CN1738171A - 实用交互系统中的电力变换器 - Google Patents

实用交互系统中的电力变换器 Download PDF

Info

Publication number
CN1738171A
CN1738171A CN200510082379.6A CN200510082379A CN1738171A CN 1738171 A CN1738171 A CN 1738171A CN 200510082379 A CN200510082379 A CN 200510082379A CN 1738171 A CN1738171 A CN 1738171A
Authority
CN
China
Prior art keywords
signal
circuit
voltage
control
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510082379.6A
Other languages
English (en)
Other versions
CN1738171B (zh
Inventor
J·P·约翰逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Publication of CN1738171A publication Critical patent/CN1738171A/zh
Application granted granted Critical
Publication of CN1738171B publication Critical patent/CN1738171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

与本发明的一个方面相一致,例如,经一种电力变换电路将备用燃料电池耦合到实用电力高压输电网。该电力变换电路可以包括:逆变电路,脉冲产生电路和控制电路。所述逆变电路配置成接收一个DC信号并输出第一AC信号,而所述脉冲产生电路产生一个脉冲信号,以响应与第二实用产生AC信号相关的一个参数的改变。所述控制电路耦合到所述逆变电路,并配置成接收所述脉冲信号。另外,所述控制电路给所述逆变电路提供一个控制信号,以调整与所述第一AC信号相关的一个参数,以响应所述脉冲。

