CN1743644B - 地层评价装置和方法 - Google Patents
地层评价装置和方法 Download PDFInfo
- Publication number
- CN1743644B CN1743644B CN2005100976679A CN200510097667A CN1743644B CN 1743644 B CN1743644 B CN 1743644B CN 2005100976679 A CN2005100976679 A CN 2005100976679A CN 200510097667 A CN200510097667 A CN 200510097667A CN 1743644 B CN1743644 B CN 1743644B
- Authority
- CN
- China
- Prior art keywords
- pipeline
- fluid
- cleaning
- valve
- downhole tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 55
- 238000011156 evaluation Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 296
- 230000000149 penetrating effect Effects 0.000 claims abstract description 7
- 238000004140 cleaning Methods 0.000 claims description 78
- 238000005755 formation reaction Methods 0.000 claims description 50
- 238000005070 sampling Methods 0.000 claims description 48
- 238000005086 pumping Methods 0.000 claims description 47
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000011109 contamination Methods 0.000 abstract description 3
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 37
- 238000012360 testing method Methods 0.000 description 18
- 238000005553 drilling Methods 0.000 description 14
- 239000003344 environmental pollutant Substances 0.000 description 11
- 231100000719 pollutant Toxicity 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000012856 packing Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 230000001360 synchronised effect Effects 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 6
- 238000001595 flow curve Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/10—Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Sampling And Sample Adjustment (AREA)
- Geophysics And Detection Of Objects (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明提供一种减少污染的地层评价技术。所述的技术涉及将流体抽汲入井下工具内,该井下工具设置在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的流体被抽汲入至少两个入口内以接收地层流体。至少一条评价管线流体地连接到至少一个入口上以使原始流体进入井下工具。至少一条清洁管线流体地连接到所述入口上以使被污染地流体进入井下工具。至少一条流体管路流体地连接到评价管线和/或清洁管线上以选择性地将流体抽汲入其内。设置至少一个流体连接器以选择性地在管线之间建立流体连通。设置至少一个传感器以测量一条管线内的井下参数。所述流体可选择性地被泵送穿过管线以降低评价管线内的污染。
Description
技术领域
本发明涉及利用布置在井眼内的井下工具进行地层评价的技术,所述的井眼穿透地下地层。尤其是,本发明涉及减少抽汲入井下工具和/或由井下工具进行评价的地层流体的污染的技术。
背景技术
钻出井眼以确定和生产烃类。其末端具有钻头的井下钻具钻进到地层中从而形成一个井眼。在钻具钻进时,将钻井液泵入,使之穿过钻具并从钻头排出,以冷却钻具并将钻屑带离。钻井液从钻头排出并返回到地面以穿过钻具进行再循环。所述的钻井液也被用于形成衬在井眼的泥饼。
在钻井作业期间,需要对井眼所穿透地层进行各种评价。在某些情况下,所述的钻具可设置有对周围地层测试和/或取样的装置。在某些情况下,可将钻具移走并将钢丝绳工具布置到井眼中以对地层进行测试和/或取样。在其它情况下,所述的钻具可用于完成测试或取样。例如,这些取样或测试可用于确定有价值的烃类。
地层评价常常需要将地层流体抽汲入井下工具以进行测试和/或取样。各种装置(如探头)从井下工具伸出以与井眼周围的地层形成流体连通并将流体抽汲入井下工具。一种典型的探头为环形元件,其从井下工具伸出并定位靠在井壁上。探头末端的橡胶封隔器用于与井壁形成密封。另一种与井壁形成密封的装置为双管封隔器。利用双管封隔器,两个弹性环相对于所述工具径向膨胀从而封隔其间一部分井眼。所述的环与井壁形成密封并允许流体进入封隔的井眼部分和进入井下工具的入口。
衬在井眼的泥饼通常有助于探头和/或双管封隔器与井壁形成密封。一旦密封形成,通过降低井下工具内的压力使地层流体穿过入口进入井下工具。用于井下工具的探头和/或封隔器的示例在美国专利US6,301959、US4,860,581、US4,936,139、US6,585,045、US6,609,568、US6,719,049和申请号为2004/0000433的美国专利中进行了描述。
通常根据抽汲入钻井工具的流体而进行地层评价。目前存在着对进入井下工具的流体进行各种测试、预测试和/或取样收集的技术。然而,人们已经发现当地层流体进入井下工具的时候,各种污染物(如井眼流体和/或钻井液)可能会随着地层流体一起进入井下工具。这些污染物会影响对地层流体的测试和/或取样的质量。此外,由于需要另外的时间来进行更多的测试和/或取样,污染物可引起井眼操作的昂贵的时间延误。另外,这些问题还可产生不正确和/或不能使用的错误结果。
因此,需要进入井下工具的地层流体足够‘清洁’或‘原始’以进行有效的测试。换句话说,地层流体应该具有很少或者没有污染物。人们一直试图消除随地层流体进入井下工具的污染物。如美国专利US4,951,749所述,将过滤器安装在探头内以阻止污染物随地层流体一起进入井下工具。此外,如授权给Hrametz的美国专利US 6,301,959所示,探头安装有护圈以在污染流体进入探头时使其转离清洁流体。
尽管存在着进行地层评价和试图消除污染物的技术,但是仍需要控制流过井下工具的流体的流动,以在污染物进入和/或穿过井下工具时减少污染物.需要有能够将污染物从清洁流体中分离的技术.还需要能够完成下述一种或多种功能的技术,其中:分析穿过管线的流体,选择性地控制流过井下工具的流体的流动,响应于探测到的污染物,去除污染物和/或灵活处理井下工具内的流体.
发明内容
在至少一个方面,本发明涉及一种减少污染的地层评价系统,其用于设置在穿透地层的井眼内的井下工具中,所述地层内含有原始流体和被污染的流体。所述的系统包括:
至少两个用于接收地层流体的入口,至少一条流体地连接到至少两个入口中至少一个的评价管线以使原始流体进入所述的井下工具,至少一条流体地连接到至少一个入口的清洁管线,以使被污染的流体进入所述的井下工具,至少一条流体地连接到评价管线和/或清洁管线的流体管路,以选择性地将流体抽汲到其内,至少一个流体连接器,以选择性地在评价管线和/或清洁管线之间建立流体连通,以及至少一个传感器以测量评价管线和/或清洁管线内的井下参数。
另一方面,本发明涉及一种减少污染的地层评价工具,该工具设置在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的工具包括:可从外壳伸出的流体连通装置以与井壁密封结合,至少两个用于接收地层流体的入口,至少一条设置在外壳内并流体地连接到至少一个入口的评价管线,以使原始流体进入所述的井下工具,至少一条流体地连接到所述入口的清洁管线,以使被污染的流体进入所述的井下工具,至少一条流体地连接到评价管线和/或清洁管线的流体管路,以选择性地将流体抽汲入其中,至少一个流体连接器,以选择性地在评价管线和/或清洁管线之间建立流体连通,以及至少一个传感器,以测量评价管线和/或清洁管线内的井下参数。
又一方面,本发明涉及一种评价含有原始流体和被污染流体的地层的方法。该方法包括一个井下工具,该井下工具具有至少两个用于将流体抽汲入井下工具内的至少一条评价管线和至少一条清洁管线的入口。所述的井下工具设置在穿透地层的井眼内,流体选择性地被抽汲入评价管线和/或清洁管线,在评价管线与清洁管线之间选择性地建立流体连通,测量评价管线和/或清洁管线内流体的井下参数。
最后,在又一方面,本发明涉及一种将流体抽汲入井下工具的方法,所述的井下工具可定位在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的方法包括:定位井下工具的流体连通装置,其与井壁密封结合,在流体连通装置的至少一条评价管线与地层之间建立流体连通,在流体连通装置的至少一条清洁管线与地层之间建立流体连通,在清洁泵的泵速下将流体泵入清洁管线,在评价泵的泵速下将流体泵入评价管线,以不连续的时间间隔选择性地改变清洁泵和/或评价泵的泵速,并在时间间隔之后对评价管线和/或清洁管线内的流体进行地层评价。
附图说明
为了详细地理解本发明的上述特征和优点,结合实施例对本发明做出更详细地描述和对上面简明地总结,所述的实施例在附图中示出.然而应该指出,附图仅仅示出了本发明典型的实施例,因此不能认为其是对本发明范围的限制,本发明允许具有其它等效的实施例.
