CN1724363A - A kind of high-silicon ultra-stable natural stilbite and its preparation method - Google Patents
A kind of high-silicon ultra-stable natural stilbite and its preparation method Download PDFInfo
- Publication number
- CN1724363A CN1724363A CN 200510027083 CN200510027083A CN1724363A CN 1724363 A CN1724363 A CN 1724363A CN 200510027083 CN200510027083 CN 200510027083 CN 200510027083 A CN200510027083 A CN 200510027083A CN 1724363 A CN1724363 A CN 1724363A
- Authority
- CN
- China
- Prior art keywords
- ammonium
- exchange
- acid
- sti
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052678 stilbite Inorganic materials 0.000 title claims description 31
- 229910052710 silicon Inorganic materials 0.000 title claims description 18
- 239000010703 silicon Substances 0.000 title claims description 18
- 238000002360 preparation method Methods 0.000 title claims description 9
- 239000010457 zeolite Substances 0.000 claims abstract description 44
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 39
- 239000002253 acid Substances 0.000 claims abstract description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical group [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000005695 Ammonium acetate Substances 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229940043376 ammonium acetate Drugs 0.000 claims description 2
- 235000019257 ammonium acetate Nutrition 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 2
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims 3
- 238000005406 washing Methods 0.000 claims 2
- 229940070337 ammonium silicofluoride Drugs 0.000 claims 1
- 238000001354 calcination Methods 0.000 abstract description 9
- -1 ammonium fluorosilicate Chemical group 0.000 abstract description 8
- 210000001367 artery Anatomy 0.000 abstract 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000001179 sorption measurement Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 4
- 235000021286 stilbenes Nutrition 0.000 description 4
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-Lutidine Substances CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000000279 solid-state nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
技术领域technical field
本发明属于天然沸石材料改性技术领域,具体涉及一种高硅超稳化天然辉沸石及其制备方法。以天然STI沸石为原料,经脱铝补硅改性方法,如酸交换,铵交换再焙烧,氟硅酸铵交换再焙烧等,得到高硅天然STI沸石(Si/Al>7.0),其孔道结构开放完美,结构热稳定性达到1000℃以上。The invention belongs to the technical field of modification of natural zeolite materials, and in particular relates to a high-silicon super-stable natural stilbite and a preparation method thereof. Using natural STI zeolite as raw material, through dealumination and silicon supplementation modification methods, such as acid exchange, ammonium exchange and then roasting, ammonium fluorosilicate exchange and then roasting, etc., to obtain high-silicon natural STI zeolite (Si/Al>7.0), its pore The structure is open and perfect, and the thermal stability of the structure reaches above 1000°C.
背景技术Background technique
沸石分子筛是一种无机硅铝酸盐或磷酸盐晶体,骨架中含有规则且有序排列的分子尺寸的孔道或笼(ca.0.3-1.5nm),具有择形催化、离子交换以及分子筛分等作用,被广泛应用于工业催化,吸附分离和离子交换等。Zeolite molecular sieve is an inorganic aluminosilicate or phosphate crystal, the skeleton contains regular and orderly arranged pores or cages of molecular size (ca. It is widely used in industrial catalysis, adsorption separation and ion exchange.
发现于我国北京地区一种天然辉沸石,品位高,储量大,开采成本低,是一种有广泛应用前景的新天然矿物资源。该天然沸石属于STI(Stilbite)沸石结构型,具有十元环孔道(沿[100]方向,0.49×0.62nm)和交叉的八元环孔道(沿[101]方向,0.27×0.56nm)。其单晶结构最先由Galli测定,理想晶胞组成为Na4Ca8[Al20Si52O144]·56H2O,属于富钙型STI沸石[Galli,E.Acta Cryst.1971,B27,833]。目前国内对该沸石的详细研究很少,应用也只停留在附加值很低的初级产业中。It is a kind of natural stilbite found in Beijing area of my country. It has high grade, large reserves and low mining cost. It is a new natural mineral resource with wide application prospects. The natural zeolite belongs to the STI (Stilbite) zeolite structure type, with ten-membered ring channels (along the [100] direction, 0.49×0.62nm) and intersecting eight-membered ring channels (along the [101] direction, 0.27×0.56nm). Its single crystal structure was first determined by Galli. The ideal unit cell composition is Na 4 Ca 8 [Al 20 Si 52 O 144 ]·56H 2 O, which belongs to the calcium-rich STI zeolite [Galli, E.Acta Cryst.1971, B27, 833]. At present, there are few detailed studies on this zeolite in China, and its application is only in the primary industry with very low added value.
