水平可以用Northern和/或Western分析,两种技术都为本领域普通技术人员所熟知。
再生的转化植物可以通过多种方法繁殖,如通过无性繁殖或传统培育技术。例如,第一代转化植物(T1植物)可以自花受精产生纯合子的第二代转化植物(T2植物),T2植物可以进一步通过传统培育技术繁殖。
产生的转化植物可以采取多种形式,例如它们可以是转化细胞和非转化细胞的嵌合体;无性转化体(例如,所有的转化细胞含有本发明的基因构建体);转化和非转化组织的嫁接体(例如,将转化的根茎嫁接到未转化的接穗上)。
本发明无疑延伸至本发明的任意方法可获得的植物,该植物具有改变的生长特性。本发明进一步延伸至该植物的任意植物部分和繁殖体。本发明进一步延伸至包含了由任意的前述方法产生的初级转化和转染的细胞、组织、器官或整株植物的子代,唯一的要求为子代表现出与本发明的方法产生的亲本同样的基因型和/或表型特征。本发明也包括具有改变的MAP基因表达和/或改变的MAP蛋白的水平和/或活性的宿主细胞。特别是本发明包括宿主细胞,其包含分离的编码MAP蛋白的核酸。该宿主细胞优选含有上述的基因构建体。本发明优选的宿主细胞可以选自细菌、藻类、真菌、酵母、昆虫、植物或动物宿主细胞。本发明扩展到具有改变的生长特性的转基因植物细胞或植物,该植物具有改变的MAP基因表达或改变的MAP蛋白的水平和/或活性。优选所述的转基因植物细胞或植物含有分离的编码MAP蛋白或其变体的核酸,更加优选含有上述的基因构建体。本发明还扩展本发明的植物的任何部分,优选可收获部分,例如但并不限于种子、叶、果实、花、茎培养物、茎、根茎、根、块茎、鳞茎或棉纤维。
这里采用的术语“植物”包括整株植物、植物的原代(ancestor)和后代和植物部分,包括种子、芽、茎、根(包括块茎)、以及植物细胞、组织和器官。术语“植物”也包括悬浮培养物、胚、分生组织区域、愈伤组织、配子体、孢子体、花粉、以及小孢子。本发明的方法中特别有用的植物包括属于Viridiplantae超家族的所有植物,特别是单子叶植物和双子叶植物,包括,饲料或草料豆类、装饰植物、食品农作物、树木、或灌木,从包括下列的植物中选择:金合欢属(Acacia spp.)、槭属(Acer spp.)、猕猴桃属(Actinidia spp.)、七叶树属(Aesculus spp.)、新西兰贝壳杉(Agathis australls)、Albizia amara、Alsophila tricolor、须芒草属(Andropogon spp.)、落花生属(Arachis spp.)、槟榔(Areca catechu)、Astelia fragrans、Astragalus cicer、Baikiaea plurijuga、桦木属(Betula spp.)、芸苔属(Brassica spp.)、木榄(Bruguiera gymnorrhiza)、Burkeaafricana、Butea frondosa、Cadaba farinosa、朱缨花属(Calliandraspp、)、茶(Camellia sinensis)、美人蕉(Canna indica)、辣椒属(Capsicum spp.)、决明属(Cassia spp.)、Centroema pubescens、木瓜属(Chaenomeles spp.)、肉桂(Cinnamomum cassia)、小果咖啡(Coffea arabica)、Colophospermum mopane、绣球小冠花(Coronillia varia)、Cotoneaster serotina、山楂属(Crataegusspp.)、香瓜属(Cucumis spp.)、柏木属(Cupressus spp.)、Cyatheadealbata、榅桲(Cydonia oblonga)、日本柳杉(Cryptomeriajaponica)、香茅属(Cymbopogon spp.)、Cynthea dealbata、榅桲(Cydonia oblonga)、Dalbergia monetaria、Davallia divaricata、山蚂蝗属(Desmodium spp.)、Dicksonia squarosa、Diheteropogonamplectens、Dioclea spp、镰扁豆属(Dolichos spp.)、Dorycniumrectum、Echinochloa Pyramidalis、Ehrartia spp.、
Figure 10003_1
(Eleusinecoracana)、Eragrestis spp.、刺桐属(Erythrina spp.)、桉属(Eucalyptus spp.)、Euclea schimperi、Eulalia villosa、荞麦属(Fagopyrum spp.)、南美稔(Feijoa sellowiana)、草莓属(Fragariaspp.)、千斤拔属(Flemingia spp)、Freycinetia banksii、Geraniumthunbergii、银杏(Ginkgo biloba)、Glycine javanica、Gliricidiaspp、陆地棉(Gossypium hirsutum)、银桦属(Grevillea spp.)、Guibourtia coleosperma、岩黄芪属(Hedysarum spp.)、牛鞭草(Hemarthia altissima)、扭黄茅(Heteropogon contortus)、大麦(Hordeum vulgare)、红苞茅(Hyparrhenia rufa)、小连翘(Hypericum erectum)、Hyperthelia dissoluta、Indigo incamata、鸢尾属(Iris spp.)、Leptarrhena Pyrolifolia、胡枝子属(Lespedizaspp.)、Lettuca spp.、银合欢(Leucaena leucocephala)、Loudetiasimplex、Lotonus bainesii、百脉根属(Lotus spp.)、Macrotylomaaxillare、苹果属(Malus spp.)、木薯(Manihot esculenta)、紫苜蓿(Medicago sativa)、水杉(Metasequoia glyptostroboides)、大蕉(Musa sapientum)、烟草属(Nicotianum spp.)、驴食草属(Onobrychis spp.)、Omithopus spp.、稻属(Oryza spp.)、Peltophorum africanum、狼尾草属(Pennisetum spp.)、Perseagratissima、碧冬茄属(Petunia spp.)、菜豆属(Phaseolus spp.)、Phoenix canariensis、Phormium cookianum、石楠属(Photinia spp.)、Picea glauca、松属(Pinus spp.)、豌豆(Pisum satiyum)、新西兰罗汉松(Podocarpus totara)、Pogonarthria fleckii、Pogonarthria squarrosa、杨属(Populus spp.)、瓜叶牧豆树(Prosopis cineraria)、花旗松(Pseudotsuga menziesii)、Pterolobium stellatum、西洋梨(Pyrus communis)、栎属(Quercusspp.)、Rhaphiolepsis umbellata、Rhopalostylis sapida、Rhusnatalensis、欧洲醋栗(Ribes grossularia)、茶藨子属(Ribes spp.)