CN1738006A - 一种形成阻障薄膜的方法 - Google Patents

一种形成阻障薄膜的方法 Download PDF

Info

Publication number
CN1738006A
CN1738006A CNA2005100037543A CN200510003754A CN1738006A CN 1738006 A CN1738006 A CN 1738006A CN A2005100037543 A CNA2005100037543 A CN A2005100037543A CN 200510003754 A CN200510003754 A CN 200510003754A CN 1738006 A CN1738006 A CN 1738006A
Authority
CN
China
Prior art keywords
barrier membrane
vapour deposition
chemical vapour
membrane according
reaction container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100037543A
Other languages
English (en)
Inventor
邓宪哲
林进富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Publication of CN1738006A publication Critical patent/CN1738006A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明揭露一种形成阻障薄膜的方法。首先提供化学气相沉积(CVD)反应容器,其内设置有进气莲蓬头,其与气体源连结,以及支撑座,其与加热器连接,其中所述的进气莲蓬头更与无线电频率功率产生器相连结;将基材放入所述的化学气相沉积反应容器的支撑座上;藉由所述的加热器加热基材;将含钽的有机金属前体经由所述的进气莲蓬头导入化学气相沉积反应容器中,此时,无线电频率功率产生器为关闭状态,并开始在基材表面上沉积阻障薄膜;接着,开启无线电频率功率产生器,产生预定的无线电频率功率;将惰性气体导入所述的化学气相沉积反应容器中,并藉由无线电频率功率形成等离子体;进行阻障薄膜的原位等离子体处理。最后,将基材移出化学气相沉积反应容器。