原Ca-STI沸石结构热稳定性差,350℃焙烧2h骨架完全被破坏,在催化和吸附等领域的应用受到极大限制[丘瑾等,化学学报,1999,57(4),377]。Mortier等人发现,STI沸石结构稳定性与脱水过程中可交换阳离子的位置及种类有关[Mortier,W.J.etc.Am.Meneral.1981,66,309],其中Ca-STI沸石稳定性最差,而H-STI沸石结构最稳定[Jacobs,P.A.etc.Faraday.Trans.1979,I 75,883]。本课题组曾系统研究铵交换改性后STI沸石的稳定性,同时发现改性后的Na-STI沸石700℃焙烧结构仍保持完美。改性后的STI沸石(Na-STI和H-STI),对不同链长的烯烃和醇类具有选择吸附性,其表面具有疏水性和固体酸性质[李军等,化学学报,2000,58(8),988]。与H-FER沸石(镁碱沸石)相比,H-STI沸石对正丁烯异构化为异丁烯的催化反应转化率较低,但选择性较高[Li,J.etc.Microporous Mesoporous Mater.2000,37(3),365。Hong,S.B.etc.J.Am.Chem.Soc.2004,126(18),5817]。H-STI沸石还可用作主体材料组装功能物质,制备结构稳定化的功能材料。本课题组制备的LiCl/H-STI主-客体材料具有良好的湿敏性能[邹静,龙英才,ZL 01 1 12692.2。邹静等,化学学报,2001,59(6),862。Zou,J.etc.J.Mater.Chem.2004,14,2405]。H-STI沸石的耐酸性能也已被成功开发用于抗酸离子交换剂和吸附剂[龙英才等,ZL 03 141 604.7。Long,Y.-C.etc.Chin.J.Chem.2004,22(7),668]。为深层次开发该优质天然资源在催化、吸附及功能材料等领域的应用,进一步提高该沸石的热稳定性及水热稳定性,实现其骨架结构超稳化是十分必要的。The thermal stability of the original Ca-STI zeolite structure is poor, and the skeleton is completely destroyed after roasting at 350°C for 2 hours, which greatly limits its application in the fields of catalysis and adsorption [Qiu Jin et al., Acta Chem. Sinica, 1999, 57(4), 377]. Mortier et al. found that the structural stability of STI zeolites is related to the position and type of exchangeable cations in the dehydration process [Mortier, W.J.etc.Am.Meneral.1981, 66, 309], among which Ca-STI zeolite has the worst stability, while H-STI zeolite structure is the most stable [Jacobs, P.A. etc. Faraday. Trans. 1979, I 75, 883]. Our research group has systematically studied the stability of STI zeolite modified by ammonium exchange, and found that the modified Na-STI zeolite still maintains a perfect structure after 700°C calcination. Modified STI zeolites (Na-STI and H-STI) have selective adsorption to olefins and alcohols with different chain lengths, and their surfaces have hydrophobic and solid acid properties [Li Jun et al., Acta Chem. Sinica, 2000, 58 (8), 988]. Compared with H-FER zeolite (ferrierite), H-STI zeolite has lower conversion rate of n-butene isomerization to isobutene catalytic reaction, but higher selectivity [Li, J. etc. Microporous Mesoporous Mater. 2000, 37(3), 365. Hong, S. B. etc. J. Am. Chem. Soc. 2004, 126(18), 5817]. H-STI zeolite can also be used as a host material to assemble functional substances to prepare structurally stabilized functional materials. The LiCl/H-STI host-guest material prepared by our research group has good moisture-sensitive properties [Zou Jing, Long Yingcai, ZL 01 1 12692.2. Zou Jing et al., Acta Chemical Sinica, 2001, 59(6), 862. Zou, J. etc. J. Mater. Chem. 2004, 14, 2405]. The acid resistance of H-STI zeolite has also been successfully developed for acid-resistant ion exchangers and adsorbents [Long Yingcai et al., ZL 03 141 604.7. Long, Y.-C. etc. Chin. J. Chem. 2004, 22(7), 668]. In order to further develop the application of this high-quality natural resource in the fields of catalysis, adsorption and functional materials, and further improve the thermal and hydrothermal stability of the zeolite, it is very necessary to realize the ultra-stabilization of its skeleton structure.
通常制备H型沸石有两种途径,即酸交换与铵交换后再焙烧。前者要求沸石本身具有良好的耐酸性,而后者则对其热稳定性具有较高要求。通常石油催化裂化中所用的HY沸石就是通过后者制备得到。显然,这两种方法均适用于以天然STI沸石制备H-STI沸石。同时,这两种方法都会造成骨架部分脱铝,从而使骨架硅铝比明显提高,但同时也会使骨架缺陷增多。一般而言,硅铝比提高有利于提高沸石骨架的热稳定性,但骨架缺陷增多又会使其稳定性下降,这是一个竞争过程。对天然STI沸石来说,酸交换和焙烧均易使骨架脱铝,大量非骨架铝的存在会明显降低其交换容量和吸附性能。Hong等以1,4-二甲基吡啶丁烷为模板剂首次合成高硅铝比(Si/Al=7.1)STI沸石,其热稳定性高达1100℃[Hong,S.B.etc.J.Am.Chem.Soc.2004,126(18),5817]。但文献所用模板剂制备困难、成本较高,且合成反应物的组成配比范围十分狭窄、产物硅铝比难以继续提高。我们曾以化学方法处理天然STI沸石得到硅铝原子比6.81的Na-STI沸石,其热稳定性经证明已达到800℃以上。这提示我们,有可能通过化学处理方法进一步提高天然STI沸石的骨架硅铝比,实现结构超稳化。通过化学改性的方法我们曾得到骨架硅铝比4.5-7.3的H-STI沸石,其骨架结构以及其阳离子形态产物热稳定性均达到1000℃,基本实现结构超稳化[钟鹰等,化学学报,2005,63(8),720-724。Cheng,X.W.etc.Microporous Mesoporous Mater.2005,83,233-243]。Generally, there are two ways to prepare H-type zeolite, that is, acid exchange and ammonium exchange followed by roasting. The former requires zeolite itself to have good acid resistance, while the latter has higher requirements for its thermal stability. Usually the HY zeolite used in petroleum catalytic cracking is prepared through the latter. Obviously, both methods are suitable for preparing H-STI zeolite from natural STI zeolite. At the same time, these two methods will cause partial dealumination of the skeleton, so that the silicon-aluminum ratio of the skeleton will be significantly increased, but at the same time, the defects of the skeleton will also increase. Generally speaking, the increase of silicon-aluminum ratio is beneficial to improve the thermal stability of zeolite framework, but the increase of framework defects will decrease its stability, which is a competitive process. For natural STI zeolites, acid exchange and calcination are easy to dealuminate the framework, and the presence of a large amount of non-framework aluminum will significantly reduce its exchange capacity and adsorption performance. Hong et al. used 1,4-lutidine butane as a template for the first time to synthesize STI zeolite with a high silicon-aluminum ratio (Si/Al=7.1), and its thermal stability was as high as 1100°C [Hong, S.B.etc.J.Am.Chem .Soc.2004, 126(18), 5817]. However, the templates used in the literature are difficult to prepare and the cost is high, and the composition ratio range of the synthetic reactants is very narrow, and the silicon-aluminum ratio of the product is difficult to continue to increase. We have chemically processed natural STI zeolite to obtain Na-STI zeolite with a silicon-aluminum atomic ratio of 6.81, and its thermal stability has been proved to have reached above 800 °C. This suggests that it is possible to further increase the framework silicon-aluminum ratio of natural STI zeolite through chemical treatment to achieve super-stabilization of the structure. Through the method of chemical modification, we have obtained H-STI zeolite with a framework silicon-aluminum ratio of 4.5-7.3. The framework structure and the thermal stability of the cationic product can reach 1000°C, and the structure is basically ultra-stable [Zhong Ying et al., Chem. Journal of the Chinese Academy of Sciences, 2005, 63(8), 720-724. Cheng, X. W. etc. Microporous Mesoporous Mater. 2005, 83, 233-243].