图1为示意图,其部分地示出了设置在地层附近井眼内的井下地层评价工具的剖面。
图2为图1所示的部分地层评价工具的示意图,其中示出了接收地层流体的流体流动系统。
图3为井下工具和图2所示的流体流动系统的详尽示意图。
图4A为使用不同步泵速的流过图2中井下工具的流体的流量曲线。图4B1-4为分别通过图4A中的A-D点的流过图2所示井下工具的流体的示意图。
图5A为使用同步泵速的通过图2中井下工具的流体的流量曲线。图5B1-4为分别通过图5A中的A-D点的流过图2所示井下工具的流体的示意图。
图6A为使用部分同步泵速的通过图2中井下工具的流体的流量曲线。图6B1-4为分别通过图6A中的A-D点的流过图2所示井下工具的流体的示意图。
图7A为使用偏离同步泵速的通过图2中井下工具的流体的流量曲线。图7B1-5为分别通过图7A中的A-E点的流过图2所示井下工具的流体的示意图。
图8A为使用偏离同步泵速的通过图2中井下工具的流体的流量曲线。图8B1-5为分别通过图8A中的A-E点的流过图2所示井下工具的流体的示意图。
具体实施方式
本发明的优选实施例在上述的附图中示出并将在下面进行详细描述。在描述优选实施例的过程中,相似或相同的附图标记用于表示相同或相似的部件。附图没有必要按比例,并且为了清晰简明,附图特定的特征和特定的视图在比例上可能有些夸张或者是示意性的。
图1示出了与本发明一起使用的井下工具。可使用能够完成地层评价的任意井下工具,如钻井工具、挠性管或其它井下工具。图1所示的井下工具为利用电缆16从钻机12下入到井眼14中并定位在地层F附近的常规钢丝绳工具10。井下工具10具有适于与井壁密封并将流体从地层抽汲入井下工具的探头18。双管封隔器21也被示出,以便表明各种流体连通装置(如探头和/或封隔器)可用于将流体抽汲入井下工具。备用活塞19有助于将井下工具和探头推靠在井壁上。
图2为图1所示部分井下工具10的示意图,其示出了流体流动系统34。探头18优选从井下工具伸出以与井壁结合。所述探头具有封隔器20以与井壁密封。该封隔器与井壁接触并与衬在井眼的泥饼22形成密封。泥饼渗入井壁从而形成井眼的侵入带24。侵入带包含有泥浆和污染周围地层的其它井眼流体,所述周围地层包括地层F并且部分清洁地层流体26包含在其中。
探头18优选具有至少两条管线,一条评价管线28和一条清洁管线30。可以理解,在使用双管封隔器的时候,入口可设置在其间以将流体抽汲入井下工具的评价管线和清洁管线。用于将流体抽汲入单独管线的流体连通装置的示例(如探头和双管封隔器),在授权给本发明的受让人的美国专利申请6719049和公开号为20040000433的专利申请和授权给Halliburton的US 6,301,959专利中进行了描述。
评价管线伸入井下工具并用于使清洁的地层流体进入井下工具以进行测试和/或取样。评价管线伸入取样室35以对地层流体进行取样。清洁管线30伸入井下工具并用于使被污染的流体离开流入评价管线的清洁流体。被污染的流体可通过出口37排入井眼中。一个或多个泵36可用于使流体穿过管线。一个分流器或挡板优选设置在评价管线和清洁管线之间以便分离其中流过的流体。
现在参看图3,其中更加详尽地示出了图2所示的流体流动系统34。在该图中,流体通过探头18而被抽汲入评价管线和清洁管线。在流体流入井下工具时,侵入带24(如图2)内被污染的流体穿过,以便清洁流体26可进入评价管线28(如图3)。被污染的流体被抽汲入清洁管线并离开评价管线,如箭头所示。图3示出了具有清洁管线的探头,所述的清洁管线相对于探头表面形成了一个环。然而,可以理解,也可以应用其它一个或多个入口和贯穿探头的管线的其它布局。
评价管线28和清洁管线30从探头18伸出并穿过井下工具的流体流动系统34。评价管线和清洁管线可选择性地与贯穿流体流动系统的管线连通,这里将对其做详尽描述。图3所示的流体流动系统具有在流体从地层附近的上游位置流到穿过井下工具的下游位置时控制清洁和/或被污染流体流动的多个特征。所述的系统具有多种流体测试和/或控制装置,如管线(28,29,30,31,32,33,35)、泵36、预测试活塞40、取样室42、阀44、流体连接器(48,51)和传感器(38,46)。所述的系统还可具有各种附加装置,如限流器、分流器、处理器和用于控制流动和/或进行各种地层评价操作的其它装置。
评价管线28从探头18伸出并流体地连接到贯穿井下工具的管线上。评价管线28优选具有预测试活塞40a和传感器,如压力计38a和流体分析仪46a。清洁管线30从探头18伸出并流体地连接到贯穿井下工具的管线上。清洁管线30优选具有预测试活塞40b和传感器,如压力计38b和流体分析仪46b。传感器(如压力计38c)可连接到评价管线28和清洁管线30以测量它们之间的参数,如压差。这些传感器可按照需要沿着流体流动系统的任意管线设置在其它位置。
可设置一个或多个预测试活塞以将流体抽汲入井下工具并进行预测试操作。预测试通常用于在流体通过探头而被抽汲入井下工具时产生井下压力跟踪和管线内的压力产生。当结合具有评价管线和清洁管线的探头使用时,预测试活塞可沿着每一管线设置以产生地层曲线,这些曲线可用来进行比较和分析。此外,预测试活塞可用于将流体抽汲入井下工具以打破沿着井壁的泥饼。所述的活塞可同步循环或者以不同的速度循环以便调整和/或产生穿过各自管线的压差。
在作业期间,预测试活塞还可用于诊断和/或探测问题。在所述活塞以不同的速度循环时,可确定管线之间隔离的完整性。在穿过一条管线的压力变化反映在第二管线时,则显示出管线之间存在着不完全的隔离。管线之间缺少隔离可显示出管线之间存在着不完全的密封。活塞循环期间的穿过管线的压力读数可用于帮助诊断任意问题或者确认操作的充分性。
流体流动系统可具有流体连接器,如转换器48和/或连接器51,以在评价管线和清洁管线(和/或流体地连接到其上的管线)之间传输流体.这些装置可沿着流体流动系统设置在各个位置以使流体从一条或多条管线转向流到所需的部件或井下工具部分.如图3所示,可旋转的转换器48可用于使评价管线28与管线32流体连通,并使清洁管线30与管线29流体连通.换句话说,来自管线的流体可按照需要选择性地在各条管线之间转换.作为示例,流体可从管线28转向流到管路50b,并且流体可从管线30转向流到管路50a.
连接器51在图3中示出,其包括多个阀44a,44b,44c,44d以及相关的连接器管线52和54。阀44a允许流体从管线29流到连接器管线54和/或穿过管线31流到管路50a。阀44b允许流体从管线32流到连接器管线54和/或穿过管线35流到管路50b。阀44c允许流体在阀44a和44b上游的管线29,32之间流动。阀44d允许流体在阀44a和44b下游的管线31,35之间流动。这种结构可使评价管线和清洁管线之间的流体选择性的混合。例如,这可用于选择性地使流体从管线流到一条或两条取样管路50a,50b。
阀44a和44b还可作为隔离阀使用,以便将管线29,32内的流体同阀44a,44b下游的流体流动系统内的其余流体隔离开。所述的隔离阀关闭以隔离井下工具内固定量的流体(即地层与阀44a,44b之间管线内的流体)。位于阀44a和/或44b上游固定量的流体用于进行井下测试,如压力和流动性。
在某些情况下,如在取样期间,需要维持评价管线和清洁管线之间的分离。例如,这可通过关闭阀44c和/或44b来完成,以防止流体在管线29和32之间或管线31和35之间流动。在其它情况下,管线之间的流体连通可用于进行井下测试,如地层压力测试和/或流动性测试。例如,这可通过关闭阀44a,44b,打开阀44c和/或44d来完成,以使流体分别流过管线29和32,或31和35。在流体流入管线时,沿着管线设置的压力计可用于测量压力并确定探头与井壁之间接触面上的流量和过流面积的变化。这一信息可用于产生地层流动性。
阀44c,44d还可使流体在井下工具内的管线之间穿过以防止管线之间产生压差。如果缺少这样一个阀,管线之间的压差会使流体从一条管线流出并在穿过地层之后返回进入井下工具内的另一条管线,这样可改变测试数据,如流动性和压力。