Description

实用交互系统中的电力变换器
技术领域
本发明涉及能将直流(DC)信号转换成交流(AC)信号的电力变换器以及用于控制并使该AC信号同步于实用产生的AC信号的一个相关方法。
背景技术
备用电源常在禁止实用电源的高压输电网(grid)时用于提供电能。内燃机驱动的发电机常用作为备用电源。然而,这些发电机相对较大且噪声很大,并输出有毒的发射物。
已知燃料电池能经过化学过程产生电能,该化学过程只有相对最少的发射物,对环境的影响极少。因此,已经探究将燃料电池作为传统备用发电机的极具吸引力的替代源。然而,与发电机不同,燃料电池不能在短时间周期内激活。因此,在备用电源的应用中,不论电力高压输电网是否运行,燃料电源常常连续地输出电能。在电源切断的事件中,燃料电池给临界元件或高压输电网的选择区域提供备用电能,该备用电能由高压输电网分配。
美国专利申请号6700804描述了连接到一个实用高压输电网的备用燃料电池。该燃料电池给逆变器提供DC电压,该逆变器依次将AC信号供给实用配电系统。然而,从逆变器输出的AC信号应同步于由实用电路产生的AC信号,以保证与连接到配电系统的元件的兼容性。此外,相对于实用AC信号的AC逆变器输出的均方根(rms)和相位应当可控制,即使在实用AC信号中发生变化时,以维持有效的电力传输。这样,可同步和可调整的DC到AC变换电路需要改进传输特性。
本发明涉及克服现有技术中一个或多个缺点。
发明内容
与本发明的一个方面相一致:提供一种电力变换电路,该电力变换电路包括逆变电路,脉冲产生电路和控制电路。逆变电路配置成接收一个DC信号,输出第一AC信号;而脉冲产生电路产生一个脉冲信号,该脉冲信号相应于与第二实用产生的AC信号相关的一个参数变化。控制电路耦合到逆变电路,并配置成接收该脉冲信号。另外,控制电路响应于该脉冲信号,给逆变电路提供一个控制信号,以调整与第一AC信号相关的一个参数。
与本发明的另一个方面相一致:提供一种用于控制从逆变电路输出的AC信号的方法。该方法包括:给逆变电路提供DC信号;并采样该AC信号,从逆变电路输出该AC信号,以响应该DC信号。该方法还包括对AC信号的参数值和一个期望值进行比较,并调整DC信号,由此调整AC信号的参数。
依据本发明的又一方面,提供用于控制AC信号的一种系统,该系统包括:DC-DC转换电路(inverter circuit),逆变电路和控制电路。DC-DC转换电路接收输入DC电压,及提供一个输出DC电压。变换电路配置成接收该输出DC电压,并又产生相应于该输出DC电压的AC信号。另外,控制电路配置成给DC-DC转换电路提供控制信号,由此调整输出DC电压的电平。
依据本发明的另一个方面,提供一种电力变换电路,该电力变换电路包括逆变电路,电感电路,及电容电路。该逆变电路配置成能接收一个DC信号并输出一个AC信号。电感电路配置成控制与该AC信号相关的功率通量(powerflow)。电感电路和电容电路配置成能对该AC信号进行滤波。
附图说明
附图合并入并构成本说明的一部分,描述本发明的几个实施例,并与本描述一起用于解释本发明的原理。
图1描述与本发明一个方面相一致的框图系统,用于将DC信号变换为AC信号;
图2是图1所示系统的详细电路原理图;
图3描述与本发明一个方面相一致的各种波形;
图4描述表格,储存用于与图3所示波形相连的信息;
图5描述与图3所示波形相关的一连串点;
图6描述一个流程图,描述与本发明一个方面相一致的一种方法的步骤;
图7描述一个流程图,描述与本发明又一方面相一致的一种方法的步骤;
图8描述与本发明另一方面相一致的AC信号;
图9描述一个流程图,描述与本发明又一方面相一致的一种方法的步骤;
图10A和10B描述与图1和2所示DC-DC转换电路相联的信号时序图;及
图11描述与本发明另一方面相一致的一个AC信号。
具体实施方式
现在将详细地参考本发明的示范性实施例,这些实施例中的例子在附图中描述。在本申请中,附图中相同的参数数字表示相同或类似的部件。
图1描述与本发明一个方面相一致的电力变换电路100(power conversioncircuit)。燃料电池10可以是用于给实用高压输电网提供辅助电能的备用燃料电池。燃料电池10的输出通常是一个强电流,低电压DC信号。该DC电压提供给含有接触器25的滤波器电路20,该接触器25用于选择性地给变换电路100提供燃料电池输出。提供滤波器电路20,以平滑燃料电池10输出中的任何变化。
DC-DC转换电路30从滤波器20接收滤波的DC信号,并将该接收的低电压信号变换到一个高电压DC信号。DC-DC转换电路30的电压输出的幅度或电平相应于从变换电路100的AC信号输出的幅度。可能控制DC电压电平,以相应于从控制电路50的控制信号输出,如同下面更详细地讨论的。控制电路50能包括微处理器,数据信号处理器(DSP)或其他合适的硬件和/或软件组合。
逆变电路40从DC-DC转换电路30接收DC信号输出,并相应于该DC信号,输出一个AC信号。该AC信号可以是3相,所以三个独立的AC电压分别在配电线40-1,40-2和40-3上输出。相应于从自控制电路50输出的另外的控制信号,输出每个AC电压,并提供给3相功率通量电感电路60,该电感电路60包括与每条配电线40-1,到40-3相关的电感器。每个电感器60-1,60-2和60-3也构成3相输出滤波电容电路70的一部分,该滤波电容电路70配置成平滑并消除从变换电路100输出的AC信号中的失真。然后,AC信号输出给实用电力高压输电网。
实用产生的AC信号(“实用AC信号”)是从实用电力高压输电网的一相中分接出来,并提供给脉冲产生电路80。实用AC信号95基本上是正弦电压波,一般如同图1中理解和所示的。实用AC信号95含有随时间变化的瞬时电压。在点95-1和95-3,该瞬时电压从正值变到负值。在点95-2和95-4,“零交叉”,实用AC信号95的瞬时电压从负值变到正值。脉冲产生电路80采样实用AC信号95的这些零交叉,并通常输出相应于每次的一个脉冲(见脉冲信号85)。该脉冲馈送给控制电路50,该控制电路50响应于该脉冲给逆变电路40输出合适的控制信号。脉冲信号85由控制电路50使用,使该输出AC信号同步于实用AC信号95,以及使该输出AC信号的相位相对于该实用AC信号95,如同下面更详细描述的。虽然从电路50输出的脉冲信号85用于调整从逆变电路40输出的AC信号的相位,脉冲信号85能用于高整与该AC信号相关的其他参数,例如定时和极性。
控制电路50能配置成采样配电线7上的逆变电路40的输出上的电流和/或电压。配电线6携带AC实用电压和电路70输出的一个信号指示,并提供配电线5,给控制电路50提供实用AC信号95的电压和/或电流的一个信号指示。
图2详细地描述变换电路100。变换电路100包括输入部分19,含有接线端32和34;在接线端上施加输出燃料电池DC电压。输入部分19包括接触器25,与二极管27及预充电电阻28并行地连接,一个附加二极管29从接线端34连接到电绝缘接线端32。当燃料电池DC电压最初施加到接线端32和34时,接触器停留在断开状态,以保护变换电路100内的元件产生潜在电流浪涌。因此,经过预充电电阻28,以基本上等于电阻28的电阻值和电容18的电容值乘积的RC时间常数对电容18进行充电。一旦电容18上的电压达到某一预定阀值,例如50V,接触器25闭合,这样旁路了电阻28,因此,以基于滤波电容22容抗,燃料电池输出阻抗,及配电线和连接寄生阻抗的时间常数,电容18连续地充电达到燃料电池DC的输入电压。
预定阀值电压越高,接触器25闭合之前所需的时间越长。然而,一旦达到该阀值,全充电电容18所需的电流越少。另外,能减少这充电期间的峰值电流浪涌。
为了使变换电路100与燃料电池10断开,接触器25断开,而二极管27起作电阻28的短路器,由此,减少电容18放电所需的时间。
当接触器25闭合时,燃料电池DC电压施加到含有电感21和电容22的滤波电路20。滤波电路20用于基本上消除燃料电池DC电压上的波动,以使一个基本上平滑的DC电压信号施加给DC-DC转换电路30。
DC-DC转换电路30包括晶体管36和38,按一种传统的“推-拉”配置进行配置,带有变压器电路部分125。二极管31和132与晶体管36及38并行地连接,以保证给变压器125提供合适电流。典型地,控制电路50将控制信号分别地提供给晶体管36和38的栅极33和35,以使这些晶体管中的一个导通,而另一个截止。这样,例如,当一个相对较高的控制信号施加给栅极33时,晶体管36导通,而一个相对低控制信号使晶体管38截止。结果,电流向下流过变压器125的初级绕组(在图2),并从变压器125输出一个正电压。然而,当晶体管36和38分别截止和导通时,电流按相反的方向流过变压器绕组,由此,从变压器125输出一个负电压。
桥接电路42包括二极管42-1,42-2,42-3和42-4,以按一种已知方式整流变压器电路125的输出。进一步提供滤波器44,含有电感44-1和电容44-2,以通过平均桥接电路42的点101和102上产生的脉冲电压,在电容44-2上输出一个基本恒定的DC电压。典型地,DC-DC转换电路30在正电位+Vdc上维持rail 107,而在负电位-Vdc上维持rail 109。
接着参考图10A和10B描述DC-DC转换电路30的工作原理,图10A和10B是信号VGATE33,VGATE35,VRECT和V0.VGATE33和VGATE35的示范性时序图,分别相应于施加到栅极33和35上的控制信号。VRECT是桥接电路42的点101和102上的输出电压,而V0是电容44-2上的电压,即,该电压应用为逆变电路40的一个输入。
在图10A中,在时间周期T1期间,VGATE33相对较低,而VGATE35处于一个相对高电位。然而,在时间周期T2,VGATE35为高电平,同时VGATE33为高电平。这样,在时间周期T1或时间周期T2的基本上所有期间,VGATE33或VGATE35中的任何一个处于高电平,且控制信号VGATE33和VGATE35具有100%的占空因数。结果,在时间周期T1期间,电流按第一方向流过变压器125绕组,而在时间周期T2期间,电流按第二方向流过,VRECT基本上在两个时间周期T1和T2处于相对高电压上。滤波器44在时间周期T1和T2期间内,平均VRECT,因此结果的输出电压为最大值,V0。
在图10B中,VGATE35只在时间周期T1的约一半时间内为高电平,而VGATE33在时间周期T2的基本上一半时间内为高电平。因此,在这种情况中,VGATE35和VGATE33具有50%的占空因数,VRECT只在T1和T2时间周期的一半时间内处于相对高电压。结果,由滤波器44平均时,施加到逆变器40的输入端上的电压为二分之一V0,或与上面讨论的100%占空因数相关的一半。因此,例如,通过调整施加给栅极33和35的控制信号的占空因数,能改变施加给逆变电路40电压电平。
返回到图2,接着将描述逆变电路40。逆变电路40包括多个开关元件,例如,晶体管46,50-3,52,54,56,58和60-7。二极管46-1,50-1,52-1,54-1,57-1,59-1和60-5分别连接在每个晶体管46,50-3,52,54,56,58和60-7的发射极和集电极之间。例如,即使晶体管46导通,在电流不能流过晶体管46的事件中,二极管46-1给经过晶体管46的通路提供一条替代电流通路。同样地,二极管50-1,52-1,54-1,57-1,59-1和60-5提供能分别旁路晶体管50-3,52,54,56,58和60-7的替代电流通路。为了在rail 109的电位高于电阻48-1和晶体管46之间一点上的电位的事件中,提供平行于电阻48-1的低阻抗通路,含有二极管48-2。
晶体管46和电阻48-1及二极管48-2构成逆变电路40的一条支路(leg),有利于逆变电路40的“电阻性高压输电网”方式运行。在电阻性高压输电网方式中,DC电压能从晶体管46和电阻48-1之间的连接中输出。电阻性DC高压输电网DC电压作为一个DC电源,能用于独立地测试DC-DC变换电路30和变换电路100的运行,例如,当评估燃料电池耐用性时。替代地,当实用连接不可用时,能应用电阻性高压输电网。
在电阻性高压输电网方式期间,从控制电路50输出的控制信号分别提供给晶体管50-3,52,54,56,58和60-7的基极51,53,55,57,59及61,以截止并使这些晶体管中的每一个变成非传导性。一个相对高电位施加给基极105,以导通晶体管46。因此,电流流过晶体管46和电阻48-1到-Vdc rail 109。然后,例如为评估目的,能测量电阻48-1上的电位降,如上面注释的。
替代地,逆变器40可按“实用交互方式”运行,在该方式中,从控制电路输出的控制信号用于驱动每个基极51,53,55,59和61,同时使使晶体管46截止并变成非传导。晶体管50-3和56构成逆变电路40的一条支路,连接到配电线40-1,并分别经过应用给基极51和57的适当的控制信号来控制晶体管50-3和56。晶体管50-3和56配置成将电流的变化量提供给配电线40-1,以在配电线40-1上输出一个交变电流/电压信号,如下面更详细讨论的。从控制电路50输出控制信号,以在配电线40-1上产生3相AC信号的一个相。类似地,晶体管52和58构成第二条支路,用于在配电线40-2上输出AC信号的第二相信号,分别响应施加给基极53和59上另外的控制信号,而晶体管54和60-7构成逆变电路40的第三条支路,用于依据施加给相应基极55和61上的附加控制信号,在配电线40-3上输出第三相。
每条配电线40-1,40-2和40-3耦合到电感60-1,60-2和60-3中相应的一个电感。每个电感用于调节与由配电线40-1,40-2和40-3携带的每个AC相位信号相关的功率通量。另外,电感60-1,60-2和60-3构成滤波电路70-1,70-2和70-3的一部分。又如图2所示,每个滤波电路进一步包括几个电容和一个电阻。例如,滤波电路70-1包括电容72和81,滤波电路70-2包括电容76和82,而滤波电路70-3包括电容78和83。另外,滤波电路70-1,70-2和70-3分别包括电阻74,78和80-1。滤波电路70-1,70-2和70-3都配置成按已知方式给实用电力高压输电网输出基本上无失真的AC电压波形。
接着,参考图3-5描述控制信号的产生。施加到基极51,53,55,57,59和61的控制信号通常是由所谓“三角形PWM”技术产生的脉宽调制(PWM)信号,该技术是由控制电路50实现的。特别地,如图3所示,控制电路50确定某一时间函数,在这个例子中,它是正弦波表示或控制正弦波,如曲线310所示的;和三角波表示,如曲线320图形显示的,叠加在正弦波表示310上。对于越过正弦波310的三角波320的那些部分,输出相对低的电位电平327,而对于低于或在正弦波表示310之下的三角波320的部分,输出相对高电压325。因此,又如图3所示,产生一连串宽度可变脉冲或PWM脉冲。典型地,独特的一连串这样的脉冲施加给每个基极51和57,由此选择地使逆变电路40的第一分支内的晶体管50-3和56导通和截止,由此产生一个AC信号,在这种情况下,那是三相位AC信号中的第一相。其他PWM信号施加给基极53和59,以及基极55和61,由此从逆变电路40的第二和第三分支分别输出第二和第三AC相位信号,例如,配电线40-2携带第二相,在配电线40-3上能输出AC信号的第三相。
从储存在存储器内,控制电路50内且如图4所示的查阅表400,的信息中产生正弦波表示310。在本例子中,表400包含行410-1到410-n,每一行储存了以50微秒增量的时间值,及相应的时间函数,例如正弦函数值f(t),这里f(t)等于sin(2πft)。控制电路50配置成以50微秒间隔顺序地读取每个正弦函数值,如由图4的箭头415指明的。一旦到达表400中最后一行,控制电路50循环回到第一行410-1(箭头425)或这种情况中的起点,如同前面顺序地读出其余的正弦函数值。结果,获得如图5所示的正弦波表示310的一连串点500,每次循环经过表400,就重复该波形。因此,连续地产生PWM控制信号330,以维持从逆变电路40输出一个恒定的AC信号。
借助于又一个例子,正弦波表示310的起点相应于上面讨论的开始表400读取循环的那一行。在图5中,该起点可以是点510,在该点,特殊的PWM信号施加给逆变电路400的晶体管,以相应于特殊起始电压的一个瞬时电压启动该输出AC信号。如图11所示,这起始电压可以是0伏的起始电压1110,从这点起,其余的AC信号1100及时地传播,即,AC信号1100遵守一个时间函数,在这种情况中,该函数基本上是正弦。然而,其他起点,和起始电压可由控制电路50设置。例如,起点可以设置到与表400内某一不同行相关的点520,由此获得图11中一个相应起始电压1120。在这种情况中,控制电路50从表400中顺序地读取正弦函数值,但从新的起点开始每个读取循环。因此,通过调整表400的读取循环的起点,及这样的该输出AC信号的起始电压,就能够控制从逆变电路40输出的AC信号的相位。
与本发明的又一方面相一致,变换电路100能按一种实用交互方式运行,由此,能获得:来自逆变电路40的输出AC信号的一个期望的均方根(rms),及输出AC信号和实用AC信号之间的相位差或功率角。接着,将参考图6-9描述逆变电路40的运行方法。为了简化,下列的讨论将参考AC输出的一个相位。应当理解:可按类似方式能控制其他AC相位。
作为背景,AC信号通常摆动某平均值,称作为该信号的“有功”功率。有功功率是用户可用的功率。如果平均值为零,那么,传输的所有功率称为“无功”功率。无功功率通常储存在系统的电感和电容内,并不能使用。这样,通常用零无功功率使有功功率最大化。然而,在某些情况中,希望是有功和无功功率的组合。
有功和无功功率定义如下:
P Φ = 1 X ( V 1 V 2 sin δ ) [ W ] - - - ( 1 )
Q Φ = 1 X ( V 1 V 2 cos δ - V 2 2 ) [ VAR ] - - - ( 2 )
这里,PΦ=每相有功功率,以瓦为单位(W)
QΦ=每相无功功率,以无功伏安为单位(VAR)
X=功率通量控制电感60-1,60-2,60-3的每相感抗(输出滤波电感)
V1=逆变器输出相位电压基的均方根(rms)(the fundamental ofthe...)
V2=实用相位电压的rms(假定为正弦)
如图8所示,d(?应为δP)13-9)是实用AC信号820和从逆变电路810输出的AC信号之间的功率角或相位差。为了将无功功率Q减少到零,能将逆变器输出电压变化为功率角d(P)13-12)。依据上面的公式并假定零无功功率的结果。因此:
V1V2cosδ=V22                    (3)
V1=V2/costδ                                              (4)
V2通常由实用程序固定,而d(功率角)的值通常基于输入到控制电路50的电流命令并表示从燃料电池10汲取的电流量。因此,通过调整存储器读取循环的起点(见图4),并这样AC信号的起始电压,如上面讨论的,能够实现期望的功率角。另外,能依椐提供给逆变电路40的DC-DC转换电路30的输出来控制V1。这样,能将功率角和V1设置成满足上面的公式,产生基本上为零的无功功率。
更详细地,从变换电路100输出的AC信号通常是先同步的,跟着调整功率角和V1,以使无功功率减少到最小。将连同图6所示的流程图描述用实用AC信号同步逆变器输出AC的方法。
实用AC信号电压摆动约为零伏。在AC实用电压的正零交叉期间,该信号的瞬时电压从负值变到正值。在步骤610,实用AC信号是由脉冲产生电路80采样的,并在步骤620,由脉冲产生电路80产生一个脉冲,以响应实用AC信号的每个正零交叉。该脉冲提供给控制电路50,控制电路50设置正弦波表示310和表400的读取循环的起点,以与实用AC信号的零交叉相符(步骤630)。
因此,来自表400的读取循环设置成:在能产生PWM控制信号的起点开始(步骤640),该PWM控制信号相应于零逆变器输出电压。PWM控制信号提供给逆变电路40(步骤650),逆变电路40依次产生相应于储存在表400中的起点的零起始电压(步骤660)。结果,将AC信号的瞬时电压调整或设置到零起始电压。因此,每次实用AC信号跨过零时,从逆变电路40输出的AC信号将跨过零,因为两者都通常遵守时间正弦波函数。这样,两个AC信号都同步于零功率角。虽然可将瞬时电压控制或调整到上面注释的,以响应从脉冲产生电路80输出的脉冲,这些脉冲能用于调整与输出AC信号相关的其他参数。
一旦已实现同步,能执行功率角和V1的调整,以达到没有无功功率,或某种有功和无功功率的混合。接着参考图7和9描述功率角和V1的调整,图7和9描述流程图700和900,略述用于分别控制功率角和V1的方法。
在图7中,由控制电路50接受一个电流命令,相应于由变换电路100汲取的电流量(步骤710),并在步骤720,使逆变电路40的输出同步于实用AC信号。在步骤730,依据电流命令确定功率角。例如,测量从变换电路100输出的电流,通过从由电流命令定义的电流值减去该测量电流来确定误差值,并且该误差乘以一个增益因子,由此获得功率角。因此,依据该功率角,可调整表400读取循环的起点,及正弦波表示310的起点(步骤740)。依据新起点产生一个适当的PWM控制信号(步骤750),并依据该PWM控制信号输出一个相应的AC信号电压(步骤760)。
结果,从图8的逆变电路40输出的AC信号(相应于曲线810)在与实用AC信号(曲线820)相同时刻不会越过零伏,但是在图8所示的不同交叉点。这样,使逆变电路40输出的AC信号相对于实用AC信号产生了漂移。两个AC信号之间的漂移量或相位差构成功率角。这样,通过改变正弦波表示310的起点,如上面讨论的,使逆变电路40输出的AC信号产生有效地漂移,在获得所期望的功率角。
参考图9,流程图900略述与本发明又一方面相一致的用于调整V1的一种电路。在步骤910中,在逆变电路40输出端的输出电压经过采样,计算出相应的均方根(rms)值(V1)。然后作出这样的一个决定:有关该采样V1是否基本上等于一个与给定功率角相关的期望值(步骤920)。如果是,又采样该逆变器输出的rms值,并且所述方法返回到步骤910。如果否,控制电路50调整提供给DC-DC转换电路30的控制信号的占空因数(步骤930),以按类似于上面连同图10A和10B描述的方式,改变到逆变电路40的DC输入电压的电平(步骤940)。该调整的DC电压提供给逆变电路40(步骤940),并当所述方法返回到步骤910时,又采样V1值。
V1涉及从DC-DC转换电路30输出的提供给逆变电路40的DC电平。这样,通过经占空因数调整改变DC-DC转换电路输出,能将V1改变到一个能满足上面描述的V1,V2和功率角之间关系的一个期望值,由此产生一个期望的无功功率。
应当注意:例如,通过调整与正弦波表示310相关的调制指数,也可控制V1。调制指数涉及正弦波表示310的幅度,并通过减少这个幅度或调制指数,能相应地减少V1。然而,当调制指数降低时,来自控制电路50的该输出PWM控制信号更易受失真和噪声的影响。因此,与本发明又一方面相一致,通过控制DC-DC转换电路30的输出可调整V1,同时将正弦波表示310的调制指数维持在基本上等于1的最大值。因此,结果的PWM控制信号相对地无失真,以使能从逆变电路40输出一个期望的AC信号。
工业应用
与本发明的又一方面相一致,例如备用燃料电池经过电力变换电路耦合到实用电力高压输电网。该燃料电池给变换电路输出一个DC信号,该变换电路响应于该信号依次输出一个AC信号。典型地,即使高压输电网络处于运行状态,该AC信号连续地提供给实用电力高压输电网。为了使变换电路的性能最佳化,控制电路依据该变换电路的输出及输入到该控制电路的电流命令,调整均方根(rms)和该AC信号相对于实用产生的AC信号的相位或功率角。通过监视变换电路的输出维持该rms和相位参数。另外,该控制电路配置成:通过用实用AC信号的每个零交叉将AC信号复位到起点,使该输出的AC信号与实用AC信号同步。此外,给该输出AC信号的滤波和功率通量控制提供单输出电感器。
如上面描述的,本发明经过同步和控制输出AC信号的相对相位及输入到逆变电路40的DC电压的电平,能将由变换电路提供的无功功率减少到零值。如需要,可调整这些参数,以获得无功和有功功率的变化量。
而且,上面描述的同步方案允许从逆变电路40输出的AC信号依据实用AC信号的正零交叉跟踪实用AC信号。这样,该输出AC信号能维持它正弦波形状,并继续地同步于该实用AC信号,即使在该实用AC信号上发生瞬时变化或不连续。
另外,电感60-1到60-3提供功率通量控制,并分别用作为输出滤波电路70-1到70-3的一部分(见图2)。因此,上面讨论的变换电路100具有相对简单的结构。同样地,虽然本发明描述将变换电路耦合到燃料电池,也可连接到电池或其他DC电源的其他电源。
那些本领域的普通技术人员将从考虑到这里发明的说明和实践中明白本发明的其他实施例,它指在该说明和例子仅考虑作为示范性的,具有由下面的权利要求书指明的本发明的真正范畴和精神。

Claims (11)

1、一种电力变换电路,其特征在于,包括:
逆变电路,配置成接收一个DC信号并输出第一AC信号;
脉冲产生电路,配置成产生一个脉冲信号,以响应与实用产生的AC信号相关的一个参数的改变,所述实用产生AC信号是第二AC信号;及
控制电路,耦合到所述逆变电路,所述控制电路配置成接收所述脉冲信号并给所述逆变电路提供一个控制信号,调整与所述第一AC信号相关的参数,以响应于所述脉冲信号。
2、按照权利要求1所述电力变换电路,其特征在于,所述第二AC信号的所述参数是所述第二AC信号的瞬时电压的一个值。
3、按照权利要求2所述电力变换电路,其特征在于,所述改变是从所述第二AC信号的所述瞬时电压的一个负值改变到所述第二AC信号的所述瞬时电压的一个正值。
4、按照权利要求3所述电力变换电路,其特征在于,所述第一AC信号遵守含有一个起点的时间函数,所述第一AC信号的所述瞬时间电压被设置成与所述起点相关的一个电压,以响应所述第二AC信号的所述参数的所述改变。
5、按照权利要求1所述电力变换电路,其特征在于,所述控制信号是一个脉宽调制信号。
6、按照权利要求1所述电力变换电路,其特征在于,所述DC信号是第一DC信号,所述电力变换电路又包括DC-DC转换电路,所述DC-DC转换电路配置成接收第二DC信号,并输出所述第一DC信号。
7、按照权利要求6所述电力变换电路,其特征在于,所述控制信号是第一控制信号,所述控制电路配置成给所述DC-DC转换电路提供第二控制信号,由此调整所述第一DC信号的电平。
8、按照权利要求7所述电力变换电路,其特征在于,所述第一DC信号的所述电平是依据与所述DC-DC转换器相关的占空因数,所述占空因数基于所述第二控制信号。
9、按照权利要求1所述电力变换电路,其特征在于,进一步包括电感电路和电容电路,所述电感电路配置成控制与所述第一AC信号相关的功率通量,并且所述电感电路和所述电容电路配置成对所述第一AC信号进行滤波。
10、一种用于控制从逆变电路输出的AC信号的方法,其特征在于,包括:
给所述逆变电路提供一个DC信号;
采样所述AC信号,从所述逆变电路输出所述AC信号,以响应所述DC信号;
对所述AC信号的一个参数值与一个期望值进行比较;及
调整所述DC信号,由此调整所述AC信号的所述参数。
11、用于控制AC信号的一种系统,其特征在于,包括:
DC-DC转换电路,所述DC-DC转换电路接收一个输入DC电压,并提供一个输出DC电压;
逆变电路,所述逆变电路配置成接收所述输出DC电压,并响应所述输出DC电压,产生所述AC信号;及
控制电路,所述控制电路配置成给所述DC-DC转换电路提供控制信号,由此调整所述输出DC电压的电平。
CN200510082379.6A 2004-08-16 2005-06-15 实用交互系统中的电力变换器 Active CN1738171B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/918,354 US7280377B2 (en) 2004-08-16 2004-08-16 Power converter in a utility interactive system
US10/918,354 2004-08-16

Publications (2)

Publication Number Publication Date
CN1738171A true CN1738171A (zh) 2006-02-22
CN1738171B CN1738171B (zh) 2012-07-18

Family

ID=35745797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510082379.6A Active CN1738171B (zh) 2004-08-16 2005-06-15 实用交互系统中的电力变换器

Country Status (3)

Country Link
US (1) US7280377B2 (zh)
CN (1) CN1738171B (zh)
DE (1) DE102005019822A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283411A (zh) * 2014-09-26 2015-01-14 广东美的制冷设备有限公司 Ac/dc变换器电路和家用电器的电源系统
CN107026485A (zh) * 2011-01-31 2017-08-08 手持产品公司 延长蓄电池寿命的方法和移动设备
US11251714B1 (en) 2020-12-09 2022-02-15 Contemporary Amperex Technology Co., Limited Method, apparatus and system for improving energy transmission efficiency between battery and power grid

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417336B2 (en) * 2004-08-31 2008-08-26 Caterpillar Inc. Combination current hysteresis and voltage hysteresis control for a power converter
KR100823921B1 (ko) * 2005-09-30 2008-04-22 엘지전자 주식회사 연료전지의 전력변환장치
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
DE102006017479A1 (de) * 2006-04-13 2007-10-18 Siemens Ag Österreich Verfahren zum Messen eines mittels Wechselrichter erzeugten Wechselstromes und Anordnung zur Durchführung des Verfahrens
GB0615562D0 (en) * 2006-08-04 2006-09-13 Ceres Power Ltd Power supply control for power
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) * 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US20090030712A1 (en) * 2007-07-26 2009-01-29 Bradley D. Bogolea System and method for transferring electrical power between grid and vehicle
WO2009072077A1 (en) 2007-12-05 2009-06-11 Meir Adest Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
EP3496258A1 (en) 2007-12-05 2019-06-12 Solaredge Technologies Ltd. Safety mechanisms in distributed power installations
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
EP2235807B1 (en) * 2007-12-20 2019-05-08 SolarCity Corporation Grid synchronisation
EP2269290B1 (en) 2008-03-24 2018-12-19 Solaredge Technologies Ltd. Switch mode converter including active clamp for achieving zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
US8352091B2 (en) 2009-01-02 2013-01-08 International Business Machines Corporation Distributed grid-interactive photovoltaic-based power dispatching
WO2010134057A1 (en) 2009-05-22 2010-11-25 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
GB2480620A (en) * 2010-05-25 2011-11-30 Energy2Trade Oy Reactive Power Management
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8971065B2 (en) * 2011-08-04 2015-03-03 Industrial Technology Research Institute System for providing an alternating current, and control apparatus and method thereof
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
EP3499695A1 (en) 2012-05-25 2019-06-19 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN117130027A (zh) 2016-03-03 2023-11-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11451085B2 (en) 2020-08-31 2022-09-20 Caterpillar Inc. Fuel cell and battery backup power sources within power systems
WO2022178245A1 (en) * 2021-02-18 2022-08-25 Sawstop Holding Llc Detection systems for aim-enabled power tools

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281374A (en) * 1979-05-29 1981-07-28 General Electric Company Electrical circuit for producing controlled high voltage AC output
CN1012244B (zh) * 1987-02-20 1991-03-27 株式会社东芝 不间断电源装置
US5550697A (en) * 1994-03-18 1996-08-27 Holophane Corporation System and method for controlling DC to AC voltage inverter
US6134127A (en) * 1994-05-18 2000-10-17 Hamilton Sunstrand Corporation PWM harmonic control
US6043996A (en) * 1999-02-03 2000-03-28 General Electric Company Method and apparatus for reducing monotonic audible noise in a power conversion system
US6239997B1 (en) * 2000-09-01 2001-05-29 Ford Motor Company System for connecting and synchronizing a supplemental power source to a power grid
US6700804B1 (en) * 2000-11-02 2004-03-02 American Superconductor Corporation Integrated multi-level inverter assembly
JP2002186172A (ja) * 2000-12-14 2002-06-28 Kokusan Denki Co Ltd インバータ発電装置及びその過負荷時制御方法
JP3636098B2 (ja) * 2001-06-06 2005-04-06 東芝三菱電機産業システム株式会社 電力変換装置の制御回路
US7183667B2 (en) * 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
US7417336B2 (en) * 2004-08-31 2008-08-26 Caterpillar Inc. Combination current hysteresis and voltage hysteresis control for a power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026485A (zh) * 2011-01-31 2017-08-08 手持产品公司 延长蓄电池寿命的方法和移动设备
CN107026485B (zh) * 2011-01-31 2020-04-07 手持产品公司 延长蓄电池寿命的方法和移动设备
CN104283411A (zh) * 2014-09-26 2015-01-14 广东美的制冷设备有限公司 Ac/dc变换器电路和家用电器的电源系统
US11251714B1 (en) 2020-12-09 2022-02-15 Contemporary Amperex Technology Co., Limited Method, apparatus and system for improving energy transmission efficiency between battery and power grid
WO2022120663A1 (zh) * 2020-12-09 2022-06-16 宁德时代新能源科技股份有限公司 功率变换器的控制方法、装置及系统

Also Published As

Publication number Publication date
US7280377B2 (en) 2007-10-09
CN1738171B (zh) 2012-07-18
DE102005019822A1 (de) 2006-03-02
US20060034106A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
CN1738171A (zh) 实用交互系统中的电力变换器
CN106877365B (zh) 模块化多电平变流器相间功率不平衡控制方法
CN101951162B (zh) 一种模块化多电平变流器的脉冲宽度控制方法
CN102308467B (zh) 级联型两电平变换器中的方法、控制器件及计算机程序产品
CN106602911B (zh) 模块化多电平变流器上下桥臂功率不平衡控制方法
Chowdhury et al. Design and implementation of a highly efficient pure sine-wave inverter for photovoltaic applications
He et al. Capacitor-voltage self-balance seven-level inverter with unequal amplitude carrier-based APODPWM
Belhimer et al. A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications
CN1750354A (zh) 用于电源转换器的组合的电流滞后和电压滞后控制
Kumar et al. Analysis of grid-connected reduced switch MLI with high-gain interleaved boost converter and hybrid MPPT for solar PV
CN105703658A (zh) 一种数模结合的并网逆变装置
CN103094918A (zh) 一种改善电能质量的单相并网装置
Vivek et al. Investigation on photovoltaic system based asymmetrical multilevel inverter for harmonic mitigation
Nathan et al. The 27-level multilevel inverter for solar PV applications
Prabaharan et al. Modeling and analysis of a quasi-linear multilevel inverter for photovoltaic application
Rusdi et al. Standalone single phase dc-ac inverter with fpga-based pulse modulated generator unit
CN110943633B (zh) 一种三电平单相单级升压逆变器及其控制方法
Mihalič et al. Third harmonic elimination by SPWM for filter reduction in a over-modulated single-phase inverter
Kumar et al. A modified PWM Scheme to improve AC power quality for MLIs using PV Source
Pietrowski et al. The wide range of output frequency regulation method for the inverter using the combination of PWM and DDS
Juyal et al. Power quality improvement of a system using three phase cascaded H-bridge multilevel inverters (a comparison)
Eya et al. Uninterruptible DC-powered boost differential inverter with a Sensorless Changeover System
Bhattacharjee et al. A new bidirectional AC-link microinverter based on dual active bridge topology
Gupta et al. Reduced Device Count Asymmetrical Multilevel Inverter Topology Using Different PWM Techniques
Palanidoss et al. Experimental verification of three phase quasi switched boost inverter with an improved PWM control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20060222

C14 Grant of patent or utility model
GR01 Patent grant