、刺槐(Robinia pseudoacacia)、蔷薇属(Rosa spp.)、悬钩子属(Rubus spp.)、柳属(Salix spp.)、Schyzachyrium sanguineum、金松(Sciadopitys verticillata)、北美红杉(Sequoiasempervirens)、巨杉(Sequoiadendron giganteum)、高粱(Sorghumbicolor)、菠菜属(spinacia spp.)、sporobolus fimbriatus、Stiburus alopecuroides、Stylosanthos humilis、葫芦茶属(Tadehagis pp)、落羽杉(Taxodium distichum)、阿拉伯黄背草(Themeda trtandra)、车轴草属(Trifolium spp.)、小麦属(Triticumspp.)、异叶铁杉(Tsuga heterophylla)、越桔属(Vaccinium spp.)、野豌豆属(Vicia spp.)、葡萄(Vitis vinifera)、Watsoniapyramidata、马蹄莲(Zantedesc hia aethiopica)、玉蜀黍(Zea mays)、苋属(amaranth)、朝鲜蓟、芦笋、茎椰菜、抱子甘蓝、甘蓝、油菜、胡萝卜、花椰菜、芹菜、羽衣甘蓝、绿叶菜、亚麻、散叶甘蓝、小扁豆、含油种子油菜、秋葵、洋葱、马铃薯、稻、大豆、稻草、糖用甜菜、糖用甘蔗、向日葵、番茄、南瓜和茶、树木和藻类等。根据本发明的优选实施例,植物为农作物,例如大豆、向日葵、油菜、苜蓿、油菜籽、棉花、番茄、马铃薯、烟草、南瓜、番木瓜、白杨、豆科植物(leguminosa)、亚麻、羽扁豆(lupinus)和高粱。根据本发明的另一优选实施方式,该植物为单子叶植物,例如甘蔗,更优选为谷类,例如稻、玉米、小麦、大麦、粟、黑麦或燕麦。
相应地,本发明提供了上述的任意一种方法,或上述的转基因植物,其中植物为单子叶植物,优选为谷物,更为优选该植物为稻或玉米。
有利地,本发明方法的实行导致具有多种改变的生长特性的植物。这里采用的术语“改变”指时间和/或地点的增加或改良、降低或改变。优选用本发明的方法改良了植物的生长特性。这里采用的术语“生长特性”优选指产量/生物量和植物高度或这里下面描述的一种或多种的生长特性,但并不仅限于此。
术语“产量”指可收获物的量,通常定义为农作物经济价值的可测量的农产品。对农作物,“产量”也表示每亩或生产单位的收获物的量。产量可以定义为数量或质量。根据农作物的不同,收获物也不同,例如,可以是种子(如为获取种子而种植的稻、高粱或玉米);地上生物量(如,用作饲料的玉米)、根(如甜菜、萝卜、马铃薯)、果实(如番茄、番木瓜)、棉纤维,或具有经济价值的植物的任意其它部分。“产量”也包括植物的产量稳定性。高产量稳定性指一年接着一年,人们可以从植物的后代获得同样的产量。“产量”也包括产量潜能,是可获得的最大的产量。
产量可能依赖一些产量要素,可以通过一定的参数来监测。这些参数为本领域的技术人员熟知,且不同农作物的参数也不相同。例如,育种人员清楚的知道他们打算提高的农作物的特定的产量要素以及相应的参数。例如,玉米的关键产量参数包括每公顷或亩的植物数量,每株植物的抽穗数量,每穗的行数(种子),每行的谷粒数,以及每千粒重量。青贮饲料玉米的常用参数为地上生物量和能量容量。稻的关键产量参数为每公顷或每亩的植物数量、每株植物的花序数目、每个花序的花(小穗)的数目、种子饱满率(每一小穗的饱满种子的数目)以及每千粒重量。优选的提高稻产量的方法包括提高提高饱满种子的数目。
根据一个特定的具体实施方式,术语“产量”包括“种子产量”。本发明的植物以提高的收获种子产量为特点。该植物以增加的饱满种子的数量和增加的收获种子的总重量为特点。本发明的植物也可具有提高的每株植物的种子总数。本发明的方法在谷类例如稻和玉米的应用中特别有利。相应地,本发明的一个特定实施方式涉及一种提高玉米的产量的方法,例如种子的产量,包括改变编码MAP蛋白的核酸的表达。
术语“产量”也包括收获指数,是收获生物量与总生物量的比率。本发明的植物以增加的收获指数为特点。本发明的方法可以方便地用于增加谷物的收获指数,特别是玉米或稻的收获指数。
术语“产量”也可以包括千粒重(TKW),是单个种子生物量的参数。本发明的植物也可以表现出提高的TKW,提高的TKW也是增加的种子体积和/或种子密度的指示。本发明的方法可以方便地用于提高谷物的千粒重,特别是玉米或稻的千粒重。
术语“产量”也可以包括典型的生物量组分,例如地上面积生物质。一般的生物质参数包括地上面积和/或地上干重。本发明的植物以增加的地上面积为特点,因此本发明的方法在为其绿色组织而培育长和/或它们地上生物量而培育的农作物的应用特别有利。本发明的方法对草、草料农作物(例如饲料玉米、苜蓿、medicago等等)、树木、甘蔗等特别有用。
本发明的方法所获得的产量的提高,可由于一种或多种上述的产量要素和/或参数提高或改善的结果获得。
这里采用的术语“生长特性”也包括植物高度。本发明的植物也可以表现出增加的植物高度。
本发明另外涉及分离的编码MAP蛋白的核酸或分离的MAP蛋白改变植物的生长特性的应用。而且本发明包含将MAP基因或MAP蛋白作为生长调节剂的应用,例如除草剂或生长刺激剂。本发明也包括含有MAP核酸或MAP蛋白或如上所述的基因构建体的组合物,用作植物生长特性的调节剂(生长调节剂如生长刺激剂)。另外,该组合物包括合适的载体、稀释剂或赋形剂。
可选地,MAP基因和MAP蛋白可被考虑作为感兴趣的农用化学化合物的靶标,例如除草剂或生长刺激剂。相应地,本发明包括将MAP基因或MAP蛋白用作农用化学化合物的靶标,例如生长调节剂。
由于本发明的植物具有极好的生长特性和高产量,它们适合于酶、医药品或农用化学品的生产,也适合生产食品或饲料产品。本发明无疑延伸至从这些植物中分离或制备的酶、医药品或农用化学品以及食品或饲料产品。
而且,为了开发产量提高的植物,编码MAP蛋白的核酸、MAP蛋白和/或本发明的构建体均可用于育种计划。而且,在特别常规的育种计划中,例如在标志物辅助育种中,也可以采用上述的等位基因变体。这种育种计划有时需要通过对植物进行突变处理向植物中引入等位基因变体。一种合适的诱导突变的方法为EMS诱变。接着通过例如PCR的方法来鉴定等位基因变体。之后为选择步骤,来选择MAP序列的更好的等位基因变体,该变体可以产生植物中生长特性的改变。选择通常通过监控含有不同MAP序列的等位基因变体的植物的生长表现进行,例如,SEQ ID NO 1的MAP序列的不同的等位基因变体。监控生长表现可以在温室和/或田野中进行,随后选择具有改变的生长特性的植物。这种生长特性可以为上文所述的生长特性的任意一个或多个。另外可选择的步骤包括将其中鉴定了优良等位基因变体的植物与另一植物杂交,例如一个具有经济价值基因型的植物。这些杂交方法可以用于将感兴趣的表型特征或性状结合起来。
根据另一类型的育种计划,鉴定一种DNA标志物,该标志物可以与能改变植物中MAP基因的表达和/或改变MAP蛋白的水平和/或活性的基因遗传连锁(该基因可以为编码MAP蛋白的基因本身或其它能够改变MAP基因的表达或能够改变MAP蛋白的水平和/或活性的基因)。接着,该DNA标志物可用于育种计划来选择具有改变的生长特性的植物。这种生长特性可以为上文所述的生长特性的任意一个或多个。
本发明的方法也可以通过向植物中导入染色体的至少一部分(自然的或人工的)(例如细菌人工染色体(BAC))而实行,该染色体至少含有编码MAP蛋白的基因,可选地,与一个或多个相关基因家族成员一起。因此,根据本发明的另一个方面,提供了通过向植物中导入至少含有编码MAP蛋白的基因的染色体的至少一部分来改变植物的生长特性的方法。
本发明将参考下列附图进行描述:
图1为在组成性启动子的调控下的含有MAP基因表达盒的植物表达载体图谱。CDS0430为鼠耳芥编码甲硫氨酸氨肽酶MAP2B的cDNA的内在密码子。PRO0129为稻GOS2启动子的内在密码子。MAP表达盒也含有双转录终止序列T-zein和T-rbcS-deltaGA。该表达盒位于胭脂碱Ti质粒的左边界(LB Ti C58)和右边界(RB Ti C58)的范围内。在这些T边界范围内也克隆了可筛查的标记物以及选择标记物,每个标记物均在组成性启动子的控制下,其后是NOS转录终止序列。而且,该载体也含有用于细菌复制的复制原点(pBR322(ori+bom))和细菌选择的选择标志物(Sm/SpR),以进行细菌选择。
图2列出了所有的本发明的说明书用到的序列。
图3显示了动物和植物MAP蛋白的多重比对,附带对不同结构域的注解。从N端到C端:富含赖氨酸结构域、MAP2标签或MAP1标签和肽酶_M24结构域。这些肽酶结构域相应于MAP2蛋白的肽酶结构域注解(例如参见SEQ ID NO 8)。MAP1蛋白的肽酶结构域比该注解延伸更远(例如参见SEQ ID NO 7)。
实施例
本发明将通过参考下列实施例加以描述,仅为说明目的。
DNA操作
除非另外说明,重组DNA技术根据Sambrook(2001)分子克隆:实验室手册,第三版,冷泉港实验室出版社,CSH,纽约,或第1和2卷的Ausubel等人(1988),Current Protocols in Molecular Biology,Current Protocols中所描述的标准操作程序进行。植物分子工作的标准的材料和方法在Plant Molecular Biology Labfase(1993)中描述,作者R.D.D.Croy,BIOS Scientific Publications Ltd(UK)和Blackwell Scientific Publications(UK)出版。
实施例1:编码鼠耳芥MAP2B的CD S0430的克隆
从鼠耳芥籽苗的cDNA文库(Invitrogen,Paisley,UK)通过PCR技术扩增编码甲硫氨酸氨肽酶MAP2B的基因。从籽苗中提取的RNA反转录后,将cDNAs克隆入pCMV Sport6.0。平均插入物的大小为1.5kb,克隆的原始数目为1.59×107cfu。在第一次6×1011cfu/ml扩增后,原始滴度确定为9.6×105cfu/ml。提取质粒后,在50μl PCR混合物中使用200ng模板。PCR扩增所用的引物为prm01642,序列为5’ACAAGTTTGTACAAAAAAGCAGGCTTCA CAATGGCGAGCGAAAGTCC3’,由SEQ IDNO10表示,以及prm01643,序列为5’ACCCAGCTTTCTTGTACAAAGTGGTAGGATCTGAATCAGTAGTCGTCTC3’,由SEQ ID NO 11表示,包括Gateway重组的attB位点(斜体字)。用Hifi Taq DNA聚合酶在标准条件下进行PCR反应。1381bp的PCR片段被扩增并用标准方法纯化。接着进行Gateway操作程序的第一步,BP反应,其中PCR片段在体内与pDONR201质粒重组以产生进入克隆p1753。质粒pDONR201从Invitrogen购买,作为Gateway技术的一部分。
实施例2:表达盒CD2231(pGOS2::AtMAP2B)的构建
随后将进入克隆p1753用于与适合稻转化的Gateway目的载体p0640的LR Gateway重组反应中。载体p0640在T-DNA界限的范围内含有作为功能元件的植物筛选标记,用于与目的序列LR体内重组的Gateway盒已经克隆入进入克隆。目的基因组成性表达的稻GOS2启动子(PRO0129)位于该Gateway盒的上游(De Pater等人,Plant J.2(6)837-844,1992)。重组步骤后,得到的具有表达盒CD2231(图1)的表达载体被转化入农杆菌属(Agrobacterium)菌株LBA4404,并随后导入稻品种Nipponbare植物中。培育转化的稻植物,然后按照实施例3描述的方法检测不同的参数。
实施例3:用pGOS2::AtMAP2B转化的T0、T1和T2稻植物的评估
大约产生15到20独立的T0转化株。将初级转化株从组织培养室转移到温室,以培育和收获T1种子。其中保留T1后代按转基因的存在/缺乏分离为3∶1的6种事件。“零合植物(null plant)”或“零合分离种”或“零合子”为用与转基因植物同样方式处理的植物,但是其中转基因被分离。零合植物也可以描述为纯合阴性转化子。对每个事件,通过PCR筛选,含有转基因(杂合子和纯合子)的大约10个T1籽苗,以及缺乏转基因(零合子)的大约10个T1籽苗。
基于T1评估的结果,选择在T1水平表现出改良生长特性的三种事件,进一步在T2代和更远后代中鉴定。对这一程度,通过检测标志物的表达而筛查来自T1阳性植物的一批种子(杂合子和纯合子同时存在)。对每一选择的事件,选择杂合子种子进行T2评估。每批种子中相等的阳性和阴性数被移植温室中,以进行评估(即,对每个事件的40株植物进行栽培,其中培养20株转基因阳性,20株转基因阴性)。因此,三种事件的总数达到120株植物,以对T2代进行评估。
T1和T2植物被转移至温室并评估植物生长参数以及种子的参数,如下文将要描述的。
(I)数字数据的统计分析
将经不均衡设计矫正的双因素ANOVA(离差分析)作为观察的植物表型性状数字值的评估统计模型。对数字值进行t检验和f检验。p值通过比较t-分布与t值,或者比较F分布与F值而得到。P值代表零假设(零假设为“转基因没有任何效应”)正确的概率。
对一种事件所有植物的所有值进行t检验。每种事件和每一生长特性都重复这种t检验。为检测在一种转化事件内的基因的效应进行t检验,这里也命名为“线性特异性”效应。在t检验中,线性特异性效应的显著性的阀值设为10%可能性水平。因此,t检验的p值低于10%表示“线性特异性”效应,意味着在该种系的转基因植物中观察的表型是由该基因的存在引起的。在转化事件的一个种群内,一些事件可能在该阀值之下或之上。这种差别可能是由于转基因在基因组中位置的差别。基因可能只在基因组的一定位置时才具有效应,因此,上述的“线性特异性效应”也指“位置依赖性效应”。
对所有事件的所有植物的所有值进行F检验。对每一生长特性都重复F检验。进行F检验来检测所有的转化事件的基因的效果并检验基因总的效果,这里也命名为“基因效果”。在F检验中,总的基因效果的显著性的阀值设置为5%概率水平,因此,F检验的p值低于5%表示“基因效应”,意味着观察的表型不仅由该基因的存在和/或转基因在基因组的位置所引起。“基因效应”表示转基因植物中该基因的广泛适应性。
(II)植物生长测量
选择的植物在温室中栽培,每株植物都接受到独特的条形码标记以将表型数据和相应植物清楚地相互连锁。选择的植物在10cm直径的罐的土壤中栽培,在下列环境设置下:光周期=11.5h,光照强度=30,000lux或更大,日间温度=28℃或更高,夜间温度=22℃,相对湿度=60-70%。转基因植物和相应的零合子在随机位置并行培育。从播种期直到成熟期(生物量没有更大增长的时期),植物每周通过数字成像室。每次从至少6个不同角度拍摄每株植物的点数字图像(2048×1536像素,16百万颜色)。下述的参数采用图像分析软件从数字图像自动生成。