连接器51也可用于使流体流动系统下游的部分与流体流动系统上游部分相隔离。例如,连接器51(即通过关闭阀44a,44b)可用于使流体从连接器上游位置流到井下工具的其它部分,如穿过阀44j和管线25从而避免了流体管路。在另一示例中,通过关闭阀44a,44b和打开阀44d,这一结构可用于使流体在管路50之间通过和/或通过阀44k和管线39流到井下工具的其它部分。这一结构还可用于使流体在其它部件和流体管路之间通过而不与探头流体连通。这在某种情况下是有益的,如连接器的下游具有另外的部件(如另外的探头和/或流体管路模块)的情况下。
操作连接器51以便关闭阀44a和44d及打开阀44d。在这一结构中,来自两条管线的流体可从连接器51上游的位置流到管线35。可选择地是,关闭阀44b和44d并且打开阀44a和44c,以便来自两条管线的流体可从连接器51上游的位置流到管线31。
管路50a和50b(有时称作取样或流体管路)优选包括泵36、取样室42、阀44和相关管线以选择性地抽汲流体穿过井下工具。可使用一条或多条管路。为了描述的目的,描述两条不同的管路,但是可使用相同或其它各种管路。
管线31从连接器51伸至管路50a。设置阀44e以选择性地使流体流入管路50a。流体可从管线31经过阀44e转向流到管线33a 1并通过排出口56a进入井眼。可选择地是,流体可从管线31经过阀44e并穿过管线32而转向流到阀44f。可分别在管线33a 1和33a 2上设置泵36a 1和36a 2。
经过管线33a 2的流体可通过阀44f并通过管线33b1转向流到井眼,或者通过管线33b2转向流到阀44g。泵36b可设置在管线33b2上。
经过管线33b2的流体可通过阀44g流到管线33c1或管线33c 2。当转向流到管线33c 1时,流体可通过阀44h并通过管线33d1转向流到井眼,或者通过管线33d2流回。当转向流到管线33c 2时,流体在取样室42内聚积。缓冲管线33d 3伸入到井眼和/或流体地连接到管线33d 2上。泵36c设置在管线33d 3上以抽汲从中穿过的流体。
管路50b具有阀44e’以选择性地使流体从管线35流入管路50b。流体可经过阀44e’进入管线33c 1’,或者进入管线33c 2’直至进入取样室42b。穿过管线33c 1’的流体可通过阀44g’流入管线33d1’并向外流入井眼,或者流入管线33d2’。缓冲管线33d 3’从取样室42b伸入到井眼和/或流体地连接到管线33d 2’上。泵36d设置在管线33d 3’上以抽汲从中穿过的流体。
各种流动结构都可用于流动控制管路。例如可包括另外的取样室。一个或多个泵可设置在一条或多条贯穿管路的管线上。多个阀和相关的管线可用于将流体泵送至和转向流到取样室中和/或井眼中。
所述的管路可按照图3所示的一样相邻设置。可选择地是,所有或部分管路可设置在井下工具附近并通过管线流体连通。在某些情况下,部分管路(以及其它工具的其它部分,如探头)可设置在模块内,该模块可以各种结构形式连接以构成所述的井下工具。多条管路可设置在各种位置和/或结构中。一条或多条管路可用于连接到贯穿井下工具的一条或多条管路上。
平衡阀44i和相关的管线49与管线29连接。一个或多个这样的平衡阀可沿着评价和/或清洁管线设置以平衡管线与井眼之间的压力。这种平衡使得井下工具与井眼之间的压差得到平衡,以便井下工具不会粘靠在地层上。此外,平衡管线有助于在增压流体上升到地面时管线内部排出增压流体和气体。该阀可沿一条或多条管线的设置在各个位置。可设置多个平衡阀,尤其是在希望将压力限制在多个区域时。可选择地是,井下工具内的其它阀44可设置成自动打开以在多个区域平衡压力。
多种阀可用于引导和/或控制穿过管线的流体的流动。这些阀可包括单向阀、转换阀、限流阀、平衡阀、隔离阀或者旁通阀和/或能够控制流体流动的其它装置。阀44a-k可为选择性地使流体通过管线的双位阀。然而,它们还可以是允许从中通过有限量流体的阀。转换阀48可以是这样一种阀,其可用于使流体从评价管线28转向流到第一取样管路以及从清洁管线转向流到第二取样管路,并且然后将取样管线切换到第二取样管路和将清洁管线切换到第一取样管路。
一个或多个泵可穿过管线进行设置以控制穿过其中的流体的流量。泵的位置可用于协助通过井下工具的特定部分抽汲流体。所述的泵还可用于选择性地使通过一条或多条管线的流体以所需的速度和/或压力流动。对所述的泵进行操作可用于协助确定井下地层参数,如地层流体压力、地层流体的流动性等。通常设置泵是为了利用管线和阀来控制通过所述系统的流体的流动。例如,一个或多个泵可设置在特定阀、取样室、传感器、仪表或其它装置的上游和/或下游。
可选择性地对所述的泵进行激励和/或协调以按照需要将流体抽汲入每一条管线,例如,可升高连接到清洁管线的泵的泵速和/或可降低连接到评价管线上的泵的泵速,以便优化抽汲入评价管线的清洁流体的量.一个或多个这样的泵可沿着管线进行设置以选择性地增加流过管线的流体的泵送速度.
可设置一个或多个传感器,如流体分析仪46a,46b(即授权给本发明的受让人的美国专利US 4,994,671中所述的流体分析仪)和压力计38a,38b,38c。各种传感器都可用于确定井下参数,如含量、污染程度、化学物质含量(如特定化学品/物质的百分比)、流体力学参数(粘度、密度、特定相的百分比等)、电磁参数(如电阻率)、热参数(如温度)、动态参数(如体积流量或质量流量)、光学参数(吸收率或辐射率)、辐射性、压力、温度、盐度、Ph值、放射性(伽马和中子和光谱能量)、碳含量、粘土组分和含量、氧含量和/或其它关于流体的数据和/或相关的井下条件以及其它。传感器数据可被采集并被传递到地面和/或在井下进行处理。
可优选地是,一个或多个传感器为设置在评价管线38a、清洁管线38b上的压力计38,或者穿过二者用于确定它们之间压差的压力计38c。另外的压力计可设置在沿管线的各个位置。所述的压力计可用于比较各自管线上的压力大小以进行故障判定,或者用于其它的分析和/或诊断。测试数据可被收集、传递到地面和/或在井下进行处理。单独这一数据或与传感器数据结合可用于确定井下情况和/或做出决定。
一个或多个取样室可沿着管线设置在各个位置。为了简便起见,描述单独一个带有活塞的取样室。然而,可以理解,可使用一个或多个各种类型的取样室。所述的取样室可与管线相互连接,所述的管线伸入其它取样室、井下工具的其它部分、井眼和/或其它装料室。取样室的示例及相关的结构可在申请号位2003042021和专利号为6467544和6659177中见到,这些专利或专利申请受让给本发明的受让人。可优选的是,设置取样室以收集清洁流体。此外,理想的是设置取样室以便有效地和高质量地接收清洁的地层流体。从一条或多条管线中流出的流体可被收集在一个或多个取样室内和/或被排放到井眼中。不需要包括取样室,尤其是对于含有被污染流体的清洁管线。
在某些情况下,取样室和/或特定的传感器(如流体分析仪)可设置在探头附近和/或泵的上游。从靠近地层的点或流体源来感测流体参数常常是有益的。在泵的上游进行测试和/或取样同样是有益的。所述的泵对通过泵的流体进行搅拌,在获得清洁样品之前,这种搅拌能够扩散正在通过泵的流体的污染和/或增加时间。通过在泵的上游进行测试和取样,可避免这些搅拌和污染物的扩散。
计算机或者其它处理装置优选用于选择性地激励系统内的各种装置。所述的处理装置可用于采集、分析、组合、传递、响应和/或者另外的处理井下数据。井下工具可用于执行响应于处理器的指令。这些指令可用于完成井下操作。
在操作中,井下工具10(如图1)与井眼相邻设置,并且探头18从井壁的密封处伸出。备用活塞19伸出有助于驱动井下工具和探头处于结合状态。井下工具内的一个或多个泵36选择性地受到激励以将流体抽汲入一条或多条管线(如图3)。通过所述的泵将流体抽汲入管线并通过阀而直接通过所需的管线。
图4A-8B5描述了进入探头的流体的流动,该探头具有多条管线,如图2和/或图3所示的流体流动系统内的管线.这些图展示了控制进入井下工具流体的流动,以促进清洁流体流入评价管线并减少污染.在每一幅图中描述了流入探头18并通过评价管线28和清洁管线30的流体的流动.泵60,62被示意性地示出,其可操作地连接到管线28,30上,分别用于使流体穿过所述的管线.所示的泵62在高于评价泵60的速度下工作.然而,可以理解,所述的泵可以在相同的速度下工作,或者所述的清洁泵可在高于评价泵的速度下工作.为了描述的目的,在每一条管线上仅示出了一个泵.然而,每一管线上可使用任意数量的泵.这些泵可与图3中所示的泵相同.