Description

一种形成阻障薄膜的方法
技术领域
本发明关于半导体工艺领域,尤其是关于一种钽/氮化钽薄膜沉积方法。
背景技术
在制造硅半导体组件的过程中,经常需要沉积阻障材料以防止内联机金属层的扩散。如熟习该项技术人员所知,例如氮化钛等过渡金属材料通常被用来作为集成电路中的阻障材料,其设置的位置一般是在铜或铝金属导线与硅之间。
氮化钛基本上是受到业界公认最合适,同时也是目前生产在线仍在使用的标准阻障材料。然而,即使如此,使用氮化钛作为阻障材料,仍然在集成电路工艺中显现许多的限制。而且,氮化钛本身的材料特性亦明显不能满足下一世代工艺与产品的严格规格要求。
相较于氮化钛,具有较优越的物理特性的氮化钽(tantalum nitride)就非常可能取而代之而成为新的标准阻障材料。在物理特性上,氮化钽具有较高的熔点,硬度高,导电性极佳,且具有良好的热稳定性。此外,氮化钛作为阻障材料,可能会和与其接触的铜导线形成铜-钛或铜-氮等键结的化合物,而氮化钽作为阻障材料则不会有这种现象。此外,相较于氮化钛,氮化钽的晶界(grain boundaries)呈现较无秩序的现象,而以化学气相沉积技术所沉积的氮化钛则呈现柱状晶粒结构。由于晶界呈现较无秩序,使得氮化钽更能够有效地阻挡铜的扩散。
基本上,用以沉积氮化钽阻障薄膜的包括有物理气相沉积(physicalvapor deposition)、化学气相沉积(chemical vapor deposition)以及原子层沉积(atomic layer deposition)技术等等。活性溅射(reactive sputtering)使用最久的方式,其所形成的氮化钽薄膜通常具有较少的杂质,因此具有低导电率,但是缺点是阶梯覆盖(step coverage)能力较差。
其中,化学气相沉积技术应该是目前用来沉积氮化钽薄膜的最主要方式。以化学气相沉积技术形成的薄膜具有较以物理气相沉积技术所形成的薄膜较佳的膜厚均匀度(conformity)。早期的化学气相沉积技术形成氮化钽薄膜使用金属卤化物(metal halides)例如五氯化钽(TaCl5)为主反应物,而需要在高温下例如900℃下进行沉积反应。目前,这种需要在高温下才能进行氮化钽薄膜沉积的问题,已经由于有机金属化学气相沉积(MOCVD)技术以及低温等离子体加强化学气相沉积(low temperature plasma enhanced chemicalvapor deposition)的发展而获得解决。其它经改良的沉积方法,如改良的原子层沉积技术更使得氮化钽薄膜沉积的膜厚度可以获得良好的控制,并提供不错的阶梯覆盖能力,且能在较低温环境中进行沉积。
然而,目前的氮化钽薄膜沉积技术尽管已有改善,仍然有产出速率慢以及成本过高的缺点。由此可知,在这个技术领域中,的确需要一种具有较低成本以及高产出速率的氮化钽薄膜沉积技术。
发明内容
因此,本发明的主要目的在于提供一种相对较便宜的沉积阻障薄膜的方法,应用于集成电路的制造领域里,而能够具有较高的产出速率。
本发明的另一目的在于提供一种于基材上形成钽/氮化钽阻障层的方法,包括有原位(in-situ)进行氮化钽的等离子体处理。
为达成本发明的目的,本发明的较佳实施例一种形成阻障薄膜的方法,包含有:提供化学气相沉积反应容器,其中包括有进气莲蓬头,其与气体源连结,以及支撑座,其与加热器连接,其中所述的进气莲蓬头更与无线电频率功率产生器相连结;将基材放入所述的化学气相沉积反应容器的支撑座上;藉由所述的加热器加热基材;将含钽的有机金属前体经由所述的进气莲蓬头导入化学气相沉积反应容器中,此时,无线电频率功率产生器为关闭状态,并开始在基材表面上沉积阻障薄膜;接着,开启无线电频率功率产生器,产生预定的无线电频率功率;将惰性气体导入所述的化学气相沉积反应容器中,并藉由无线电频率功率形成等离子体;进行阻障薄膜的原位等离子体处理;以及将基材移出化学气相沉积反应容器。
为了进一步了解本发明之特征及技术内容,请参阅以下有关本发明之详细说明与附图。然而所附图式仅供参考与辅助说明用,并非用来对本发明加以限制。
附图说明
图1表示根据本发明较佳实施例用来执行氮化钽薄膜沉积的晶片处理系统的示意图。
图2表示根据本发明沉积阻障薄膜的方法流程图。
具体实施方式
本发明关于在同一反应容器中沉积同时处理形成于基材上的阻障薄膜的方法。根据本发明的较佳实施例,所述的阻障薄膜为氮化钽薄膜,且是利用含有钽的有机金属前体与氮源反应生成。在较佳的状态下,本发明的氮化钽薄膜的沉积是在表面控制的层对层(layer-by-layer)堆积方式下进行。本领域的技术人员应理解以下本发明所指的化学气相沉积氮化钽薄膜可藉由热分解所述的含有钽的有机金属前体而形成。此外,虽然以下的实施例中以氮化钽薄膜为例,但本发明的方法亦可延伸应用在钽薄膜的沉积领域。
请参阅图1,其表示的是根据本发明较佳实施例用来执行氮化钽薄膜沉积的晶片处理系统10的示意图。图中所表示的晶片处理系统10包括化学气相沉积反应容器100、气体源102以及真空泵104。
化学气相沉积反应容器100其中设置有支撑座112,用来支撑基材200,例如半导体晶片。基材200可藉由设于其下方的加热组件114加热至所要的温度状态。通常来说,在支撑座112另外会设置有温度感应装置,例如热耦合(thermal couple),方便监测支撑座112以及基材200的温度。