(a)地上面积
植物地上面积通过计算从背景中区分的地上植物部分的像素总数来确定。该数值为不同角度在同一时间点拍摄的照片的平均值,并校准转化为平方mm表示的物理表面值。试验表明用这种方式测定的与总的最大面积相应的地上植物面积与植物地上部分的生物量相关联。
这些最大地上面积值的结果概括于表1。平均转基因植物的地上面积表现出10%的增长。在一个特定的种系中,地上面积的增加高达26%。这些结果表明MAP基因对MAP转基因植物的地上生物量具有一定的效应。
表1:MAP转基因T2植物的地上面积。每行相应于一个事件,确定转基因(TR)和零合植物(null)的平均最大地上面积(以mm2表示)。每一事件的转基因植物和零合植物的差别用绝对值(dif.)以及差别的百分比(%dif)表示。P代表每个事件的t检验的概率。最后一行表示了从所有事件计算的平均值。这里通过F检验产生p值。
(III)种子相关参数的测量
收获将成熟的初级圆锥花序、装袋,并用条形码标记,然后在烤箱中37℃干燥3天。圆锥花序接着被脱粒,并收集所有种子。用吹风装置将饱满的壳与空壳分离。分离后,将种子用可商业化购买得到计数器计数。将壳丢弃,饱满的壳在分析天平上称重。该操作步骤导致下面描述的种子相关参数的设定。
(a)每株植物的饱满种子总数
通过对分离步骤后保留的饱满壳的计数来确定饱满种子的数目。该数目总结于表2。转基因植物平均表现出饱满种子的数目52%的增加。在一个特定的种系中,饱满种子数目的增加高达76%。这些结果显示MAP基因对MAP转基因植物的饱满种子的数目具有一定的效应。
表2:MAP转基因T2植物的饱满种子的总数。每行相应于一个事件,确定转基因(TR)和零合植物(null)的平均饱满种子数目。每一事件的转基因植物和零合植物的差别用绝对值(dif.)以及差别的百分比(%dif表示)。P代表每个事件的t检验的概率。最后一行表示了从所有事件计算的平均值。这里通过F检验产生p值。
(b)每株植物的总种子产量
通过称量从植物收获的饱满壳的重量来测量作为总种子重量的总种子产量。总种子重量值概括于表3。转基因植物平均表现出总种子重量55%的增加。在一个特定的种系中,种子重量的增加高达79%。这些结果显示MAP基因对MAP转基因植物的总种子重量和种子产量具有效应。
表3:MAP转基因T2植物的每株植物的总种子重量。每行相应于一个事件,确定转基因(TR)和零合植物(null)的平均总种子重量(以克表示)。每一事件的转基因植物和零合植物的差别用绝对值(dif.)以及差别的百分比(%dif)表示。P代表每个事件的t检验的概率。最后一行表示了从所有事件计算的平均值。这里通过F检验产生p值。
Figure G04803665219960328D000391
(c)收获指数
本发明的收获指数定义为总种子产量和地上面积(mm2)的比例,乘以106的数量级。收获指数值总结于表4。转基因植物的平均表现出收获指数36%的增加。在一个特定的种系中,收获指数的增加以及由此产量的增加高达50%。这些结果显示MAP基因对MAP转基因植物的收获指数和产量具有效应。
表4:MAP转基因T2植物的收获指数。每行相应于一个事件,确定转基因(TR)和零合植物(null)的平均收获指数。每一事件的转基因植物和零合植物的差别用绝对值(dif.)以及差别的百分比(%dif)表示。P代表每个事件的t检验的概率。最后一行表示了从所有事件计算的平均值。这里通过F检验产生p值。
(d)千粒重
TKW是从计算的饱满种子的数目以及他们的总重量推断的参数。一些MAP转基因植物表现出千粒重的增加,这是增加的种子密度和/或增加的种子大小的指示。
(IV)植物高度测量
植物的高度通过罐上部的边缘的水平线与相应于植物地上部分的最高像素之间的距离确定。该值为同一时间点从不同角度拍摄的照片的平均值(按照上文的描述拍摄),并通过标准化转化为用mm表示的物理距离。试验表明用这种途径检测的植物高度与用直尺手工测量的植物高度相关。一些MAP转基因植物表现出增加的植物高度。
实施例4.MAP转化的转基因玉米植物的评估
这里描述的本发明的方法也用于玉米(Zea mays)。为了这一目的,MAP编码基因,例如玉米MAP直向同源物(orthologues),在玉米中可操作的启动子的控制下克隆入适合土壤杆菌(Agrobacterium)介导的玉米转化的植物转化载体中。该在玉米中可操作的启动子可以是组成性启动子,选自GOS2启动子、泛素启动子、L-41启动子、肌动蛋白2启动子和烯醇化酶启动子。用于玉米转化的方法已经在文献中描述(Ishida等人,Nat Biotechnol.1996Jun;14(6):745-50;Frame等人,Plant Physiol.2002May;129(1):13-22)。
用这些方法制造的转基因(近交(inbred))种系可以与另一非转基因或转基因(近交)种系杂交或自我/近亲授粉。重要的是,转基因(近交)种系可以用作母本或父本。转基因的遗传性和拷贝数通过定量实时PCR(quantitative real-time PCR)和Southern印迹分析检测,转基因的表达水平由逆转录PCR和Northern分析确定。选择转基因单个拷贝插入以及具有转基因表达的水平变化的转基因事件进行在后代中进一步的评估。
将按照上文所述获得的后代种子发芽并在十分适合玉米的条件下(16:8光周期,26-28℃日间温度和20-24℃夜间温度)以及在缺乏水、缺乏氮和过量NaCl的条件下在温室中培育。用来自同样的亲本种系的零合分离种(近交系或杂交种系),以及来自同一近交种系或杂交种系的野生型植物作为对照。对后代植物的不同生物量和发育参数进行评估,包括,但不仅限于植物高度、茎干宽度、穗下节点(nodes belowear)、穗上节点、主根、叶子数目、叶片绿色、叶片角度、总地上面积、抽穗时间、抽丝时间、成熟时间、抽穗高度、抽穗数目、抽穗长度、穗重、行数、粒数、谷物湿度,还监测了谷粒的特性包括但不仅限于谷粒大小、谷粒重量、淀粉含量、蛋白含量、油含量。玉米产量根据已知的方法计算。用MAP蛋白转化的玉米植物表现出改善的生长特性。更特别地,它们在任一种或多种的上述的生物量和发育参数中都表现出改善。
选择与相应的对照种系相比提高最显著的转基因事件进行进一步的田间试验和标志辅助培育。目标是将田间有效的转基因品质转移到另一种质。在田间运用良好确立的操作程序对玉米生长和产量相关参数分型。对不同植物密度和不同环境条件的玉米植物的产量组分进行特定评估,随后也采用良好确立的操作程序包括但不仅限于MAS增加基因从一种种质渗入到另一种质的特定位点(例如含有转基因的位点)。
实施例5.对鼠耳芥MAP1A转化的转基因植物的评估
在实施例1、2、3和4中描述的方法也用鼠耳芥MAP1A重复。为达到这一目的,将由SEQ ID NO 3表示的AtMAP1A编码基因,在稻或玉米中可行的启动子的控制下,克隆入适合于农杆菌属(Agrobacterium)介导的稻或玉米转化的植物转化载体中。一种合适的启动子是组成性启动子,例如GOS2启动子。
对稻植物,分离cDNA和载体的构建的步骤按照实施例1和2的描述进行,除了引物是SEQ ID NO 3特异性外。植物转化、植物生长和植物评估的步骤按照实施例3的描述进行。用AtMAP1A转化的稻植物具有改变的生长特性,且表现出实施例3中所描述的任意一种或多种改变的生长特性。
对于玉米植物,植物转化、植物生长、植物繁殖、植物选择和植物评估都按照实施例4描述的方法进行,用AtMAP1A转化的玉米植物具有改变的生长特性,且表现出实施例4所描述的任意一种或多种的改良的生长特性。
序列表
<110>CropDesign N.V.
 