参看图4A-4B4,其中示出了泵60,62,其在不同步模式下工作。图4A示出了穿过评价管线28和清洁管线30(分别由线66和64表示)的流体的流量Q(y轴)对时间t(x轴)的曲线。图4B1-B4示出了泵的操作和分别在图4A中的点A-D流入探头的流体的流动曲线。
在图4A中的A点,所述的泵工作并将流体抽汲入各自的评价管线和清洁管线。如图4A1所示,部分地层流体进入评价管线,部分流体进入清洁管线。可优选地是,被污染的流体24被抽汲入清洁管线以便仅有清洁流体26按照所示的方向流入评价管线。
在图4A中的B点,清洁泵被停止,但是评价泵继续工作。B点泵的相应流量示出了通过清洁管线的流量(64)已经停止,而通过评价管线的流量(66)仍在继续。如图4B2所示,被污染的流体不再被抽汲入清洁管线并离开评价管线。在这种情况下,被污染的流体和清洁的流体都被抽汲入评价管线,如箭头所示。
在图4A中的C点,两个泵正在泵送并且清洁管线的流量64增加了。如图4A 3所示,所述的泵如前述的关于点A一样重新工作。
在图4A中的D点,清洁泵在泵送,但是评价管线被停止。D点泵的相应流量示出了通过清洁管线的流量(64)仍在继续,而通过评价管线的流量(66)已经停止。如图4B4所示,所述的流体不再被抽汲入评价管线。在这种情况下,被污染的流体和清洁流体可被抽汲入清洁管线,如箭头所示。
参看图5A-5B4,其中示出了泵60,62,其在同步模式下工作。除了两个泵在B点和D点被关闭之外,这些图和图4A-4B4相同。在图5A中的B点和D点,由泵抽汲入两条管线的流量64a,66a停止。如图5B2和图4所示,在泵停止时所述的流体停止流入任一管线。
参看图6A-6B4,其中描述了泵60,62,其在部分同步的模式下工作。除了两个泵在B点被关闭之外,这些图与图4A-4B4相同。在图6A中的B点,由泵抽汲入两条管线的流量64b,66b停止。如图6B2所示,所述的流体停止流入两条管线。
参看图7A-7B5,其中描述了泵60,62,其在偏离同步的模式下工作。除了在B点清洁泵被打开而评价泵被关闭,在C点两个都被关闭以及在D点清洁泵被打开而评价泵被关闭之外,图7A-7B 5与图4A-4B4相同。此外,在另外一个点E两个泵都被打开。图7A中的结果曲线64c和66c示出了通过清洁管线的流量在C点停止,而通过评价管线的流量在从B点到D点的时间内停止。
参考图8A-8B5,其中描述了泵送和取样操作。在这个示例中,泵60,62在图7A-7B5所示的补偿同步模式下工作。然而,取样操作可在所述的任何模式下进行。在图8B1-5中除了取样室42连接到评价管线中之外,这些图与图7A-7B5相同。阀66和68沿着管线28设置以选择性地将流体转向流到取样室。
在清洁流体存在于评价管线内时,所述的阀优选受到激励和/或所述的流体在某点流入取样室。在图8A-8B 5所示的模式中,在泵循环之后进行取样以保证清洁流体流入评价管线28.如图8B1-3所示,在泵工作的A-C点阀66关闭而阀68打开.如图8B4所示,在D点阀66打开和阀68关闭以使流体开始流入取样室42.如E点和图8B5所示,流体开始流入取样室.
图8A-8B5描述了与泵送模式结合的特定取样操作。所述的取样操作还可与其它泵送模式结合使用,如图4-6中所述的那些模式。可优选地是,控制所述的泵送和取样以将清洁流体抽汲入取样室和/或使被污染的流体从中离开。检测通过管线的流体以探测污染。在污染出现的地方,流体可从取样室转向,如转向流到井眼中。
管线内的流体还可利用其它装置进行控制以增加和/或降低一条或多条管线内压力。例如,取样室内的活塞和预测试活塞可缩回以将流体抽汲入其中。装料(charging)、装阀门、静态压力和其它技术也可用于控制管线内的压力。
从前面的描述中可以理解,在不脱离本发明真实精神的情况下可以对本发明的优选和替换实施例进行各种修改和改变。这里所包含的装置可手动地和/或自动地完成所需的操作。可按照需要和/或根据产生的数据、探测的情况和/或由井下操作所获得的分析数据进行所述的操作。
这里的描述只是为了说明的目的不应该具有限制的意思。本发明的范围应该仅由后面的权利要求书的语言确定。权利要求中的术语“包括”意思为“至少包含”以便权利要求内所引用特征列表为开放组。除非进行了特定地排除“A”,“an”和其它单数将包括复数形式。
Claims (23)
1.一种地层评价系统,其用于可设置在穿透地下地层的井眼内的井下工具中,所述地层内含有原始流体和被污染的流体,该地层评价系统包括:
至少两个用于接收地层流体的入口;
至少一条流体地连接到至少两个入口中的至少一个入口的评价管线,以使原始流体进入所述的井下工具;
至少一条流体地连接到至少两个入口中的一个入口的清洁管线,以使被污染的流体进入所述的井下工具;
至少一条流体管路,流体地连接到至少一条评价管线和/或至少一条清洁管线,以选择性地将流体抽汲到所述至少一条流体管路内;
至少一个流体连接器,以选择性地在评价管线与清洁管线之间建立流体连通;以及
至少一个传感器,以测量至少一条评价管线和/或至少一条清洁管线内的井下参数。
2.如权利要求1所述的地层评价系统,其特征在于:其还包括可从外壳伸出以与井壁密封结合的流体连通装置,至少两个入口贯穿所述的流体连通装置。
3.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器适于使流体从至少一条评价管线的上游部分流到至少一条清洁管线的下游部分,或使流体从至少一条清洁管线的上游部分流到至少一条评价管线的下游部分,或二者的组合。
4.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器连接到某一位置的管线上,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的上游。
5.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器连接到某一位置的管线上,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的下游。
6.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个平衡阀,该平衡阀从至少一条评价管线和/或至少一条清洁管线上伸出,以流体地连接到井眼。
7.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一条流体管路包括至少一个泵,至少一个取样室以及至少一个用于选择性地将流体抽汲入井下工具的阀。
8.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个传感器适用于测量评价管线和/或清洁管线内的流体的性质。
9.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个预测试活塞,该活塞可操作性地连接到至少一条评价管线和/或至少一条清洁管线上。
10.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个隔离阀,以选择性地使流体流过至少一条评价管线和/或至少一条清洁管线。
11.一种地层评价方法,所述地层内含有原始流体和被污染流体,该方法包括:
将一个井下工具布置在穿透地层的井眼内,该井下工具具有至少两个入口,所述的至少两个入口用于将流体抽汲入井下工具内的至少一条评价管线和至少一条清洁管线中;
选择性地将流体抽汲入至少一条评价管线和/或至少一条清洁管线内;
可选择性地在至少一条评价管线和至少一条清洁管线之间建立流体连通;以及
测量至少一条评价管线和/或至少一条清洁管线内的流体的井下参数。
12.如权利要求11所述的方法,其特征在于:其还包括使流体穿过流体管路。
13.如权利要求12所述的方法,其特征在于:通过至少一个泵将流体泵入到流体管路内。
14.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通的步骤包括使流体从至少一条评价管线的上游部分流到至少一条清洁管线的下游部分,或使流体从至少一条清洁管线的上游部分流到至少一条评价管线的下游部分,或者二者的组合。
15.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通的步骤包括在某一位置连接所述至少一条评价管线和所述至少一条清洁管线,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的上游。
16.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通地步骤包括在某一位置连接所述管线,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的下游。
17.如权利要求11所述的方法,其特征在于:其还包括在井眼与至少一条评价管线和/或至少一条清洁管线之间建立流体连通。
18.如权利要求11所述的方法,其特征在于:其还包括分析所测的井下参数。
19.如权利要求18所述的方法,其特征在于:比较所述至少一条评价管线和所述至少一条清洁管线的井下参数。
20.如权利要求18所述的方法,其特征在于:所测的井下参数为至少一条评价管线与至少一条清洁管线之间的压差。
21.如权利要求11所述的方法,其特征在于:所述的井下工具还包括一组连接到至少一条评价管线上的流体流路,每一流体流路具有至少一个泵,以及所述的抽汲流体的步骤包括选择性地将流体泵入到至少一条评价管线和/或至少一条清洁管线内。
22.如权利要求21所述的方法,其特征在于:所述的泵选择性地受到激励以防止被污染的流体流入到评价管线内。
23.如权利要求21所述的方法,其特征在于:其还包括将流体从评价管线泵入到至少一个取样室。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/711,187 US7178591B2 (en) | 2004-08-31 | 2004-08-31 | Apparatus and method for formation evaluation |
US10/711187 | 2004-08-31 | ||
US11/219,244 US7484563B2 (en) | 2002-06-28 | 2005-09-02 | Formation evaluation system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1743644A CN1743644A (zh) | 2006-03-08 |
CN1743644B true CN1743644B (zh) | 2010-05-05 |
Family
ID=38294086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005100976679A Expired - Fee Related CN1743644B (zh) | 2004-08-31 | 2005-08-31 | 地层评价装置和方法 |
Country Status (11)
Country | Link |
---|---|
US (3) | US7178591B2 (zh) |
CN (1) | CN1743644B (zh) |
AU (2) | AU2005203659B2 (zh) |
BR (1) | BRPI0503235A (zh) |
CA (1) | CA2517543C (zh) |
DE (1) | DE102005041248A1 (zh) |
FR (1) | FR2876408A1 (zh) |
GB (2) | GB2417506B (zh) |
MX (1) | MXPA05008715A (zh) |
NO (2) | NO20053861L (zh) |
RU (1) | RU2373394C2 (zh) |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8682589B2 (en) * | 1998-12-21 | 2014-03-25 | Baker Hughes Incorporated | Apparatus and method for managing supply of additive at wellsites |
US20080262737A1 (en) * | 2007-04-19 | 2008-10-23 | Baker Hughes Incorporated | System and Method for Monitoring and Controlling Production from Wells |
US7246664B2 (en) * | 2001-09-19 | 2007-07-24 | Baker Hughes Incorporated | Dual piston, single phase sampling mechanism and procedure |
US7178591B2 (en) | 2004-08-31 | 2007-02-20 | Schlumberger Technology Corporation | Apparatus and method for formation evaluation |
US8899323B2 (en) * | 2002-06-28 | 2014-12-02 | Schlumberger Technology Corporation | Modular pumpouts and flowline architecture |
US8555968B2 (en) | 2002-06-28 | 2013-10-15 | Schlumberger Technology Corporation | Formation evaluation system and method |
US8210260B2 (en) * | 2002-06-28 | 2012-07-03 | Schlumberger Technology Corporation | Single pump focused sampling |
US9038716B2 (en) * | 2009-06-05 | 2015-05-26 | Schlumberger Technology Corporation | Fluid control modules for use with downhole tools |
US7461547B2 (en) * | 2005-04-29 | 2008-12-09 | Schlumberger Technology Corporation | Methods and apparatus of downhole fluid analysis |
US7913774B2 (en) * | 2005-06-15 | 2011-03-29 | Schlumberger Technology Corporation | Modular connector and method |
GB2450436B (en) * | 2005-09-02 | 2009-08-12 | Schlumberger Holdings | Formation evaluation system and method |
GB2431673B (en) * | 2005-10-26 | 2008-03-12 | Schlumberger Holdings | Downhole sampling apparatus and method for using same |
US7445934B2 (en) | 2006-04-10 | 2008-11-04 | Baker Hughes Incorporated | System and method for estimating filtrate contamination in formation fluid samples using refractive index |
US7497256B2 (en) * | 2006-06-09 | 2009-03-03 | Baker Hughes Incorporated | Method and apparatus for collecting fluid samples downhole |
US7878243B2 (en) * | 2006-09-18 | 2011-02-01 | Schlumberger Technology Corporation | Method and apparatus for sampling high viscosity formation fluids |
US8016038B2 (en) * | 2006-09-18 | 2011-09-13 | Schlumberger Technology Corporation | Method and apparatus to facilitate formation sampling |
US7703317B2 (en) * | 2006-09-18 | 2010-04-27 | Schlumberger Technology Corporation | Method and apparatus for sampling formation fluids |