本发明采用脱铝补硅改性方法,以天然STI沸石为原料,通过酸交换、铵交换后在空气中焙烧,再以氟硅酸铵交换后在空气中焙烧的方法制备出高硅超稳化STI沸石。其所用天然矿物资源品位高、储量丰富、开采成本低,制备方法简便,产业化时投资少,生产成本较低,作为吸附剂,催化剂及功能材料有广泛的市场前景。The invention adopts the modification method of dealumination and silicon supplementation, uses natural STI zeolite as raw material, roasts in air after acid exchange and ammonium exchange, and then roasts in air after exchange with ammonium fluorosilicate to prepare high-silicon ultra-stable STI Zeolite. The natural mineral resources used are of high grade, abundant reserves, low mining cost, simple preparation method, low investment in industrialization, and low production cost. As an adsorbent, catalyst and functional material, it has broad market prospects.
发明内容Contents of the invention
本发明的目的在于提出一种高硅超稳化天然辉沸石(STI)及其制备方法,使产物骨架硅铝比明显提高,同时孔道结构保持完美开放,热稳定性达到超稳化。The purpose of the present invention is to propose a high-silicon ultra-stable natural stilbite (STI) and its preparation method, which can significantly increase the silicon-aluminum ratio of the product skeleton, keep the pore structure perfectly open, and achieve ultra-stable thermal stability.
本发明提出的高硅趋稳化天然辉沸石(ST1),是以天然STI沸石为原料,经酸交换、铵交换后再在空气中焙烧,再经氟硅酸铵交换后在空气中焙烧等过程,得到高硅超稳化STI沸石。The high-silicon stabilized natural stilbene (ST1) proposed by the present invention is to use natural STI zeolite as raw material, roast in air after acid exchange and ammonium exchange, and roast in air after exchange with ammonium fluorosilicate, etc. process to obtain high-silicon ultra-stable STI zeolite.
本发明所得到的高硅超稳化STI沸石,其骨架硅铝比达到7.1-11.4,比表面积200-510m2/g,微孔容积为0.06-0.19m3/g,热稳定性达到1000℃。The high-silicon ultra-stabilized STI zeolite obtained by the invention has a skeleton silicon-aluminum ratio of 7.1-11.4, a specific surface area of 200-510m 2 /g, a micropore volume of 0.06-0.19m 3 /g, and a thermal stability of 1000°C.
本发明所述的高硅超稳化STI沸石的制备方法如下:The preparation method of high silicon ultra-stable STI zeolite of the present invention is as follows:
将天然辉沸石(ST1)用酸热交换,水洗烘干;再用铵热交换,水洗烘干;然后在两端开放的管式炉内于空气气氛中焙烧;再以氟硅酸铵溶液交换,水洗烘干;最后经焙烧,得到高硅超稳化STI沸石。The natural stilbene (ST1) is heat-exchanged with acid, washed and dried with water; then heat-exchanged with ammonium, washed and dried with water; then roasted in an air atmosphere in a tube furnace with both ends open; and then exchanged with ammonium fluorosilicate solution , washed with water and dried; finally roasted to obtain high-silicon ultra-stabilized STI zeolite.
上述方法中,所用的天然STI样品原样(Ca-STI沸石)由我国地质部门提供,其晶胞组成为Na0.2Mg0.1Ca8.4[Al17.2Si54.8O144]·65H2O,化学成分为m(SiO2)∶m(Al2O3)∶m(MgO)∶m(CaO)∶m(Na2O)=56.86∶14.83∶0.11∶8.13∶8.85×10-2,硅铝原子比3.08,晶粒尺寸为5~10μm。In the above method, the original natural STI sample (Ca-STI zeolite) used was provided by the geological department of China, and its unit cell composition was Na 0.2 Mg 0.1 Ca 8.4 [Al 17.2 Si 54.8 O 144 ]·65H 2 O, and the chemical composition was m (SiO 2 ):m(Al 2 O 3 ):m(MgO):m(CaO):m(Na 2 O)=56.86:14.83:0.11:8.13:8.85×10 -2 , the atomic ratio of silicon to aluminum is 3.08, The grain size is 5-10 μm.