<120>改变植物生长特性的方法
 
<130>CD-074-PCT
 
<150>EP 03075363.6
<151>2003-02-06
 
<160>11
 
<170>PatentIn version 3.1
 
<210>1
<211>1320
<212>DNA
<213>鼠耳芥
 
<400>1
atggcgagcg aaagtcctga tgttgctgtt gtagctccgg tggtggagaa tggcggcgct      60
gagtcctcta atggtaaaga ggaacaattg gaatctgagc tttcgaagaa gcttgagatt     120
gcagaagatg gtcaagagga gaacgatgga gaagaaggaa gcaaagctga gacttcaacg     180
aagaagaaga agaagaaaaa taaaagcaag aagaagaagg aactccctca acagactgat     240
ccaccttcaa ttcctgtcgt tgagctcttc ccatcaggag agtttcctga aggtgaaatc     300
caagagtata aggatgataa tctttggaga acaacatctg aagagaagag agagctggag     360
cgttttgaaa agccaatata taactctgtt cgccgagctg cagaagttca tcgccaggtt     420
cgtaaatatg tcagaagcat agtgaagcct ggaatgttga tgactgatat atgtgagacc     480
ctagagaata ctgttcgtaa gttgatatca gagaatggtc ttcaagctgg tattgcattc     540
cctacaggat gctctttgaa ttgggtcgct gctcattgga caccaaactc tggagataag     600
actgtacttc agtacgacga tgttatgaaa ttggactttg gaacacatat tgatgggcat     660
attattgact gtgcatttac agttgccttc aaccctatgt tcgatcctct cttagcagcc     720
tctcgtgaag ctacgtatac cggtatcaag gaagctggga tcgatgtccg tctctgtgat     780
atcggtgctg ctattcagga ggtcatggag tcttatgagg ttgaaatcaa cggaaaggtc     840
ttccaagtta aaagtatccg aaacttgaat ggtcacagca ttggacccta tcagatacat     900
gctgggaaat ctgttcctat cgtaaaagga ggcgagcaga caaagatgga agagggcgag     960
ttttatgcca tcgaaacatt tggatcaacc gggaaaggat atgtgagaga agacctagaa    1020
tgtagccatt acatgaagaa ctttgacgct ggccacgtcc ccttgaggtt gcctagagca    1080
aaacaactcc ttgcaaccat taacaagaat ttctcgactc tcgccttctg cagacgttat  1140
ttggaccgca ttggtgaaac caaatactta atggctctaa agaatctttg tgactctggc  1200
attgttcagc cgtatcctcc tctgtgtgat gtgaaaggaa gctatgtatc acagtttgaa  1260
cacaccattt tactgcgacc tacttgcaaa gaagttctct ccaagggaga cgactactga  1320
<210>2
<211>439
<212>PRT
<213>鼠耳芥
 