US7757760B2 (en) * | 2006-09-22 | 2010-07-20 | Schlumberger Technology Corporation | System and method for real-time management of formation fluid sampling with a guarded probe |
MY151751A (en) * | 2006-09-22 | 2014-06-30 | Halliburton Energy Serv Inc | Focused probe apparatus and method therefor |
US7857049B2 (en) * | 2006-09-22 | 2010-12-28 | Schlumberger Technology Corporation | System and method for operational management of a guarded probe for formation fluid sampling |
US7637151B2 (en) * | 2006-12-19 | 2009-12-29 | Schlumberger Technology Corporation | Enhanced downhole fluid analysis |
US20080149332A1 (en) * | 2006-12-21 | 2008-06-26 | Baker Huges Incorporated | Multi-probe pressure test |
US7654321B2 (en) * | 2006-12-27 | 2010-02-02 | Schlumberger Technology Corporation | Formation fluid sampling apparatus and methods |
US7711488B2 (en) * | 2006-12-28 | 2010-05-04 | Schlumberger Technology Corporation | Methods and apparatus to monitor contamination levels in a formation fluid |
US7878244B2 (en) * | 2006-12-28 | 2011-02-01 | Schlumberger Technology Corporation | Apparatus and methods to perform focused sampling of reservoir fluid |
US20090159278A1 (en) * | 2006-12-29 | 2009-06-25 | Pierre-Yves Corre | Single Packer System for Use in Heavy Oil Environments |
US8162052B2 (en) | 2008-01-23 | 2012-04-24 | Schlumberger Technology Corporation | Formation tester with low flowline volume and method of use thereof |
US20080257544A1 (en) * | 2007-04-19 | 2008-10-23 | Baker Hughes Incorporated | System and Method for Crossflow Detection and Intervention in Production Wellbores |
US7805248B2 (en) | 2007-04-19 | 2010-09-28 | Baker Hughes Incorporated | System and method for water breakthrough detection and intervention in a production well |
US7711486B2 (en) * | 2007-04-19 | 2010-05-04 | Baker Hughes Incorporated | System and method for monitoring physical condition of production well equipment and controlling well production |
US8020437B2 (en) * | 2007-06-26 | 2011-09-20 | Schlumberger Technology Corporation | Method and apparatus to quantify fluid sample quality |
US7934547B2 (en) * | 2007-08-17 | 2011-05-03 | Schlumberger Technology Corporation | Apparatus and methods to control fluid flow in a downhole tool |
GB0718851D0 (en) | 2007-09-27 | 2007-11-07 | Precision Energy Services Inc | Measurement tool |
US8511379B2 (en) * | 2007-11-13 | 2013-08-20 | Halliburton Energy Services, Inc. | Downhole X-ray source fluid identification system and method |
GB2481744B (en) * | 2007-11-16 | 2012-02-15 | Schlumberger Holdings | Cleanup production during sampling |
US8141419B2 (en) * | 2007-11-27 | 2012-03-27 | Baker Hughes Incorporated | In-situ formation strength testing |
EA201000841A1 (ru) * | 2007-11-27 | 2010-12-30 | Бейкер Хьюз Инкорпорейтед | Испытание прочностных свойств пластов в условиях залегания при отборе пластовых проб |
US8171990B2 (en) * | 2007-11-27 | 2012-05-08 | Baker Hughes Incorporated | In-situ formation strength testing with coring |
US7836951B2 (en) * | 2008-04-09 | 2010-11-23 | Baker Hughes Incorporated | Methods and apparatus for collecting a downhole sample |
US7841402B2 (en) * | 2008-04-09 | 2010-11-30 | Baker Hughes Incorporated | Methods and apparatus for collecting a downhole sample |
US8434357B2 (en) * | 2009-08-18 | 2013-05-07 | Schlumberger Technology Corporation | Clean fluid sample for downhole measurements |
US8434356B2 (en) | 2009-08-18 | 2013-05-07 | Schlumberger Technology Corporation | Fluid density from downhole optical measurements |
US8106659B2 (en) * | 2008-07-25 | 2012-01-31 | Precision Energy Services, Inc. | In situ measurements in formation testing to determine true formation resistivity |
US8091634B2 (en) * | 2008-11-20 | 2012-01-10 | Schlumberger Technology Corporation | Single packer structure with sensors |
US7997341B2 (en) * | 2009-02-02 | 2011-08-16 | Schlumberger Technology Corporation | Downhole fluid filter |
US8364442B2 (en) | 2009-02-17 | 2013-01-29 | Schlumberger Technology Corporation | Automated structural interpretation |
US8340912B2 (en) * | 2009-02-17 | 2012-12-25 | Schlumberger Technology Corporation | Seismic attributes for structural analysis |
US8397561B2 (en) * | 2009-04-10 | 2013-03-19 | Schlumberger Tecchnology Corporation | Downhole sensor systems and methods thereof |
US8322416B2 (en) * | 2009-06-18 | 2012-12-04 | Schlumberger Technology Corporation | Focused sampling of formation fluids |
EP2446117B1 (en) * | 2009-06-25 | 2019-09-11 | OneSubsea IP UK Limited | Sampling skid for subsea wells |
US9091151B2 (en) | 2009-11-19 | 2015-07-28 | Halliburton Energy Services, Inc. | Downhole optical radiometry tool |
US20110214879A1 (en) * | 2010-03-03 | 2011-09-08 | Baker Hughes Incorporated | Tactile pressure sensing devices and methods for using same |
US8397817B2 (en) * | 2010-08-18 | 2013-03-19 | Schlumberger Technology Corporation | Methods for downhole sampling of tight formations |
US8408296B2 (en) | 2010-08-18 | 2013-04-02 | Schlumberger Technology Corporation | Methods for borehole measurements of fracturing pressures |
FR2968348B1 (fr) * | 2010-12-03 | 2015-01-16 | Total Sa | Procede de mesure de pression dans une formation souterraine |
US9574938B2 (en) | 2010-12-23 | 2017-02-21 | Schlumberger Technology Corporation | Sampling tool with dual flowline architecture |
GB2501844B (en) * | 2011-03-07 | 2018-11-28 | Baker Hughes Inc | Methods and devices for filling tanks with no backflow from the borehole exit |
US8997861B2 (en) | 2011-03-09 | 2015-04-07 | Baker Hughes Incorporated | Methods and devices for filling tanks with no backflow from the borehole exit |
US8806932B2 (en) * | 2011-03-18 | 2014-08-19 | Weatherford/Lamb, Inc. | Cylindrical shaped snorkel interface on evaluation probe |
US9103176B2 (en) * | 2012-02-08 | 2015-08-11 | Halliburton Energy Services, Inc. | Instrumented core barrel apparatus and associated methods |
WO2013169224A1 (en) * | 2012-05-07 | 2013-11-14 | Halliburton Energy Services, Inc. | Formation environment sampling apparatus, systems, and methods |
CN102758612A (zh) * | 2012-08-01 | 2012-10-31 | 张福连 | 多参数分层测试方法 |
US9733389B2 (en) | 2012-12-20 | 2017-08-15 | Schlumberger Technology Corporation | Multi-sensor contamination monitoring |
US9790789B2 (en) * | 2012-12-21 | 2017-10-17 | Baker Hughes Incorporated | Apparatus and method for obtaining formation fluid samples |
US9752431B2 (en) * | 2013-01-11 | 2017-09-05 | Baker Hughes Incorporated | Apparatus and method for obtaining formation fluid samples utilizing a sample clean-up device |
US9291027B2 (en) | 2013-01-25 | 2016-03-22 | Schlumberger Technology Corporation | Packer and packer outer layer |
US9284838B2 (en) | 2013-02-14 | 2016-03-15 | Baker Hughes Incorporated | Apparatus and method for obtaining formation fluid samples utilizing independently controlled devices on a common hydraulic line |
US9429012B2 (en) * | 2013-05-07 | 2016-08-30 | Saudi Arabian Oil Company | Downhole salinity measurement |
CN103344554B (zh) * | 2013-07-03 | 2016-03-02 | 中国海洋石油总公司 | 一种泥饼返排性能的测定装置 |
US9752432B2 (en) * | 2013-09-10 | 2017-09-05 | Schlumberger Technology Corporation | Method of formation evaluation with cleanup confirmation |
BR112016006872A2 (pt) | 2013-11-06 | 2017-08-01 | Halliburton Energy Services Inc | sistema de fundo de poço, aparelho para determinar uma propriedade de fluido de uma amostra de fluido de um poço e método para determinar a viscosidade de um fluido de produção em um poço |
CN103806910A (zh) | 2014-03-04 | 2014-05-21 | 中国海洋石油总公司 | 一种随钻地层取样系统 |
US9784101B2 (en) | 2014-04-09 | 2017-10-10 | Schlumberger Technology Corporation | Estimation of mud filtrate spectra and use in fluid analysis |
US11384637B2 (en) * | 2014-11-06 | 2022-07-12 | Schlumberger Technology Corporation | Systems and methods for formation fluid sampling |
GB2533847B (en) * | 2014-11-06 | 2017-04-05 | Logined Bv | Local layer geometry engine with work zone generated from buffer defined relative to a wellbore trajectory |
US10585082B2 (en) * | 2015-04-30 | 2020-03-10 | Schlumberger Technology Corporation | Downhole filtrate contamination monitoring |
WO2017015340A1 (en) | 2015-07-20 | 2017-01-26 | Pietro Fiorentini Spa | Systems and methods for monitoring changes in a formation while dynamically flowing fluids |
CN106761716B (zh) * | 2015-11-19 | 2020-05-15 | 中国石油化工股份有限公司 | 地层流体压力测量装置及使用其测量地层流体压力的方法 |
US10294784B2 (en) | 2015-12-01 | 2019-05-21 | Schlumberger Technology Corporation | Systems and methods for controlling flow rate in a focused downhole acquisition tool |
US10584583B2 (en) | 2016-06-30 | 2020-03-10 | Schlumberger Technology Corporation | System and methods for pretests for downhole fluids |
US11125081B2 (en) | 2016-10-31 | 2021-09-21 | Schlumberger Technology Corporation | Terminal modules for downhole formation testing tools |
US11492901B2 (en) | 2019-03-07 | 2022-11-08 | Elgamal Ahmed M H | Shale shaker system having sensors, and method of use |
EP4038263B1 (en) * | 2019-10-01 | 2024-08-07 | Services Pétroliers Schlumberger | Downhole segregation for wireline formation fluid sampling |
US11555402B2 (en) * | 2020-02-10 | 2023-01-17 | Halliburton Energy Services, Inc. | Split flow probe for reactive reservoir sampling |
CN112878950A (zh) * | 2021-02-25 | 2021-06-01 | 中国海洋石油集团有限公司 | 一种双吸口地层测试双封隔器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770798A (en) * | 1996-02-09 | 1998-06-23 | Western Atlas International, Inc. | Variable diameter probe for detecting formation damage |
US6301959B1 (en) * | 1999-01-26 | 2001-10-16 | Halliburton Energy Services, Inc. | Focused formation fluid sampling probe |
CN1458998A (zh) * | 2000-08-15 | 2003-11-26 | 贝克休斯公司 | 具有轴向和螺旋安装口的在钻孔时测试地层的装置 |
CN1469028A (zh) * | 2002-06-28 | 2004-01-21 | ʩ¬Ĭ��������˾ | 用于地下流体取样的方法和装置 |
US6719049B2 (en) * | 2002-05-23 | 2004-04-13 | Schlumberger Technology Corporation | Fluid sampling methods and apparatus for use in boreholes |
Family Cites Families (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3121459A (en) * | 1960-07-15 | 1964-02-18 | Schlumberger Well Surv Corp | Formation testing systems |
US3323361A (en) * | 1963-08-13 | 1967-06-06 | Schlumberger Technology Corp | Methods and apparatus for analyzing well production |
US3352361A (en) * | 1965-03-08 | 1967-11-14 | Schlumberger Technology Corp | Formation fluid-sampling apparatus |
US3295615A (en) * | 1965-10-22 | 1967-01-03 | Schlumberger Well Surv Corp | Formation-testing apparatus |
US3385364A (en) * | 1966-06-13 | 1968-05-28 | Schlumberger Technology Corp | Formation fluid-sampling apparatus |
US3430181A (en) * | 1966-10-03 | 1969-02-25 | Schlumberger Technology Corp | Electrical and fluid line coupling apparatus for connecting well tool sections |
US3430711A (en) * | 1967-12-11 | 1969-03-04 | Harriet A Taggart | Casing perforating and screen plug setting device |
US3565169A (en) * | 1969-04-02 | 1971-02-23 | Schlumberger Technology Corp | Formation-sampling apparatus |
US3530933A (en) * | 1969-04-02 | 1970-09-29 | Schlumberger Technology Corp | Formation-sampling apparatus |
US3611799A (en) * | 1969-10-01 | 1971-10-12 | Dresser Ind | Multiple chamber earth formation fluid sampler |
US3653436A (en) * | 1970-03-18 | 1972-04-04 | Schlumberger Technology Corp | Formation-sampling apparatus |
US3677081A (en) * | 1971-06-16 | 1972-07-18 | Amoco Prod Co | Sidewall well-formation fluid sampler |
US3813936A (en) | 1972-12-08 | 1974-06-04 | Schlumberger Technology Corp | Methods and apparatus for testing earth formations |
US3782191A (en) | 1972-12-08 | 1974-01-01 | Schlumberger Technology Corp | Apparatus for testing earth formations |
US3924463A (en) | 1973-10-18 | 1975-12-09 | Schlumberger Technology Corp | Apparatus for testing earth formations composed of particles of various sizes |
US3864970A (en) | 1973-10-18 | 1975-02-11 | Schlumberger Technology Corp | Methods and apparatus for testing earth formations composed of particles of various sizes |
US3859851A (en) | 1973-12-12 | 1975-01-14 | Schlumberger Technology Corp | Methods and apparatus for testing earth formations |
US3952588A (en) | 1975-01-22 | 1976-04-27 | Schlumberger Technology Corporation | Apparatus for testing earth formations |
US3934468A (en) * | 1975-01-22 | 1976-01-27 | Schlumberger Technology Corporation | Formation-testing apparatus |
US4287946A (en) * | 1978-05-22 | 1981-09-08 | Brieger Emmet F | Formation testers |
US4287846A (en) * | 1980-04-21 | 1981-09-08 | Voplex Corporation | Intermittent adhesive applicator |
US4339948A (en) * | 1980-04-25 | 1982-07-20 | Gearhart Industries, Inc. | Well formation test-treat-test apparatus and method |
US4246782A (en) * | 1980-05-05 | 1981-01-27 | Gearhart-Owen Industries, Inc. | Tool for testing earth formations in boreholes |
US4369654A (en) * | 1980-12-23 | 1983-01-25 | Hallmark Bobby J | Selective earth formation testing through well casing |
US4392376A (en) * | 1981-03-31 | 1983-07-12 | S-Cubed | Method and apparatus for monitoring borehole conditions |
US4492862A (en) * | 1981-08-07 | 1985-01-08 | Mathematical Sciences Northwest, Inc. | Method and apparatus for analyzing components of hydrocarbon gases recovered from oil, natural gas and coal drilling operations |
US4416152A (en) * | 1981-10-09 | 1983-11-22 | Dresser Industries, Inc. | Formation fluid testing and sampling apparatus |
US4470456A (en) * | 1983-02-22 | 1984-09-11 | Moutray Iii Waldo W | Borehole sampling tool |
US4513612A (en) * | 1983-06-27 | 1985-04-30 | Halliburton Company | Multiple flow rate formation testing device and method |
US4635717A (en) * | 1984-06-08 | 1987-01-13 | Amoco Corporation | Method and apparatus for obtaining selected samples of formation fluids |
US4680581A (en) * | 1985-03-28 | 1987-07-14 | Honeywell Inc. | Local area network special function frames |
US4931343A (en) * | 1985-07-31 | 1990-06-05 | Minnesota Mining And Manufacturing Company | Sheet material used to form portions of fasteners |
US4994671A (en) | 1987-12-23 | 1991-02-19 | Schlumberger Technology Corporation | Apparatus and method for analyzing the composition of formation fluids |
US4879900A (en) * | 1988-07-05 | 1989-11-14 | Halliburton Logging Services, Inc. | Hydraulic system in formation test tools having a hydraulic pad pressure priority system and high speed extension of the setting pistons |
US4860581A (en) | 1988-09-23 | 1989-08-29 | Schlumberger Technology Corporation | Down hole tool for determination of formation properties |
US4936139A (en) | 1988-09-23 | 1990-06-26 | Schlumberger Technology Corporation | Down hole method for determination of formation properties |
US4951749A (en) | 1989-05-23 | 1990-08-28 | Schlumberger Technology Corporation | Earth formation sampling and testing method and apparatus with improved filter means |
FR2647828B1 (fr) * | 1989-06-06 | 1991-08-30 | Soletanche | Procede et dispositif pour decoller du beton auquel il adhere, un joint d'extremite de panneau de paroi moulee dans le sol |
US5166747A (en) * | 1990-06-01 | 1992-11-24 | Schlumberger Technology Corporation | Apparatus and method for analyzing the composition of formation fluids |