上述方法中,所用酸为盐酸(HCl)、硫酸(H2SO4)、硝酸(HNO3)或醋酸(HAc)等,浓度为0.1-1mol/L,固液比为1∶10-1∶20,交换温度为80-100℃,每次1-3h,交换次数1-4次。In the above method, the acid used is hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ) or acetic acid (HAc), etc., the concentration is 0.1-1mol/L, and the solid-liquid ratio is 1:10-1: 20. The exchange temperature is 80-100°C, 1-3 hours each time, and the exchange times are 1-4 times.
上述方法中,所用铵为氯化铵(NH4Cl)、硝酸铵(NH4NO3)、硫酸铵((NH4)2SO4)或醋酸铵(NH4Ac)等,浓度为0.1-1mol/L,固液比为1∶10-1∶20,交换温度为80-100℃,每次1-3h,交换次数1-4次。In the above method, the ammonium used is ammonium chloride (NH 4 Cl), ammonium nitrate (NH 4 NO 3 ), ammonium sulfate ((NH 4 ) 2 SO 4 ) or ammonium acetate (NH 4 Ac), etc., with a concentration of 0.1- 1mol/L, the solid-liquid ratio is 1:10-1:20, the exchange temperature is 80-100°C, each time is 1-3h, and the number of exchanges is 1-4 times.
上述方法中,氟硅酸铵((NH4)2SiF6)浓度为0.1-1mol/L,固液比为1∶10-1∶20,交换温度为20-50℃,每次40-50h,交换次数1-4次。In the above method, the concentration of ammonium fluorosilicate ((NH 4 ) 2 SiF 6 ) is 0.1-1mol/L, the solid-liquid ratio is 1:10-1:20, the exchange temperature is 20-50°C, and each time is 40-50h , the number of exchanges is 1-4 times.
上述方法中,焙烧温度为400-600℃,焙烧时间为0.5-2h,空气流量为1-10mL/min。In the above method, the calcination temperature is 400-600°C, the calcination time is 0.5-2h, and the air flow rate is 1-10mL/min.
本发明所提供的高硅超稳化STI沸石的特征可用如下方法进行表征:The characteristics of the high silicon ultra-stable STI zeolite provided by the present invention can be characterized by the following methods:
1.粉末X-射线衍射(XRD)。在粉末X-射线衍射中,参照标准STI图谱,以确定产物结构经处理后未被破坏。1. Powder X-ray Diffraction (XRD). In powder X-ray diffraction, refer to the standard STI pattern to confirm that the product structure has not been destroyed after treatment.
2.分段程序升温焙烧(TPH)。用于测定热稳定性的沸石样品,是在马福炉内2h程序升温至600℃,恒温1h后冷却至室温,XRD测定该样品的相对结晶度后再以同样的升温速度和恒温时间对该样品进行更高温度的焙烧处理,依次获得该样品经700、800、900、1000℃处理后的相对结晶度数据。2. Segmented temperature programmed roasting (TPH). The zeolite sample used to measure the thermal stability is programmed to heat up to 600°C in the muffle furnace for 2 hours, and then cooled to room temperature after constant temperature for 1 hour. The relative crystallinity data of the samples treated at 700, 800, 900, and 1000°C were sequentially obtained by calcination at a higher temperature.
3.低温氮吸附。由BJH方法计算产物比表面积和孔容积。3. Low temperature nitrogen adsorption. The product specific surface area and pore volume were calculated by the BJH method.
4.X射线荧光散射分析(XRF)。计算产物化学硅铝比。4. X-ray fluorescence scattering analysis (XRF). Calculate the product chemical silicon to aluminum ratio.
5.27Al高分辨率魔角固体核磁共振谱(27Al MAS NMR)。计算产物非骨架铝含量。5. 27 Al high-resolution magic-angle solid-state nuclear magnetic resonance spectrum ( 27 Al MAS NMR). Calculate the non-skeletal aluminum content of the product.