<400>2
Met Ala Ser Glu Ser Pro Asp Val Ala Val Val Ala Pro Val Val Glu
1               5                   10                  15
Asn Gly Gly Ala Glu Ser Ser Asn Gly Lys Glu Glu Gln Leu Glu Ser
            20                  25                  30
Glu Leu Ser Lys Lys Leu Glu Ile Ala Glu Asp Gly Gln Glu Glu Asn
        35                  40                  45
Asp Gly Glu Glu Gly Ser Lys Ala Glu Thr Ser Thr Lys Lys Lys Lys
    50                  55                  60
Lys Lys Asn Lys Ser Lys Lys Lys Lys Glu Leu Pro Gln Gln Thr Asp
65                  70                  75                  80
Pro Pro Ser Ile Pro Val Val Glu Leu Phe Pro Ser Gly Glu Phe Pro
                85                  90                  95
Glu Gly Glu Ile Gln Glu Tyr Lys Asp Asp Asn Leu Trp Arg Thr Thr
            100                 105                 110
Ser Glu Glu Lys Arg Glu Leu Glu Arg Phe Glu Lys Pro Ile Tyr Asn
        115                 120                 125
Ser Val Arg Arg Ala Ala Glu Val His Arg Gln Val Arg Lys Tyr Val
    130                 135                 140
Arg Ser Ile Val Lys Pro Gly Met Leu Met Thr Asp Ile Cys Glu Thr
145                 150                 155                 160
Leu Glu Asn Thr Val Arg Lys Leu Ile Ser Glu Asn Gly Leu Gln Ala
                165                 170                 175
Gly Ile Ala Phe Pro Thr Gly Cys Ser Leu Asn Trp Val Ala Ala His
            180                 185                 190
Trp Thr Pro Asn Ser Gly Asp Lys Thr Val Leu Gln Tyr Asp Asp Val
        195                 200                 205
Met Lys Leu Asp Phe Gly Thr His Ile Asp Gly His Ile Ile Asp Cys
    210                 215                 220
Ala Phe Thr Val Ala Phe Asn Pro Met Phe Asp Pro Leu Leu Ala Ala
225                 230                 235                 240
Ser Arg Glu Ala Thr Tyr Thr Gly Ile Lys Glu Ala Gly Ile Asp Val
                245                 250                 255
Arg Leu Cys Asp Ile Gly Ala Ala Ile Gln Glu Val Met Glu Ser Tyr
            260                 265                 270
Glu Val Glu Ile Asn Gly Lys Val Phe Gln Val Lys Ser Ile Arg Asn
        275                 280                 285
Leu Asn Gly His Ser Ile Gly Pro Tyr Gln Ile His Ala Gly Lys Ser
    290                 295                 300
Val Pro Ile Val Lys Gly Gly Glu Gln Thr Lys Met Glu Glu Gly Glu
305                 310                 315                 320
Phe Tyr Ala Ile Glu Thr Phe Gly Ser Thr Gly Lys Gly Tyr Val Arg
                325                 330                 335
Glu Asp Leu Glu Cys Ser His Tyr Met LysAsn Phe Asp Ala Gly His
            340                 345                 350
Val Pro Leu Arg Leu Pro Arg Ala Lys Gln Leu Leu Ala Thr Ile Asn
        355                 360                 365
Lys Asn Phe Ser Thr Leu Ala Phe Cys Arg Arg Tyr Leu Asp Arg Ile
    370                 375                 380
Gly Glu Thr Lys Tyr Leu Met Ala Leu Lys Asn Leu Cys Asp Ser Gly
385                 390                 395                 400
Ile Val Gln Pro Tyr Pro Pro Leu Cys Asp Val Lys Gly Ser Tyr Val
                405                 410                 415
Ser Gln Phe Glu His Thr Ile Leu Leu Arg Pro Thr Cys Lys Glu Val
            420                 425                 430
Leu Ser Lys Gly Asp Asp Tyr
        435
<210>3
<211>1419
<212>DNA
<213>鼠耳芥
 
<400>3
ggcgattttg agattgttct ctgattggct taatccgaga gaatcaagga attgaatggc   60
cagtgaatca gatgcatcga gcattgctac tctttcctgt gctcgctgcg agaagcctgc  120
acatcttcag tgtccgaaat gcatagactt aaagcttcct cgtgaacaag cctctttctg  180
cactcaagaa tgtttcaagg cagcttggag ctcgcacaaa tcagtacatg tgaaagctca  240
gctgtcttca atcggtgatc agaactctga tcttatttct caaggctggc tctattgcgt   300
caagaaaggc caggctagaa cacctaagct tccacacttt gattggactg ggcctctaaa   360
gcaatatccc atatctacca agcgtgttgt gcctgctgag attgagaaac ctgactgggc   420
aattgatggg actcccaaag ttgaaccgaa tagtgatcta caacatgttg ttgagataaa   480
aacgcctgaa caaatccaga gaatgcgtga aacctgtaaa attgccagag aggtcctgga   540
tgcagccgct agggtgattc accccggtgt gactactgat gagattgatc gagtagttca   600
tgaagcaact attgcagcag gaggatatcc atcgcccctc aactactatt tctttccgaa   660
atcttgctgc acatctgtta atgaagtaat ttgtcatgga attccggatg ctaggaaact   720
agaagatggt gatatagtaa atgtggatgt aacagtctgt tataaaggtt gccatggtga   780
ccttaatgag acatactttg ttggaaacgt tgacgaagca tcacgtcaac tggttaagtg   840
cacatacgag tgcctggaga aagctatagc aattgttaaa cctggagtaa gatttcgtga   900
aattggagag atagtcaacc gccatgctac aatgtctggg ttatcagtgg tgagatctta   960
ttgtggtcat ggtattggag atctcttcca ttgtgctcca aacattcctc actatgcaag  1020
aaacaaagca gttggagtga tgaaagcagg tcagactttc acaatcgagc caatgatcaa  1080
cgcagggggg tggagggatc gaacatggcc tgatggatgg actgcagtta ccgcagatgg  1140
aaaacgcagc gctcagtttg agcataccct attggtaacg gagactggtg ttgaggtttt  1200
aacagcgagg cttccttcat cgcctgacgt atatccttgg cttaccaagt gattaagtgt  1260
ttggttcctt tttggttgtg attcgtaaac ttgggaataa tagtgtcatc tttttgccat  1320
tatagaccat ttgatgttgt taccttgttg tctttgttta tgtaatttta ttattactat  1380
ctgaaactga atcttaaaga cagagtcata ctgtttcaa                         1419
<210>4
<211>398
<212>PRT
<213>鼠耳芥
 