US5138877A (en) * | 1990-06-25 | 1992-08-18 | Louisiana State University And Agricultural And Mechanical College | Method and apparatus for intersecting a blowout well from a relief well |
US5230244A (en) * | 1990-06-28 | 1993-07-27 | Halliburton Logging Services, Inc. | Formation flush pump system for use in a wireline formation test tool |
DK225290D0 (da) * | 1990-09-19 | 1990-09-19 | Kurt I Soerensen | Fremgangsmaade og apparatur til at udtage og analysere niveaubestemte proever af poregas/-vaeske fra en underjordisk formation |
US5279153A (en) * | 1991-08-30 | 1994-01-18 | Schlumberger Technology Corporation | Apparatus for determining horizontal and/or vertical permeability of an earth formation |
US5265015A (en) * | 1991-06-27 | 1993-11-23 | Schlumberger Technology Corporation | Determining horizontal and/or vertical permeability of an earth formation |
US5335542A (en) * | 1991-09-17 | 1994-08-09 | Schlumberger Technology Corporation | Integrated permeability measurement and resistivity imaging tool |
US5587525A (en) * | 1992-06-19 | 1996-12-24 | Western Atlas International, Inc. | Formation fluid flow rate determination method and apparatus for electric wireline formation testing tools |
US5266800A (en) * | 1992-10-01 | 1993-11-30 | Schlumberger Technology Corporation | Method of distinguishing between crude oils |
US5331156A (en) * | 1992-10-01 | 1994-07-19 | Schlumberger Technology Corporation | Method of analyzing oil and water fractions in a flow stream |
US5303775A (en) | 1992-11-16 | 1994-04-19 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5377755A (en) | 1992-11-16 | 1995-01-03 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5517464A (en) | 1994-05-04 | 1996-05-14 | Schlumberger Technology Corporation | Integrated modulator and turbine-generator for a measurement while drilling tool |
WO1996003628A1 (en) | 1994-07-20 | 1996-02-08 | Anna Maria Hogenaar | A method and device for measuring the tension in a wire-shaped body |
WO1996029616A1 (en) * | 1995-03-20 | 1996-09-26 | Shell Internationale Research Maatschappij B.V. | Determining a parameter of a component in a composition |
AU5379196A (en) * | 1995-03-31 | 1996-10-16 | Baker Hughes Incorporated | Formation isolation and testing apparatus and method |
US5622223A (en) * | 1995-09-01 | 1997-04-22 | Haliburton Company | Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements |
US5741962A (en) * | 1996-04-05 | 1998-04-21 | Halliburton Energy Services, Inc. | Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements |
US5934374A (en) * | 1996-08-01 | 1999-08-10 | Halliburton Energy Services, Inc. | Formation tester with improved sample collection system |
US5765637A (en) * | 1996-11-14 | 1998-06-16 | Gas Research Institute | Multiple test cased hole formation tester with in-line perforation, sampling and hole resealing means |
US5826662A (en) * | 1997-02-03 | 1998-10-27 | Halliburton Energy Services, Inc. | Apparatus for testing and sampling open-hole oil and gas wells |
US5859430A (en) * | 1997-04-10 | 1999-01-12 | Schlumberger Technology Corporation | Method and apparatus for the downhole compositional analysis of formation gases |
AU8164898A (en) * | 1997-06-27 | 1999-01-19 | Baker Hughes Incorporated | Drilling system with sensors for determining properties of drilling fluid downhole |
US5939717A (en) * | 1998-01-29 | 1999-08-17 | Schlumberger Technology Corporation | Methods and apparatus for determining gas-oil ratio in a geological formation through the use of spectroscopy |
US6627873B2 (en) * | 1998-04-23 | 2003-09-30 | Baker Hughes Incorporated | Down hole gas analyzer method and apparatus |
US6178815B1 (en) * | 1998-07-30 | 2001-01-30 | Schlumberger Technology Corporation | Method to improve the quality of a formation fluid sample |
US6343507B1 (en) * | 1998-07-30 | 2002-02-05 | Schlumberger Technology Corporation | Method to improve the quality of a formation fluid sample |
US6230557B1 (en) * | 1998-08-04 | 2001-05-15 | Schlumberger Technology Corporation | Formation pressure measurement while drilling utilizing a non-rotating sleeve |
GB9821052D0 (en) * | 1998-09-28 | 1998-11-18 | Ricardo Consulting Eng | Direct injection gasoline engines |
US6164126A (en) * | 1998-10-15 | 2000-12-26 | Schlumberger Technology Corporation | Earth formation pressure measurement with penetrating probe |
GB2344365B (en) * | 1998-12-03 | 2001-01-03 | Schlumberger Ltd | Downhole sampling tool and method |
DE29902257U1 (de) * | 1999-02-09 | 2000-08-10 | Diehl Stiftung & Co., 90478 Nürnberg | Elektronische Herdschaltuhr |
US6350986B1 (en) * | 1999-02-23 | 2002-02-26 | Schlumberger Technology Corporation | Analysis of downhole OBM-contaminated formation fluid |
US6274865B1 (en) * | 1999-02-23 | 2001-08-14 | Schlumberger Technology Corporation | Analysis of downhole OBM-contaminated formation fluid |
US6688390B2 (en) * | 1999-03-25 | 2004-02-10 | Schlumberger Technology Corporation | Formation fluid sampling apparatus and method |
US6507401B1 (en) * | 1999-12-02 | 2003-01-14 | Aps Technology, Inc. | Apparatus and method for analyzing fluids |
US6672163B2 (en) | 2000-03-14 | 2004-01-06 | Halliburton Energy Services, Inc. | Acoustic sensor for fluid characterization |
US6435279B1 (en) | 2000-04-10 | 2002-08-20 | Halliburton Energy Services, Inc. | Method and apparatus for sampling fluids from a wellbore |
US6437326B1 (en) * | 2000-06-27 | 2002-08-20 | Schlumberger Technology Corporation | Permanent optical sensor downhole fluid analysis systems |
EP1301688A1 (en) * | 2000-07-20 | 2003-04-16 | Baker Hughes Incorporated | Method for fast and extensive formation evaluation |
DE60136661D1 (de) | 2000-07-20 | 2009-01-02 | Baker Hughes Inc | Vorrichtung zur Absaugung von Flüssigkeitsproben und Verfahren zur Vorortsanalyse der Formationsflüssigkeiten |
US6478096B1 (en) * | 2000-07-21 | 2002-11-12 | Baker Hughes Incorporated | Apparatus and method for formation testing while drilling with minimum system volume |
US6871713B2 (en) | 2000-07-21 | 2005-03-29 | Baker Hughes Incorporated | Apparatus and methods for sampling and testing a formation fluid |
US6476384B1 (en) * | 2000-10-10 | 2002-11-05 | Schlumberger Technology Corporation | Methods and apparatus for downhole fluids analysis |
US6474152B1 (en) * | 2000-11-02 | 2002-11-05 | Schlumberger Technology Corporation | Methods and apparatus for optically measuring fluid compressibility downhole |
US6467544B1 (en) | 2000-11-14 | 2002-10-22 | Schlumberger Technology Corporation | Sample chamber with dead volume flushing |
NO312264B1 (no) * | 2000-11-14 | 2002-04-15 | Nammo Raufoss As | Pyroteknisk ladningsstruktur |
US6659177B2 (en) | 2000-11-14 | 2003-12-09 | Schlumberger Technology Corporation | Reduced contamination sampling |
US6668924B2 (en) | 2000-11-14 | 2003-12-30 | Schlumberger Technology Corporation | Reduced contamination sampling |
US6415864B1 (en) | 2000-11-30 | 2002-07-09 | Schlumberger Technology Corporation | System and method for separately producing water and oil from a reservoir |
EG22935A (en) * | 2001-01-18 | 2003-11-29 | Shell Int Research | Retrieving a sample of formation fluid in a case hole |
US6769296B2 (en) | 2001-06-13 | 2004-08-03 | Schlumberger Technology Corporation | Apparatus and method for measuring formation pressure using a nozzle |
US7059179B2 (en) * | 2001-09-28 | 2006-06-13 | Halliburton Energy Services, Inc. | Multi-probe pressure transient analysis for determination of horizontal permeability, anisotropy and skin in an earth formation |
US6729399B2 (en) * | 2001-11-26 | 2004-05-04 | Schlumberger Technology Corporation | Method and apparatus for determining reservoir characteristics |