在化学气相沉积反应容器100相对位于支撑座112正上方的位置另外设置有进气莲蓬头116,经由进气莲蓬头116使工艺气体能导入化学气相沉积反应容器100中。进气莲蓬头116与气体源102连结,并藉由计算机控制单元控制气体流量大小(图未示)。根据本发明,气体源102可以供应予化学气相沉积反应容器100的反应气体包括有含钽的有机金属前体、氮气、载气、例如氩气等等的惰性气体以及其它。
根据本发明较佳实施例,进气莲蓬头116另外连接至无线电频率功率产生源118。此外,根据本发明之另一较佳实施例,支撑座112另外连接至无线电频率功率产生源120。
请参阅图2,并同时参酌图1,其中图2表示的是根据本发明沉积阻障薄膜的方法流程图。在步骤601中,首先将基材200或者半导体晶片放置在化学气相沉积反应容器100内的支撑座112上。本发明所指的化学气相沉积反应容器100可以是多反应器化学气相沉积设备中的其中单一反应容器。此外,在进行步骤601之前,基材200可以在所述的多反应器化学气相沉积设备中的其它反应容器中预先经过气体排除(degas)处理或预先清洗。接着,在步骤602中,利用所述的加热组件114,将基材200加热至200℃至600℃的温度范围,较佳的温度范围在200℃至300℃之间。
根据本发明的较佳实施例,在接下来的步骤603中,先进行第一个阶段,将含氮的气体,例如氨气(ammonia)经由所述的进气莲蓬头116导入化学气相沉积反应容器100中,并将气体流速控制在300至4000sccm,时间控制在1秒至5秒之间。流入化学气相沉积反应容器100中的氨气分子传输至基材200的表面,使氨气分子被饱和地吸附在基材表面上。达成此表面饱和吸附状态后,此氨气随即被关闭,不再继续导入化学气相沉积反应容器100中。接着,利用惰性气体或所谓的钝气,例如氩气,对化学气相沉积反应容器100进行清除(purge)的动作,并维持此动作约0.5秒左右。
等进行化学气相沉积反应容器100的清除结束后,随即进入下一个阶段,开始将含钽的有机金属前体气体经由所述的进气莲蓬头116导入化学气相沉积反应容器100中,此时,所述连接至进气莲蓬头116的无线电频率功率产生器仍处于关闭的状态,并且开始在基材200表面上进行氮化钽薄膜沉积。温度同前。在这个反应阶段,含钽的有机金属前体气体与先前吸附在基材表面的氨气分子反应。由于利用这种循环式的原子层沉积方法,因此所沉积的氮化钽薄膜厚度可以藉由控制循环次数而精确地获得控制,也可以形成极薄的氮化钽薄膜。含钽的有机金属前体气体在此阶段同样地被饱和地吸附在基材表面上,使得基材表面上的氮化钽薄膜成分均匀度高,而且即使基材具有不平坦的表面结构,膜厚度的差异性仍然可以被减至最小。
所述的含钽的有机金属前体气体可以包括有PDMAT(pentakis(dimethylamido)tantalum)与PDEAT(pentakis(diethylamido)tantalum)等等。载气可以使用例如氩气等惰性气体。
在将氮化钽薄膜以所述方式沉积到所要的厚度之后,所述的反应气体随即被关闭,不再继续导入化学气相沉积反应容器100中。然后,进行步骤604,先将惰性气体例如氩气导入化学气相沉积反应容器100中。同时将原先关闭的连接至进气莲蓬头116的无线电频率功率产生器开启。进行步骤605,由于连接至进气莲蓬头116的无线电频率功率产生器118开启,表示无线电频率功率已提供给化学气相沉积反应容器100,配合导入的氩气,产生氩气等离子体,此时即可以对沉积在基材200上的氮化钽薄膜原位(in-situ)进行等离子体处理。根据本发明较佳实施例,无线电频率功率产生器118可以提供给化学气相沉积反应容器100的无线电频率功率介于50至1000瓦特之间。原位进行氮化钽薄膜的等离子体处理乃本发明的重点之一,它可以节省晶片处理时程,因此达到加快产出速率的目的。
根据不同工艺的特殊要求,当进行所述步骤605的原位(in-situ)等离子体处理时,可以开启另一无线电频率功率产生器120,以提供产生的氩气等离子体一个偏压功率。这使得氩气等离子体中的游离分子能够以较高的能量撞击氮化钽薄膜表面。需注意的是,所述的无线电频率功率产生器120系连接至支撑座112,可选择开启或关闭,其功率范围介于0至1000瓦特。
根据本发明的精神,在形成氮化钽薄膜之后,基材200随即被移出反应容器100,基材200接着被移往物理气相沉积反应器中,并进行钽薄膜溅射工艺,藉此在氮化钽薄膜上形成一层钽金属层,并与化学气相沉积氮化钽薄膜在基材上构成钽/氮化钽复合阻障层。通常,钽/氮化钽复合阻障层可以应用在铜工艺的镶嵌沟渠或者介层洞结构中,作为基材与铜金属之间的接口。这里所谓的铜工艺另外包括有在形成钽/氮化钽复合阻障层之后,进行导电金属的沉积,然后进行化学机械抛光。
综上所述,本发明的主要优点在于能够在单一化学气相沉积反应容器中直接进行氮化钽的原子层沉积反应,并且在沉积完成后,快速、有效地进行氮化钽薄膜的等离子体处理。由于不需要将基材或晶片移出化学气相沉积反应容器进行等离子体处理,因此可以节省晶片处理时程,达到加快产出速率的目的。