<400>4
Met Ala Ser Glu Ser Asp Ala Ser Ser Ile Ala Thr Leu Ser Cys Ala
1               5                   10                  15
Arg Cys Glu Lys Pro Ala His Leu Gln Cys Pro Lys Cys Ile Asp Leu
            20                  25                  30
Lys Leu Pro Arg Glu Gln Ala Ser Phe Cys Thr Gln Glu Cys Phe Lys
        35                  40                  45
Ala Ala Trp Ser Ser His Lys Ser Val His Val Lys Ala Gln Leu Ser
    50                  55                  60
Ser Ile Gly Asp Gln Asn Ser Asp Leu Ile Ser Gln Gly Trp Leu Tyr
65                  70                  75                  80
Cys Val Lys Lys Gly Gln Ala Arg Thr Pro Lys Leu Pro His Phe Asp
                85                  90                  95
Trp Thr Gly Pro Leu Lys Gln Tyr Pro Ile Ser Thr Lys Arg Val Val
            100                 105                 110
Pro Ala Glu Ile Glu Lys Pro Asp Trp Ala Ile Asp Gly Thr Pro Lys
        115                 120                 125
Val Glu Pro Asn Ser Asp Leu Gln His Val Val Glu Ile Lys Thr Pro
    130                 135                 140
Glu Gln Ile Gln Arg Met Arg Glu Thr Cys Lys Ile Ala Arg Glu Val
145                 150                 155                 160
Leu Asp Ala Ala Ala Arg Val Ile His Pro Gly Val Thr Thr Asp Glu
                165                 170                 175
Ile Asp Arg Val Val His Glu Ala Thr Ile Ala Ala Gly Gly Tyr Pro
            180                 185                 190
Ser Pro Leu Asn Tyr Tyr Phe Phe Pro Lys Ser Cys Cys Thr Ser Val
        195                 200                 205
Asn Glu Val Ile Cys His Gly Ile Pro Asp Ala Arg Lys Leu Glu Asp
    210                 215                 220
Gly Asp Ile Val Asn Val Asp Val Thr Val Cys Tyr Lys Gly Cys His
225                 230                 235                 240
Gly Asp Leu Asn Glu Thr Tyr Phe Val Gly Asn Val Asp Glu Ala Ser
                245                 250                 255
Arg Gln Leu Val Lys Cys Thr Tyr Glu Cys Leu Glu Lys Ala Ile Ala
            260                 265                 270
Ile Val Lys Pro Gly Val Arg Phe Arg Glu Ile Gly Glu Ile Val Asn
        275                 280                 285
Arg His Ala Thr Met Ser Gly Leu Ser Val Val Arg Ser Tyr Cys Gly
    290                 295                 300
His Gly Ile Gly Asp Leu Phe His Cys Ala Pro Asn Ile Pro His Tyr
305                 3l0                 315                 320
Ala Arg Asn Lys Ala Val Gly Val Met Lys Ala Gly Gln Thr Phe Thr
                325                 330                 335
Ile Glu Pro Met Ile Asn Ala Gly Gly Trp Arg Asp Arg Thr Trp Pro
            340                 345                 350
Asp Gly Trp Thr Ala Val Thr Ala Asp Gly Lys Arg Ser Ala Gln Phe
        355                 360                 365
Glu His Thr Leu Leu Val Thr Glu Thr Gly Val Glu Val Leu Thr Ala
    370                 375                 380
Arg Leu Pro Ser Ser Pro Asp Val Tyr Pro Trp Leu Thr Lys
385                 390                 395
<210>5
<211>19
<212>PRT
<213>人工序列
 
<220>
<223>MAP1标签共有序列
<220>
<221>MISC_特征
<222>(1)..(1)
<223>Xaa可以是Met或Phe或Tyr 
<220>
<221>MISC_特征
<222>(2)..(2)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(6)..(6)
<223>Xaa可以是Leu或Ile或Val或Met或Cys
 
<220>
<221>MISC_特征
<222>(7)..(7)
<223>Xaa可以是Gly或Ser或His
 
<220>
<221>MISC_特征
<222>(8)..(10)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(12)..(15)
<223>Xaa可以是任意氨基酸
<220>
<221>MISC_特征
<222>(16)..(16)
<223>Xaa可以是Leu或Ile或Val或Met
 
<220>
<221>MISC_特征
<222>(17)..(17)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(18)..(18)
<223>Xaa可以是His或Asn
 
<220>
<221>MISC_特征
<222>(19)..(19)
<223>Xaa可以是Tyr或Trp或Val或His
 
<400>5
Xaa Xaa Gly His Gly Xaa Xaa Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Xaa
1               5                   10                  15
Xaa Xaa Xaa
 
<210>6
<211>17
<212>PRT
<213>人工序列
 
<220>
<223>MAP2标签共有序列
<220>
<221>MISC_特征
<222>(1)..(1)
<223>Xaa可以是Asp或Ala
 
<220>
<221>MISC_特征
<222>(2)..(2)
<223>Xaa可以是Leu或Ile或Val或Met或Tyr
 
<220>
<221>MISC_特征
<222>(3)..(3)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(5)..(5)
<223>Xaa可以是Leu或Ile或Val或Met
 
<220>
<221>MISC_特征
<222>(7)..(7)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(9)..(9)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(10)..(10)
<223>Xaa可以是His或Gln
 
<220>
<221>MISC_特征
<222>(11)..(11)
<223>Xaa可以是Leu或Ile或Val或Met
 
<220>
<221>MISC_特征
<222>(12)..(12)
<223>Xaa可以是Asp或Asn或Ser
<220>
<221>MISC_特征
<222>(14)..(16)
<223>Xaa可以是任意氨基酸
 
<220>
<221>MISC_特征
<222>(17)..(17)
<223>Xaa可以是Asp或Asn
 
<400>6
Xaa Xaa Xaa Lys Xaa Asp Xaa Gly Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa
1               5                   10                  15
Xaa
 
<210>7
<211>74
<212>PRT
<213>鼠耳芥
 
<220>
<221>MISC_特征
<223>AtMAP1A的肽酶_M24结构域
 
<400>7
Arg Ser Tyr Cys Gly His Gly Ile Gly Asp Leu Phe His Cys Ala Pro
1               5                   10                  15
Asn Ile Pro His Tyr Ala Arg Asn Lys Ala Val Gly Val Met Lys Ala
            20                  25                  30
Gly Gln Thr Phe Thr Ile Glu Pro Met Ile Asn Ala Gly Gly Trp Arg
        35                  40                  45
Asp Arg Thr Trp Pro Asp Gly Trp Thr Ala Val Thr Ala Asp Gly Lys
    50                  55                  60
Arg Ser Ala Gln Phe Glu His Thr Leu Leu
65                  70
<210>8
<211>72
<212>PRT
<213>鼠耳芥
 
<220>
<221>MISC_特征
<223>AtMAP2B的肽酶_M24结构域
 
<400>8
Arg Asn Leu Asn Gly His Ser Ile Gly Pro Tyr Gln Ile His Ala Gly
1               5                   10                  15
Lys Ser Val Pro Ile Val Lys Gly Gly Glu Gln Thr Lys Met Glu Glu
            20                  25                  30
Gly Glu Phe Tyr Ala Ile Glu Thr Phe Gly Ser Thr Gly Lys Gly Tyr
        35                  40                  45
Val Arg Glu Asp Leu Glu Cys Ser Hi s Tyr Met Lys Asn Phe Asp Ala
    50                  55                  60
Gly His Val Pro Leu Arg Leu Pro
65                  70
<210>9
<211>13
<212>PRT
<213>鼠耳芥
 
<220>
<221>MISC_特征
<223>AtMAP2B的富含赖氨酸的结构域
 
<400>9
Lys Lys Lys Lys Lys Lys Asn Lys Ser Lys Lys Lys Lys
1               5                   10
<210>10
<211>47
<212>DNA
<213>人工序列
 
<220>
<223>引物prm01642
<400>10
acaagtttgt acaaaaaagc  aggcttcaca atggcgagcg aaagtcc    47
<210>11
<211>49
<212>DNA
<213>人工序列
 
<220>
<223>引物prm01643
<400>11
acccagcttt cttgtacaaa gtggtaggat ctgaatcagt agtcgtctc    49

Claims (9)

1.相对于相应野生型植物增加植物产量的方法,包括通过向植物中导入编码MAP蛋白的核酸以增加植物中编码植物甲硫氨酸氨肽酶MAP蛋白的核酸的表达,所述MAP蛋白从N-端至-C端包含(i)包含一段至少3个连续的赖氨酸的富含赖氨酸结构域、(ii)SEQ ID NO:6所代表的MAP2标签和(iii)至少70%与SEQ ID NO:8一致肽酶_M24结构域。
2.生产相对于相应的野生型植物而言具有增加产量的植物的方法,包括:
a)向植物细胞中导入编码植物甲硫氨酸氨肽酶MAP蛋白的核酸,所述MAP蛋白从N-端至-C端包含(i)包含一段至少3个连续的赖氨酸的富含赖氨酸结构域、(ii)SEQ ID NO:6所代表的MAP2标签和(iii)至少70%与SEQ ID NO:8一致肽酶_M24结构域;且
b)在促进植物生长的条件下培养所述的植物细胞。
3.根据权利要求1或2的方法,所述肽酶_M24结构域如SEQ ID NO:8所代表的。
4.根据权利要求2的方法,其中(a)中所述的核酸为SEQ ID NO 1或3代表的核酸,或(a)中所述的核酸编码SEQ ID NO 2或4代表的MAP蛋白。
5.根据权利要求1、2或4的方法,其中所述增加的产量为增加的种子产量。
6.根据权利要求1、2或4的方法,其中所述增加的产量为增加的植物高度。
7.分离的编码甲硫氨酸氨肽酶MAP蛋白的核酸或分离的甲硫氨酸氨肽酶MAP蛋白的用途,其用于增加植物相对于相应野生型植物的产量,所述MAP蛋白从N-端至-C端包含(i)包含一段至少3个连续的赖氨酸的富含赖氨酸结构域、(ii)SEQ ID NO:6所代表的MAP2标签和(iii)至少70%与SEQ ID NO:8一致肽酶_M24结构域。
8.根据权利要求7的用途,其中所述增加的产量为增加的种子的产量。
9.根据权利要求7的用途,其中所述增加的产量为增加的植物高度。
CN2004800036652A 2003-02-06 2004-02-06 改变植物生长特性的方法 Expired - Fee Related CN1748033B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03075363 2003-02-06
EP03075363.6 2003-02-06
PCT/EP2004/050092 WO2004070027A2 (en) 2003-02-06 2004-02-06 Method for modifying plant growth characteristics

Publications (2)

Publication Number Publication Date
CN1748033A CN1748033A (zh) 2006-03-15
CN1748033B true CN1748033B (zh) 2011-10-05

Family

ID=32842789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800036652A Expired - Fee Related CN1748033B (zh) 2003-02-06 2004-02-06 改变植物生长特性的方法

Country Status (9)

Country Link
US (1) US7919678B2 (zh)
EP (1) EP1590466B1 (zh)
CN (1) CN1748033B (zh)
AR (1) AR043126A1 (zh)
AT (1) ATE482280T1 (zh)
BR (1) BRPI0407314A (zh)
DE (1) DE602004029230D1 (zh)
ES (1) ES2354425T3 (zh)
WO (1) WO2004070027A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011000483A (es) * 2008-07-17 2011-02-24 Basf Plant Science Gmbh Plantas que tienen rasgos mejorados relacionados con el rendimiento y un metodo para producir las mismas.
DE112009003749T5 (de) * 2008-12-17 2012-11-15 Basf Plant Science Gmbh Pflanzen mit gesteigerten ertragsbezogenen Eigenschaften und/oder gesteigerter abiotischerStresstoleranz und Verfahren zur Herstellung derselben
CN102559727A (zh) * 2010-12-10 2012-07-11 财团法人工业技术研究院 表达载体及应用微藻产生油脂的方法
US9573980B2 (en) 2013-03-15 2017-02-21 Spogen Biotech Inc. Fusion proteins and methods for stimulating plant growth, protecting plants from pathogens, and immobilizing Bacillus spores on plant roots
BR122023020910A2 (pt) 2014-09-17 2024-01-30 Spogen Biotech Inc Método para fornecimento de proteínas ou peptídeos a um animal
AR107895A1 (es) 2016-03-16 2018-06-28 Spogen Biotech Inc Métodos para promover la salud de las plantas usando enzimas libres y microorganismos que sobreexpresan enzimas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000841A1 (en) * 1999-06-29 2001-01-04 Syngenta Limited Insecticidal proteins from paecilomyces and synergistic combinations thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885820A (en) * 1996-01-31 1999-03-23 St. Louis University Clone of a nucleotide sequence encoding a protein having two functions
EP1033405A3 (en) * 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
EP1478224A4 (en) * 2002-02-08 2006-05-10 Du Pont peptide deformylase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000841A1 (en) * 1999-06-29 2001-01-04 Syngenta Limited Insecticidal proteins from paecilomyces and synergistic combinations thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carmela Giglione et al.Identification of eukaryotic peptide deformylasesrevealsuniversality of n-terminal protein processingmechanisms.the EMBO Journal19 21.2000,19(21),表1,图1,5922-5927页.
Carmela Giglione et al.Identification of eukaryotic peptide deformylasesrevealsuniversality of n-terminal protein processingmechanisms.the EMBO Journal19 21.2000,19(21),表1,图1,5922-5927页. *

Also Published As

Publication number Publication date
WO2004070027A9 (en) 2010-02-04
ES2354425T3 (es) 2011-03-14
BRPI0407314A (pt) 2006-02-21
US7919678B2 (en) 2011-04-05
EP1590466A2 (en) 2005-11-02
AR043126A1 (es) 2005-07-20
WO2004070027A2 (en) 2004-08-19
CN1748033A (zh) 2006-03-15
ATE482280T1 (de) 2010-10-15
WO2004070027A3 (en) 2004-11-25
US20060037106A1 (en) 2006-02-16
DE602004029230D1 (de) 2010-11-04
EP1590466B1 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CN1732266B (zh) 具有改变的生长特性的植物及其生产方法
CN103045638A (zh) 具有改良生长特性的植物及其制备方法
AU2010254594B2 (en) Plants having improved growth characteristics and method for making the same
AU2005225561B2 (en) Plants having improved growth characteristics and method for making the same
CN1950511B (zh) 产量增加的植物及制备其的方法
CN1906304B (zh) 具有增加产量的植物及其生产方法
CN1748033B (zh) 改变植物生长特性的方法
CN1993039B (zh) 具有改良生长特性的植物的制备方法
ZA200501356B (en) Plants having changed development and a method for making the same
CN1934259B (zh) 具有改良的生长特性的植物以及制备所述植物的方法
US20070067875A1 (en) Plants having improved growth characteristics and a method for making the same
CN1902219B (zh) 具有改变的生长特征的植物及其制备方法
CN101665803A (zh) 具有改变的生长特性的植物及其生产方法
EP1580275A1 (en) Plants having improved growth characteristics and method for making the same
MXPA06005774A (en) “seedy1”nuceic acids for making plants having changed growth characteristics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111005

Termination date: 20140206