附图说明Description of drawings
图1分别为Ca-STI沸石经酸交换后再经铵交换焙烧后产物(H-STI)及其以氟硅酸铵交换焙烧后产物(H-STI’)的XRD谱图。从中可以看出,经处理后产物结构均保持完美。XRF结果表明其化学硅铝比为4.63,扣除非骨架铝(含量为34.6%,由27Al MAS NMR计算得到),其骨架硅铝原子比为7.1;而经氟硅酸铵交换焙烧后产物化学硅铝比为9.09,扣除非骨架铝(含量为20.2%,由27Al MAS NMR计算得到),其骨架硅铝原子比达到11.4。Fig. 1 is the XRD spectra of Ca-STI zeolite after acid exchange and then ammonium exchange roasting (H-STI) and ammonium fluorosilicate exchange roasting product (H-STI'). It can be seen that the structure of the product remains perfect after treatment. XRF results show that its chemical silicon-aluminum ratio is 4.63, and after deducting non-framework aluminum (34.6% content, calculated by 27 Al MAS NMR), its skeleton silicon-aluminum atomic ratio is 7.1; The silicon-aluminum ratio is 9.09, and the skeleton silicon-aluminum atomic ratio reaches 11.4 after deducting the non-framework aluminum (the content is 20.2%, calculated by 27 Al MAS NMR).
图2分别为H-STI(a)及H-STI’(b)沸石的低温氮吸附谱图。均呈现典型的I型吸附曲线,但前者比表面积和微孔容积分别为509m2/g和0.190cm3/g,这说明其结构完美且孔道开放,而后者比表面积和微孔容积分别为199m2/g和0.061cm3/g,说明其孔道被部分堵塞。Figure 2 is the low-temperature nitrogen adsorption spectra of H-STI(a) and H-STI'(b) zeolites respectively. Both present typical type I adsorption curves, but the specific surface area and micropore volume of the former are 509m 2 /g and 0.190cm 3 /g, which indicates that its structure is perfect and the pores are open, while the specific surface area and micropore volume of the latter are 199m 2 /g and 0.061cm 3 /g, indicating that the pores are partially blocked.
图3为产物H-STI沸石(1)和H-STI’(2)沸石的TPH图谱。可以看出经1000℃焙烧后其相对结晶度仍保持75%以上,说明改性后沸石结构基本实现超稳化,尤其是H-STI’,经不同温度焙烧后的相对结晶度要明显高于相对应的H-STI,说明其热稳定性随硅铝比的提高明显提高。Fig. 3 is the TPH spectrum of products H-STI zeolite (1) and H-STI' (2) zeolite. It can be seen that the relative crystallinity remains above 75% after calcination at 1000°C, indicating that the modified zeolite structure basically achieves ultra-stabilization, especially for H-STI', the relative crystallinity after calcination at different temperatures is significantly higher than that of The corresponding H-STI shows that its thermal stability increases significantly with the increase of the silicon-aluminum ratio.
具体实施方式Detailed ways
下面通过实施例进一步描述本发明:Further describe the present invention by embodiment below:
说明:表格中单位如下:Note: The units in the table are as follows:
浓 度——mol/L;Concentration——mol/L;
固液比——质量比;Solid to liquid ratio - mass ratio;
温 度——℃;Temperature——℃;
流 量——mL/min;Flow rate——mL/min;
时 间——h。Time - h.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100270834A CN1319857C (en) | 2005-06-23 | 2005-06-23 | High silicon super stabilizing natural foresite and it preparation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100270834A CN1319857C (en) | 2005-06-23 | 2005-06-23 | High silicon super stabilizing natural foresite and it preparation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1724363A true CN1724363A (en) | 2006-01-25 |
CN1319857C CN1319857C (en) | 2007-06-06 |
Family
ID=35924019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100270834A Expired - Fee Related CN1319857C (en) | 2005-06-23 | 2005-06-23 | High silicon super stabilizing natural foresite and it preparation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1319857C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009539747A (en) * | 2006-06-08 | 2009-11-19 | シェブロン ユー.エス.エー. インコーポレイテッド | Molecular sieve SSZ-75 composition and its synthesis |
CN102285665A (en) * | 2011-06-07 | 2011-12-21 | 天津大学 | Liquid phase chemical deposition modified natural zeolite and method for removing fluorine from water |
CN101759197B (en) * | 2008-12-26 | 2012-11-14 | 复旦大学 | Mesopore USSTI zeolite with high silicon content and high hydrothermal stability and preparation method thereof |
CN106809849A (en) * | 2017-02-15 | 2017-06-09 | 上海浦东路桥建设股份有限公司 | For the zeolite and its extracting method of purified industrial sewage |
CN112403433A (en) * | 2020-09-21 | 2021-02-26 | 复榆(张家港)新材料科技有限公司 | Preparation method and application of novel sub-mesoporous zeolite molecular sieve adsorbent |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102872799B (en) * | 2012-10-24 | 2015-01-14 | 涿鹿恩泽催化材料有限公司 | Preparation method of adsorbent for adsorbing and decomposing indoor harmful gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1169717C (en) * | 2001-01-05 | 2004-10-06 | 中国石油化工股份有限公司 | Y-zeolite modifying method with RE ion and its product |
CN1393401A (en) * | 2001-07-04 | 2003-01-29 | 北京运衡兴源科技发展有限公司 | Modified zeolite and its preparing process, application and regeneration |
-
2005
- 2005-06-23 CN CNB2005100270834A patent/CN1319857C/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009539747A (en) * | 2006-06-08 | 2009-11-19 | シェブロン ユー.エス.エー. インコーポレイテッド | Molecular sieve SSZ-75 composition and its synthesis |
CN101759197B (en) * | 2008-12-26 | 2012-11-14 | 复旦大学 | Mesopore USSTI zeolite with high silicon content and high hydrothermal stability and preparation method thereof |
CN102285665A (en) * | 2011-06-07 | 2011-12-21 | 天津大学 | Liquid phase chemical deposition modified natural zeolite and method for removing fluorine from water |
CN106809849A (en) * | 2017-02-15 | 2017-06-09 | 上海浦东路桥建设股份有限公司 | For the zeolite and its extracting method of purified industrial sewage |
CN112403433A (en) * | 2020-09-21 | 2021-02-26 | 复榆(张家港)新材料科技有限公司 | Preparation method and application of novel sub-mesoporous zeolite molecular sieve adsorbent |
Also Published As
Publication number | Publication date |
---|---|
CN1319857C (en) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102159315B (en) | Extra mesoporous y zeolite | |
EP3240632B1 (en) | A method for the synthesis of a type of fer/mor composite molecular sieve | |
EP2368849A1 (en) | Chabazite-type zeolite and process for production of same | |
CN104043477B (en) | ZSM-5/MCM-48 composite molecular sieve, preparation method and application thereof | |
CN104229824B (en) | Method for preparing hierarchical pore ZSM-5 molecular sieve by acid-base coupling | |
WO2015024380A1 (en) | Beta molecular sieve having mesoporous/microporous combined channel structure, and synthesizing method thereof | |
CN111333082B (en) | All-silicon H-Beta molecular sieve and preparation method and application thereof | |
JP5422559B2 (en) | IM-16 crystalline solid and process for its preparation | |
CN109890756A (en) | The molecular sieve CIT-6-13 that aluminium replaces | |
CN106032281A (en) | A kind of preparation method and application of mordenite with mesoporous and microporous | |
Jiang et al. | Characterization of Y/MCM-41 composite molecular sieve with high stability from Kaolin and its catalytic property | |
CN102910645A (en) | Isomorphous phase compound molecular sieve and preparation method thereof | |
CN104891525B (en) | Preparation method of strong-acid high-stability mesoporous molecular sieve | |
CN103657706A (en) | Preparation method of high-strength binding-agent-free multi-orifice compound ZSM-5 (Zeolite Socony Mobil-5) catalyst | |
CN1319857C (en) | High silicon super stabilizing natural foresite and it preparation process | |
US20100093518A1 (en) | IM-15 Crystallized Solid and its Process for Preparation | |
CN107970997B (en) | Catalytic cracking auxiliary agent for increasing propylene yield and preparation method thereof | |
CN101012061A (en) | Mesoporous-microporous composite material and synthesis method thereof | |
CN1654330A (en) | A method for preparing aluminum-containing MCM-41 mesoporous molecular sieve using metakaolin as raw material | |
US8372376B2 (en) | IM-13 crystallized solid and its process for preparation | |
CN107973304B (en) | A kind of Beta molecular sieve rich in mesoporous and preparation method thereof | |
CN107970982B (en) | Catalytic cracking additive for increasing propylene production and preparation method thereof | |
CN1749162A (en) | Composite pore zeolite molecular sieve synthesized by polymer template and preparation method thereof | |
CN110510630B (en) | Nanoscale X molecular sieve grain spherical self-assembly substance and preparation method thereof | |
CN109694090B (en) | SCM-13 molecular sieve and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070606 Termination date: 20100623 |