US6729400B2 (en) * | 2001-11-28 | 2004-05-04 | Schlumberger Technology Corporation | Method for validating a downhole connate water sample |
US6658930B2 (en) | 2002-02-04 | 2003-12-09 | Halliburton Energy Services, Inc. | Metal pad for downhole formation testing |
US6714872B2 (en) * | 2002-02-27 | 2004-03-30 | Baker Hughes Incorporated | Method and apparatus for quantifying progress of sample clean up with curve fitting |
AU2003233565B2 (en) | 2002-05-17 | 2007-11-15 | Halliburton Energy Services, Inc. | Method and apparatus for MWD formation testing |
US7178591B2 (en) | 2004-08-31 | 2007-02-20 | Schlumberger Technology Corporation | Apparatus and method for formation evaluation |
US6745835B2 (en) | 2002-08-01 | 2004-06-08 | Schlumberger Technology Corporation | Method and apparatus for pressure controlled downhole sampling |
BR0313826A (pt) | 2002-08-27 | 2005-07-05 | Halliburton Energy Serv Inc | Garrafa de amostra de fluido de formação, ferramenta de avaliação de formação monofásica, pistão de pressurização, método para coleta de amostra de fluido furo abaixo, e, método para extrair uma amostra de fluido monofásica de uma formação de furo de poço e manter a amostra em uma única fase |
US7152466B2 (en) * | 2002-11-01 | 2006-12-26 | Schlumberger Technology Corporation | Methods and apparatus for rapidly measuring pressure in earth formations |
US7128144B2 (en) * | 2003-03-07 | 2006-10-31 | Halliburton Energy Services, Inc. | Formation testing and sampling apparatus and methods |
US7234521B2 (en) | 2003-03-10 | 2007-06-26 | Baker Hughes Incorporated | Method and apparatus for pumping quality control through formation rate analysis techniques |
US6905241B2 (en) * | 2003-03-13 | 2005-06-14 | Schlumberger Technology Corporation | Determination of virgin formation temperature |
US7173239B2 (en) * | 2003-03-14 | 2007-02-06 | Baker Hughes Incorporated | Method and apparatus for downhole quantification of methane using near infrared spectroscopy |
US6956204B2 (en) | 2003-03-27 | 2005-10-18 | Schlumberger Technology Corporation | Determining fluid properties from fluid analyzer |
US7178392B2 (en) * | 2003-08-20 | 2007-02-20 | Schlumberger Technology Corporation | Determining the pressure of formation fluid in earth formations surrounding a borehole |
US7114562B2 (en) | 2003-11-24 | 2006-10-03 | Schlumberger Technology Corporation | Apparatus and method for acquiring information while drilling |
WO2005065277A2 (en) * | 2003-12-24 | 2005-07-21 | Halliburton Energy Services, Inc. | Contamination estimation using fluid analysis models |
US20050182566A1 (en) * | 2004-01-14 | 2005-08-18 | Baker Hughes Incorporated | Method and apparatus for determining filtrate contamination from density measurements |
US7031841B2 (en) * | 2004-01-30 | 2006-04-18 | Schlumberger Technology Corporation | Method for determining pressure of earth formations |
US7458419B2 (en) | 2004-10-07 | 2008-12-02 | Schlumberger Technology Corporation | Apparatus and method for formation evaluation |
US7263881B2 (en) * | 2004-12-08 | 2007-09-04 | Schlumberger Technology Corporation | Single probe downhole sampling apparatus and method |
US7458252B2 (en) * | 2005-04-29 | 2008-12-02 | Schlumberger Technology Corporation | Fluid analysis method and apparatus |
-
2004
- 2004-08-31 US US10/711,187 patent/US7178591B2/en active Active
-
2005
- 2005-08-09 BR BRPI0503235-0A patent/BRPI0503235A/pt not_active IP Right Cessation
- 2005-08-11 GB GB0516491A patent/GB2417506B/en not_active Expired - Fee Related
- 2005-08-16 AU AU2005203659A patent/AU2005203659B2/en not_active Ceased
- 2005-08-17 MX MXPA05008715A patent/MXPA05008715A/es active IP Right Grant
- 2005-08-18 NO NO20053861A patent/NO20053861L/no not_active Application Discontinuation
- 2005-08-24 FR FR0508734A patent/FR2876408A1/fr not_active Withdrawn
- 2005-08-29 DE DE102005041248A patent/DE102005041248A1/de not_active Withdrawn
- 2005-08-29 CA CA002517543A patent/CA2517543C/en not_active Expired - Fee Related
- 2005-08-30 RU RU2005127361/03A patent/RU2373394C2/ru not_active IP Right Cessation
- 2005-08-31 CN CN2005100976679A patent/CN1743644B/zh not_active Expired - Fee Related
- 2005-09-02 US US11/219,244 patent/US7484563B2/en not_active Expired - Lifetime
-
2006
- 2006-08-24 GB GB0616752A patent/GB2429728B/en not_active Expired - Fee Related
- 2006-08-31 AU AU2006204626A patent/AU2006204626B2/en not_active Ceased
- 2006-08-31 NO NO20063888A patent/NO20063888L/no not_active Application Discontinuation
-
2008
- 2008-12-19 US US12/340,218 patent/US8047286B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770798A (en) * | 1996-02-09 | 1998-06-23 | Western Atlas International, Inc. | Variable diameter probe for detecting formation damage |
US6301959B1 (en) * | 1999-01-26 | 2001-10-16 | Halliburton Energy Services, Inc. | Focused formation fluid sampling probe |
CN1458998A (zh) * | 2000-08-15 | 2003-11-26 | 贝克休斯公司 | 具有轴向和螺旋安装口的在钻孔时测试地层的装置 |
US6719049B2 (en) * | 2002-05-23 | 2004-04-13 | Schlumberger Technology Corporation | Fluid sampling methods and apparatus for use in boreholes |
CN1469028A (zh) * | 2002-06-28 | 2004-01-21 | ʩ¬Ĭ��������˾ | 用于地下流体取样的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US8047286B2 (en) | 2011-11-01 |
AU2005203659B2 (en) | 2007-12-13 |
AU2006204626A1 (en) | 2007-03-22 |
GB0516491D0 (en) | 2005-09-14 |
NO20063888L (no) | 2007-03-05 |
DE102005041248A1 (de) | 2006-03-23 |
US7484563B2 (en) | 2009-02-03 |
GB2429728A (en) | 2007-03-07 |
RU2005127361A (ru) | 2007-03-10 |
US7178591B2 (en) | 2007-02-20 |
US20060042793A1 (en) | 2006-03-02 |
GB2417506A (en) | 2006-03-01 |
NO20053861L (no) | 2006-03-01 |
CA2517543C (en) | 2009-10-27 |
GB2417506B (en) | 2008-09-10 |
RU2373394C2 (ru) | 2009-11-20 |
GB0616752D0 (en) | 2006-10-04 |
CA2517543A1 (en) | 2006-02-28 |
NO20053861D0 (no) | 2005-08-18 |
BRPI0503235A (pt) | 2006-04-18 |
GB2429728B (en) | 2009-02-18 |
US20060000603A1 (en) | 2006-01-05 |
AU2006204626B2 (en) | 2009-04-30 |
AU2005203659A1 (en) | 2006-03-16 |
MXPA05008715A (es) | 2006-04-24 |
US20090101339A1 (en) | 2009-04-23 |
CN1743644A (zh) | 2006-03-08 |
FR2876408A1 (fr) | 2006-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1743644B (zh) | 地层评价装置和方法 | |
CA2601283C (en) | System and method for real-time management of formation fluid sampling with a guarded probe | |
US7857049B2 (en) | System and method for operational management of a guarded probe for formation fluid sampling | |
RU2391503C2 (ru) | Способ и устройство для анализа флюида | |
US10167719B2 (en) | Methods and systems for evaluation of rock permeability, porosity, and fluid composition | |
US9057250B2 (en) | Formation evaluation system and method | |
US7997341B2 (en) | Downhole fluid filter | |
CN101210492B (zh) | 地层流体取样装置和方法 | |
EA017422B1 (ru) | Способ и система для обработки подземного пласта | |
US11255189B2 (en) | Methods to characterize subterranean fluid composition and adjust operating conditions using MEMS technology | |
EP3337957A1 (en) | Extraction cleaner and gas system check | |
EP2706191A2 (en) | Minimization of contaminants in a sample chamber | |
GB2450436A (en) | A method of evaluating a fluid from a subterranean formation | |
MXPA06009982A (es) | Sistema y metodo para la evaluacion de una formacion. | |
Denney | Hydraulic Effect of Tool Joints on Annular-Pressure Loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100505 Termination date: 20170831 |
|
CF01 | Termination of patent right due to non-payment of annual fee |