Claims (23)

1.一种形成阻障薄膜的方法,包含有:
提供化学气相沉积反应容器,其中包括有进气莲蓬头,其进一步与气体源连结,以及支撑座,其与加热器连接,其中所述的进气莲蓬头与无线电频率功率产生器相连结;
将基材放入所述的化学气相沉积反应容器的支撑座上;
藉由所述的加热器加热基材;
将含钽的有机金属前体经由所述的进气莲蓬头导入化学气相沉积反应容器中,此时,无线电频率功率产生器为关闭状态,并开始在基材表面上沉积阻障薄膜;
接着,开启无线电频率功率产生器,产生预定的无线电频率功率;
将惰性气体导入所述的化学气相沉积反应容器中,并藉由无线电频率功率形成等离子体;
进行阻障薄膜的原位等离子体处理;以及
将基材移出化学气相沉积反应容器。
2.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该基材被加热到200℃至600℃。
3.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该基材被加热到200℃至300℃。
4.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该含钽的有机金属前体包含有PDMAT与PDEAT。
5.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该惰性气体是氩气。
6.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该原位等离子体处理乃利用氩气等离子体进行。
7.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该无线电频率功率介于50至1000瓦特。
8.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该化学气相沉积反应容器另连接真空泵。
9.根据权利要求1所述的形成阻障薄膜的方法,其特征在于:该阻障薄膜是氮化钽薄膜。
10.根据权利要求1所述的形成阻障薄膜的方法,其特征在于,该阻障薄膜包括钽金属薄膜。
11.一种形成阻障薄膜的方法,包含有:
提供化学气相沉积反应容器,其中包括有进气莲蓬头,其与气体源连结,以及支撑座,其与加热器连接,其中所述的进气莲蓬头进一步与第一无线电频率功率产生器相连结;
将基材放入所述的化学气相沉积反应容器的支撑座上;
藉由所述的加热器加热基材;
将含钽的有机金属前体经由所述的进气莲蓬头导入化学气相沉积反应容器中,此时,无线电频率功率产生器为关闭状态,并开始在基材表面上沉积氮化钽阻障薄膜;
接着,开启该第一无线电频率功率产生器,产生预定的第一无线电频率功率;
将惰性气体导入所述的化学气相沉积反应容器中,并藉由该第一无线电频率功率使导入的惰性气体形成等离子体;
进行氮化钽阻障薄膜的原位等离子体处理;以及
将基材移出化学气相沉积反应容器。
12.根据权利要求11所述的形成阻障薄膜的方法,其特征在于:该基材被加热到200℃至600℃。
13.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该基材被加热到200℃至300℃。
14.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该含钽的有机金属前体包含有PDMAT与PDEAT。
15.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该支撑座另外连接至第二无线电频率功率产生器。
16.根据权利要求15所述的形成阻障薄膜的方法,其特征在于,该第二无线电频率功率产生器输出的无线电频率功率范围介于0至1000瓦特之间。
17.根据权利要求15所述的形成阻障薄膜的方法,其特征在于,在沉积该氮化钽阻障薄膜的过程中,该第二无线电频率功率产生器为关闭状态。
18.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该惰性气体是氩气。
19.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该原位等离子体处理乃利用氩气等离子体进行。
20.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该第一无线电频率功率介于50至1000瓦特。
21.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,该化学气相沉积反应容器另连接真空泵。
22.根据权利要求11所述的形成阻障薄膜的方法,其特征在于,在将含钽的有机金属前体经由所述的进气莲蓬头导入化学气相沉积反应容器之前,该方法还包含有下列步骤:
将含氮气体导入该化学气相沉积反应容器中;
关闭该含氮气体,使其不再继续进入该化学气相沉积反应容器中;以及利用惰性气体清除该化学气相沉积反应容器。
23.根据权利要求22所述的形成阻障薄膜的方法,其特征在于,该含氮气体是氨气。
CNA2005100037543A 2004-08-20 2005-01-11 一种形成阻障薄膜的方法 Pending CN1738006A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/711,067 2004-08-20
US10/711,067 US7189649B2 (en) 2004-08-20 2004-08-20 Method of forming a material film

Publications (1)

Publication Number Publication Date
CN1738006A true CN1738006A (zh) 2006-02-22

Family

ID=35910167

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100037543A Pending CN1738006A (zh) 2004-08-20 2005-01-11 一种形成阻障薄膜的方法

Country Status (2)

Country Link
US (1) US7189649B2 (zh)
CN (1) CN1738006A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060100602A (ko) * 2005-03-17 2006-09-21 삼성전자주식회사 폴리실리콘 박막 트랜지스터의 제조 방법 및 그에 의해제조된 폴리실리콘 박막 트랜지스터를 포함하는 액정 표시장치
US8969195B2 (en) * 2008-02-22 2015-03-03 International Business Machines Corporation Methods of manufacturing semiconductor devices and a semiconductor structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951804B2 (en) * 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer

Also Published As

Publication number Publication date
US20060040496A1 (en) 2006-02-23
US7189649B2 (en) 2007-03-13

Similar Documents

Publication Publication Date Title
US7407876B2 (en) Method of plasma enhanced atomic layer deposition of TaC and TaCN films having good adhesion to copper
US7959985B2 (en) Method of integrating PEALD Ta-containing films into Cu metallization
US7645484B2 (en) Method of forming a metal carbide or metal carbonitride film having improved adhesion
US6534133B1 (en) Methodology for in-situ doping of aluminum coatings
US7338901B2 (en) Method of preparing a film layer-by-layer using plasma enhanced atomic layer deposition
US8163087B2 (en) Plasma enhanced atomic layer deposition system and method
US8058170B2 (en) Method for depositing thin tungsten film with low resistivity and robust micro-adhesion characteristics
US7422636B2 (en) Plasma enhanced atomic layer deposition system having reduced contamination
US8329576B2 (en) Method for improving uniformity and adhesion of low resistivity tungsten film
US20070116888A1 (en) Method and system for performing different deposition processes within a single chamber
US7666474B2 (en) Plasma-enhanced pulsed deposition of metal carbide films
US20070054046A1 (en) Method of forming a tantalum-containing layer from a metalorganic precursor
US20120164832A1 (en) Method for depositing tungsten film having low resistivity, low roughness and high reflectivity
JP4393071B2 (ja) 成膜方法
Kim et al. Comparison study for TiN films deposited from different method: chemical vapor deposition and atomic layer deposition
TW201819664A (zh) 用於增強的填充與減小的基板攻擊之鎢的原子層沉積
US20070054047A1 (en) Method of forming a tantalum-containing layer from a metalorganic precursor
US6423201B1 (en) Method of improving the adhesion of copper
KR100427905B1 (ko) 금속의 화학 증착에서 모서리 효과를 제거하기 위한 방법
CN115769364A (zh) 金属氧化物扩散阻挡物
KR100624351B1 (ko) 금속 필름의 화학적 증착 방법
CN1738006A (zh) 一种形成阻障薄膜的方法
JP3194256B2 (ja) 膜成長方法と膜成長装置
WO1997047783A1 (en) Methodology and apparatus for in-situ doping of aluminum coatings
JP4763894B2 (ja) ハロゲン化タンタル前駆物質からのcvd窒化タンタルプラグの形成

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication