CN1706887B - A carbon nanotube-polymer composite material used in blood environment and its preparation method and application - Google Patents
A carbon nanotube-polymer composite material used in blood environment and its preparation method and application Download PDFInfo
- Publication number
- CN1706887B CN1706887B CN 200410047906 CN200410047906A CN1706887B CN 1706887 B CN1706887 B CN 1706887B CN 200410047906 CN200410047906 CN 200410047906 CN 200410047906 A CN200410047906 A CN 200410047906A CN 1706887 B CN1706887 B CN 1706887B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- composite material
- carbon nanotubes
- solvent
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 169
- 239000002131 composite material Substances 0.000 title claims abstract description 90
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 63
- 229920000642 polymer Polymers 0.000 title claims abstract description 63
- 210000004369 blood Anatomy 0.000 title claims abstract description 20
- 239000008280 blood Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 101
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 101
- 239000006184 cosolvent Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000000975 co-precipitation Methods 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 239000003960 organic solvent Substances 0.000 claims abstract description 9
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 210000000056 organ Anatomy 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 48
- 239000004814 polyurethane Substances 0.000 claims description 43
- 229920002635 polyurethane Polymers 0.000 claims description 43
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 42
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 20
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 19
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002244 precipitate Substances 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 5
- 229920002521 macromolecule Polymers 0.000 claims description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 2
- 238000001746 injection moulding Methods 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Substances 0.000 claims description 2
- 239000002048 multi walled nanotube Substances 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 239000000523 sample Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- 210000004623 platelet-rich plasma Anatomy 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000013068 control sample Substances 0.000 description 7
- 239000008188 pellet Substances 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 206010018910 Haemolysis Diseases 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000008588 hemolysis Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000012984 biological imaging Methods 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- YQNRVGJCPCNMKT-LFVJCYFKSA-N 2-[(e)-[[2-(4-benzylpiperazin-1-ium-1-yl)acetyl]hydrazinylidene]methyl]-6-prop-2-enylphenolate Chemical compound [O-]C1=C(CC=C)C=CC=C1\C=N\NC(=O)C[NH+]1CCN(CC=2C=CC=CC=2)CC1 YQNRVGJCPCNMKT-LFVJCYFKSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101000838335 Homo sapiens Dual specificity protein phosphatase 2 Proteins 0.000 description 1
- 101001080401 Homo sapiens Proteasome assembly chaperone 1 Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229960005552 PAC-1 Drugs 0.000 description 1
- 108010035030 Platelet Membrane Glycoprotein IIb Proteins 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 102100027583 Proteasome assembly chaperone 1 Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000002861 polymer material Chemical group 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了用于血液环境中的碳纳米管-高分子复合材料,包括碳纳米管和高分子聚合物,是将碳纳米管经液相共沉淀均匀分散在所述高分子聚合物中,并确切控制碳纳米管加入量在1-6重量%;本发明还提供上述材料的制备方法,是将碳纳米管变为亲水性后,溶于共溶剂中,再与高分子聚合物溶液混合后,加入触发剂共沉淀得到。本发明提供的碳纳米管-高分子复合材料,碳纳米管在复合材料中均匀分散,可再溶于有机溶剂,作为涂层材料应用在血液环境中使用的医疗器械或植入性假体表面,或作为原材料在制造人工组织、器官或介入性器件上应用。The invention discloses a carbon nanotube-polymer composite material used in a blood environment, including carbon nanotubes and a high molecular polymer, wherein the carbon nanotubes are uniformly dispersed in the high molecular polymer through liquid phase co-precipitation, And precisely control the addition of carbon nanotubes at 1-6% by weight; the present invention also provides a preparation method of the above-mentioned materials, which is to dissolve the carbon nanotubes in a co-solvent after making the carbon nanotubes hydrophilic, and then mix them with the high molecular polymer solution After mixing, a trigger is added for co-precipitation. The carbon nanotube-polymer composite material provided by the invention, the carbon nanotubes are uniformly dispersed in the composite material, can be dissolved in an organic solvent again, and can be used as a coating material on the surface of a medical device or an implantable prosthesis used in a blood environment , or used as raw materials in the manufacture of artificial tissues, organs or interventional devices.
Description
技术领域technical field
本发明涉及一种用于生物医学领域中的碳纳米管-高分子复合材料,还涉及其制备方法和应用。The invention relates to a carbon nanotube-polymer composite material used in the field of biomedicine, and also relates to its preparation method and application.
背景技术Background technique
碳纳米管是一类具有完美石墨结构的管形碳材料,直径一般从几个纳米到几十个纳米。碳纳米管具有优良的导电性、电磁特性以及优异的力学性能,同时还具有良好的生物相容性,它的综合优异性能在生物医学领域引起了极大研究兴趣。Carbon nanotubes are a class of tubular carbon materials with a perfect graphite structure, and their diameters generally range from a few nanometers to tens of nanometers. Carbon nanotubes have excellent electrical conductivity, electromagnetic properties, and excellent mechanical properties, as well as good biocompatibility. Its comprehensive excellent properties have aroused great research interest in the field of biomedicine.
但是由于碳纳米管具有巨大的比表面积,相互之间存在十分强的团聚作用,碳纳米管在水及有机溶剂、高分子基体中很难分散。关于碳纳米管与有机高分子基体复合的研究,所涉及的聚合物包括环氧树脂、尼龙、聚丙烯酸酯、聚氨酯等。在这些复合材料的制备中,如何将碳纳米管均匀分散到聚合物基体中是技术关键,现有的分散方法主要包括:(1)通过超声共振或强力机械搅拌等作用将碳纳米管分散到聚合物溶液中,存在的问题是超声振荡或机械强力共混的方法仍难以使碳纳米管完全均匀分散到聚合物溶液中,而且形成的溶液体系稳定性差,一般碳纳米管加入量为1-2%时就达到饱和,碳纳米管形成聚集而无法分散(如文献Phys Chem B 2002,106,2210)。(2)在碳纳米管表面接枝某些有机分子或高分子,(如文献Ya-ping Sun,et al.,Functionalized Carbon Nanotubes:Properties and Applications.Acc.Chem.Res.2002,35,1096-1104),接枝的高分子为PPEI,PVK-PS,PS1,PEG,PVA-VA等,增加碳纳米管在溶剂介质中的分散性;这类方法在体系中引入了其它物质;(3)通过加入表面活性剂或偶联剂将碳纳米管分散到单体溶液中,而后引发聚合过程,形成碳纳米管-聚合物复合材料,(如文献Harry J.et al.,SWNT-filled Thermal plastic and Elastic compositeprepared by miniemulsion polymerization.Nanoletters 2(8),2002);可以看出这样形成的复合材料仍然在一定程度上存在方法(1)的问题,而且引入了表面活性剂、引发剂等其它物质,同时需要经过比较复杂的聚合反应过程。However, due to the huge specific surface area of carbon nanotubes, there is a very strong agglomeration between them, so it is difficult for carbon nanotubes to disperse in water, organic solvents, and polymer matrices. Research on the composite of carbon nanotubes and organic polymer matrix, the polymers involved include epoxy resin, nylon, polyacrylate, polyurethane and so on. In the preparation of these composite materials, how to uniformly disperse carbon nanotubes into the polymer matrix is the key technology. The existing dispersion methods mainly include: (1) dispersing carbon nanotubes into the polymer matrix through ultrasonic resonance or strong mechanical stirring. In the polymer solution, the existing problem is that it is still difficult to completely and evenly disperse the carbon nanotubes in the polymer solution by means of ultrasonic oscillation or mechanical strong blending, and the stability of the formed solution system is poor. Generally, the amount of carbon nanotubes added is 1- At 2%, it reaches saturation, and the carbon nanotubes form aggregates and cannot be dispersed (such as the document Phys Chem B 2002, 106, 2210). (2) Some organic molecules or polymers are grafted on the surface of carbon nanotubes, (such as the literature Ya-ping Sun, et al., Functionalized Carbon Nanotubes: Properties and Applications.Acc.Chem.Res.2002, 35, 1096- 1104), the grafted macromolecules are PPEI, PVK-PS, PS 1 , PEG, PVA-VA, etc., which increase the dispersion of carbon nanotubes in solvent media; this type of method introduces other substances in the system; (3 ) disperse the carbon nanotubes into the monomer solution by adding surfactant or coupling agent, and then initiate the polymerization process to form carbon nanotube-polymer composite materials, (such as literature Harry J. et al., SWNT-filled Thermal plastic and Elastic composite prepared by miniemulsion polymerization.Nanoletters 2(8), 2002); it can be seen that the composite material formed in this way still has the problems of method (1) to a certain extent, and other substances such as surfactants and initiators are introduced , and need to go through a relatively complicated polymerization reaction process.
碳纳米管在生物医学领域中的应用研究到目前为止还是相对较少,碳纳米管的主要应用研究涉及以下方面,包括(1)用碳纳米管作为探针用于生物成像;(2)通过碳纳米管的表面修饰与功能化,阻止蛋白质分子在其表面的非特异性结合和识别特定蛋白分子;(3)经生物分子修饰后用于神经细胞的体外生长;以及(4)碳纳米管的生物相容性研究。The research on the application of carbon nanotubes in the field of biomedicine is still relatively small so far. The main application research of carbon nanotubes involves the following aspects, including (1) using carbon nanotubes as probes for biological imaging; (2) using carbon nanotubes as probes for biological imaging; Surface modification and functionalization of carbon nanotubes to prevent non-specific binding and recognition of specific protein molecules on the surface of protein molecules; (3) used for in vitro growth of nerve cells after modification of biomolecules; and (4) carbon nanotubes Biocompatibility studies.
当将碳纳米管高分子复合材料应用于特定的生物系统(如心血管系统的植入物、人工器官、介入性导管、血液循环管路等)时,除了要保证碳纳米管高分子复合体系的分散性和稳定性外,还特别要求材料要尽可能保持其化学组成的纯净,尽可能不要在材料中引入其它对生物系统作用不确定的组分;另外也要提高高分子基体中碳纳米管的加入量和能够控制碳纳米管的加入量。目前,已有的复合方式以及其产物均不能满足这一要求。另一方面,在很多情况下生物材料需要以涂覆成膜的形式应用于医疗器械或植入性假体的表面修饰,或者采用溶液浇铸成型的方式制造各种复杂形状的植入式器件,这就需要得到的碳纳米管-高分子复合材料可以配制成一定浓度的溶液,在溶液状态下使用;而现有方法研制的复合产物基本上不能满足这一要求。When carbon nanotube polymer composite materials are applied to specific biological systems (such as implants of the cardiovascular system, artificial organs, interventional catheters, blood circulation pipelines, etc.), in addition to ensuring that the carbon nanotube polymer composite system In addition to the dispersibility and stability of the material, it is also particularly required that the material should keep its chemical composition as pure as possible, and try not to introduce other components that have uncertain effects on the biological system into the material; The addition amount of the tube and can control the addition amount of the carbon nanotube. At present, none of the existing composite methods and their products can meet this requirement. On the other hand, in many cases, biomaterials need to be applied to the surface modification of medical devices or implantable prostheses in the form of coating and film formation, or to manufacture implantable devices of various complex shapes by solution casting, This requires that the obtained carbon nanotube-polymer composite material can be formulated into a solution with a certain concentration and used in a solution state; however, the composite products developed by existing methods basically cannot meet this requirement.
发明内容Contents of the invention
本发明的目的是提供用于血液接触环境中的碳纳米管-高分子复合材料。The purpose of the present invention is to provide carbon nanotube-polymer composite material used in blood contact environment.
本发明提供的用于血液环境中的碳纳米管-高分子复合材料,包括碳纳米管和高分子聚合物,其特征在于,所述碳纳米管经液相共沉淀均匀分散在所述高分子聚合物中,并确切控制碳纳米管加入量在1-6重量%,其中,所述高分子聚合物为选自聚氨酯、聚氯乙稀、聚酯、聚乳酸和乳酸-乙醇酸共聚物中的一种。The carbon nanotube-polymer composite material used in the blood environment provided by the present invention includes carbon nanotubes and high molecular polymers, and is characterized in that the carbon nanotubes are uniformly dispersed in the polymer through liquid phase co-precipitation In the polymer, and precisely control the addition of carbon nanotubes at 1-6% by weight, wherein the high molecular polymer is selected from polyurethane, polyvinyl chloride, polyester, polylactic acid and lactic acid-glycolic acid copolymer kind of.
本发明的另一目的在于提供一种制备上述碳纳米管-高分子复合材料方法。Another object of the present invention is to provide a method for preparing the above-mentioned carbon nanotube-polymer composite material.
本本发明提供的碳纳米管-高分子复合材料的制备方法,包括如下步骤:The preparation method of the carbon nanotube-polymer composite material provided by the present invention comprises the following steps:
1)对碳纳米管进行表面处理,在碳纳米管表面形成羧酸基团,得到亲水性碳纳米管;1) Carry out surface treatment to carbon nanotube, form carboxylic acid group on the surface of carbon nanotube, obtain hydrophilic carbon nanotube;
2)选择两种以上极性不同的溶剂组成共溶剂,使步骤1)得到的水溶性的碳纳米管均匀分散在共溶剂中;2) Select two or more solvents with different polarities to form a co-solvent, so that the water-soluble carbon nanotubes obtained in step 1) are evenly dispersed in the co-solvent;
3)将高分子聚合物溶解在有机溶剂中,将步骤2)得到的碳纳米管-共溶剂的溶液与高分子聚合物-有机溶剂的溶液混合均匀,形成碳纳米管-高分子聚合物-溶剂体系;3) Dissolving the high molecular polymer in an organic solvent, mixing the carbon nanotube-co-solvent solution obtained in step 2) with the high molecular polymer-organic solvent solution to form a carbon nanotube-high molecular polymer- solvent system;
4)向碳纳米管-高分子聚合物-溶剂体系中加入触发剂,使碳纳米管和高分子聚合物共同沉淀出来,得到沉淀物;4) adding a triggering agent to the carbon nanotube-polymer-solvent system, so that the carbon nanotube and the polymer co-precipitate to obtain a precipitate;
5)置换法去除步骤4)中沉淀物中不易挥发的溶剂,得到碳纳米管-高分子复合物。5) The non-volatile solvent in the precipitate in step 4) is removed by a replacement method to obtain a carbon nanotube-polymer composite.
上述方法中,步骤1)所述碳纳米管进行表面处理是指用混合酸对碳纳米管在10-80KHz频率进行超声处理10-120分钟,所述混合酸可以为盐酸、硝酸、硫酸、乙酸、丁酸、马来酸中的两种或两种以上的混合。In the above method, the surface treatment of the carbon nanotubes in step 1) means that the carbon nanotubes are ultrasonically treated at a frequency of 10-80KHz for 10-120 minutes with a mixed acid, and the mixed acid can be hydrochloric acid, nitric acid, sulfuric acid, acetic acid A mixture of two or more of , butyric acid, and maleic acid.
步骤2)所述共溶剂为选自水、四氢呋喃、二氧六环、甲醇、乙醇、丁醇、丙酮、丁酮、醋酸甲酯、醋酸乙酯中的两种或两种以上的混合,其中优选水、甲醇、乙醇、四氢呋喃。Step 2) The co-solvent is a mixture of two or more selected from water, tetrahydrofuran, dioxane, methanol, ethanol, butanol, acetone, butanone, methyl acetate, and ethyl acetate, wherein Water, methanol, ethanol, tetrahydrofuran are preferred.
步骤4)所述触发剂为水、甲醇、乙醇、丁醇、丙酮或丁酮,优选水、甲醇、乙醇,共沉淀时温度为0-60℃。Step 4) The triggering agent is water, methanol, ethanol, butanol, acetone or butanone, preferably water, methanol, ethanol, and the temperature during co-precipitation is 0-60°C.
步骤5)所述置换法为选择沸点低、挥发性强、与步骤3)中有机溶剂互溶与聚合物不溶的溶剂置换复合材料中不易挥发的有机溶剂。The replacement method in step 5) is to select a solvent with a low boiling point, strong volatility, miscible with the organic solvent and insoluble with the polymer in step 3) to replace the non-volatile organic solvent in the composite material.
本发明的再一个目的是提供上述碳纳米管-高分子复合材料在与血液直接接触环境中的应用。Another object of the present invention is to provide the application of the above-mentioned carbon nanotube-polymer composite material in an environment in direct contact with blood.
该应用首先是上述碳纳米管-高分子复合材料作为涂层材料在血液环境中使用的医疗器械或植入性假体表面的应用,或作为原材料在制造人工组织、器官或介入性器件上的应用。应用中,需将碳纳米管-高分子复合材料溶于溶剂后配制成溶液后作为涂层材料,或通过模具浇铸、挤出或注射成型;所述溶剂为选自四氢呋喃、二氧六环、二甲基甲酰胺、二甲基乙酰胺、甲基乙基酮中的一种。The application is first of all the application of the above-mentioned carbon nanotube-polymer composite material as a coating material on the surface of medical devices or implanted prostheses used in the blood environment, or as a raw material in the manufacture of artificial tissues, organs or interventional devices application. In the application, the carbon nanotube-polymer composite material needs to be dissolved in a solvent and then formulated into a solution as a coating material, or through mold casting, extrusion or injection molding; the solvent is selected from tetrahydrofuran, dioxane, One of dimethylformamide, dimethylacetamide, and methyl ethyl ketone.
本发明提出一种新的碳纳米管-高分子复合材料的制备方法,使碳纳米管和高分子材料在一种共溶剂体系中形成复合物,碳纳米管均匀分散在复合体系中,复合物中碳纳米管加入量可以在1-6%(重量百分比)变化,并可以确切控制碳纳米管的加入量;该复合物可以按照需要配制成溶液,浇铸成膜或在基底材料上涂层,也可以直接挤出成型或作为母料与其它材料共混挤出。The present invention proposes a new preparation method of carbon nanotube-polymer composite material, so that carbon nanotube and polymer material form a composite in a co-solvent system, carbon nanotubes are uniformly dispersed in the composite system, and the composite The amount of carbon nanotubes added in the medium can vary from 1-6% (weight percent), and the amount of carbon nanotubes added can be precisely controlled; the compound can be formulated into a solution as required, cast into a film or coated on a base material, It can also be extruded directly or blended with other materials as a masterbatch.
附图说明Description of drawings
图1为本发明中使用的碳纳米管电镜图。FIG. 1 is an electron micrograph of carbon nanotubes used in the present invention.
图2A为本发明的制备过程中碳纳米管-聚氨酯-共溶剂体系稳定性实验图。Fig. 2A is an experimental diagram of the stability of the carbon nanotube-polyurethane-co-solvent system during the preparation process of the present invention.
图2B为对照实验中碳纳米管水溶液-聚氨酯-四氢呋喃溶液体系稳定性实验图。Fig. 2B is a diagram of the stability experiment of the carbon nanotube aqueous solution-polyurethane-tetrahydrofuran solution system in the control experiment.
图3-A为本发明制备的碳纳米管-聚氨酯复合材料的断面的扫描电镜照片。Fig. 3-A is a scanning electron micrograph of the cross-section of the carbon nanotube-polyurethane composite material prepared in the present invention.
图3-B为本发明制备的碳纳米管-聚氨酯复合材料的DSC谱。Fig. 3-B is the DSC spectrum of the carbon nanotube-polyurethane composite material prepared in the present invention.
图4-A为本发明制备的碳纳米管-聚氨酯复合材料。Fig. 4-A is the carbon nanotube-polyurethane composite material prepared in the present invention.
图4-B为本发明制备的碳纳米管-聚氨酯复合材料的5%四氢呋喃溶液和对比样溶液的形态照片,其中,1#为本发明复合材料四氢呋喃溶液,2#为碳纳米管在聚氨酯四氢呋喃溶液中超声分散后的溶液,3#为聚氨酯溶液。Fig. 4-B is the morphological photograph of the 5% tetrahydrofuran solution of the carbon nanotube-polyurethane composite material prepared by the present invention and the comparison sample solution, wherein, 1# is the composite material tetrahydrofuran solution of the present invention, and 2# is the carbon nanotube in polyurethane tetrahydrofuran The solution after ultrasonic dispersion in the solution, 3# is polyurethane solution.
图4-C为图4-B溶液对应的光学显微镜照片(25×16)。Figure 4-C is an optical microscope photo (25×16) corresponding to the solution in Figure 4-B.
图5为用本发明制备的碳纳米管-聚氨酯复合材料制作的IABP气囊导管。Fig. 5 is the IABP balloon catheter made of the carbon nanotube-polyurethane composite material prepared by the present invention.
图6-A为吸附在聚氨酯表面的血小板(人血)电镜图。Figure 6-A is an electron micrograph of platelets (human blood) adsorbed on the surface of polyurethane.
图6-B为吸附在本发明制备的碳纳米管-聚氨酯复合材料表面的血小板(人血)电镜图。Fig. 6-B is an electron microscope image of platelets (human blood) adsorbed on the surface of the carbon nanotube-polyurethane composite material prepared in the present invention.
图7-A为吸附在聚氨酯表面的血小板(羊血)电镜图;Fig. 7-A is the platelet (sheep blood) electron microscope image adsorbed on the polyurethane surface;
图7-B为吸附在本发明制备的碳纳米管-聚氨酯复合材料表面的血小板(羊血)电镜图。Fig. 7-B is an electron microscope image of platelets (sheep blood) adsorbed on the surface of the carbon nanotube-polyurethane composite material prepared in the present invention.
图8为接触材料表面15分钟后富血小板血浆中血小板膜表面GP IIb/IIIa的阳性率。Figure 8 is the positive rate of GP IIb/IIIa on the platelet membrane surface in platelet-rich plasma after contacting the material surface for 15 minutes.
图9为本发明制备的碳纳米管-聚氨酯复合材料的溶血率。Fig. 9 is the hemolysis rate of the carbon nanotube-polyurethane composite material prepared in the present invention.
图10为本发明制备的碳纳米管-聚氨酯复合材料制作的粒料和其它成型物。Fig. 10 shows pellets and other moldings made of the carbon nanotube-polyurethane composite material prepared in the present invention.
具体实施方式Detailed ways
以下从几方面详述本发明。The present invention is described in detail below from several aspects.
本发明首先提供一种在共溶剂体系中制备碳纳米管-高分子复合材料的方法。本发明的特点在于,(1)不在碳纳米管表面引入有机分子或高分子,表面处理后的碳纳米管只带有羧基、羟基、醚氧基等含氧基团;(2)不需要从单体开始进行高分子聚合反应,可以直接将碳纳米管的共溶剂溶液与多种高分子溶液混合,得到碳纳米管分散均匀的复合产品;(3)复合材料中碳纳米管加入量可以在1-6%(重量百分比)变化,并可以确切控制碳纳米管的加入量;(4)复合材料可以按照需要配制成溶液,浇铸成膜或在基底材料上涂层,也可以直接挤出成型或作为母料与其它材料共混挤出。The invention firstly provides a method for preparing carbon nanotube-polymer composite material in a co-solvent system. The present invention is characterized in that (1) no organic molecules or macromolecules are introduced on the surface of the carbon nanotubes, and the surface-treated carbon nanotubes only have oxygen-containing groups such as carboxyl, hydroxyl, and etheroxy groups; The monomer starts to carry out the polymer polymerization reaction, and the co-solvent solution of carbon nanotubes can be directly mixed with various polymer solutions to obtain a composite product with uniform dispersion of carbon nanotubes; (3) the amount of carbon nanotubes added in the composite material can be within 1-6% (weight percent) change, and can precisely control the addition of carbon nanotubes; (4) The composite material can be formulated into a solution as required, cast into a film or coated on the base material, and can also be directly extruded Or it can be used as a masterbatch and blended with other materials for extrusion.
本发明的方法是,将碳纳米管进行水溶性处理后,均匀分散到两种以上极性不同的溶剂组成的共溶剂中,然后再与已溶于有机溶剂中的高分子聚合物混合均匀,形成稳定的共溶体系,通过触发剂作用产生共沉淀而得到分散性优异的碳纳米管-高分子复合材料。该方法通过选择适合的共溶剂来保证碳纳米管在溶剂中可以均匀分散,从而通过液相共沉淀得到产物,确保了复合产品中碳纳米管在高分子聚合物中可以均匀分散。碳纳米管在复合体系中的分散性为本发明复合材料特点之一,实验二具体验证了本发明该分散性的特点。The method of the present invention is that after the carbon nanotubes are subjected to water-soluble treatment, they are evenly dispersed in a co-solvent composed of two or more solvents with different polarities, and then mixed evenly with the high molecular polymer that has been dissolved in an organic solvent, A stable co-solution system is formed, and co-precipitation occurs through the action of a trigger to obtain a carbon nanotube-polymer composite material with excellent dispersibility. The method ensures that the carbon nanotubes can be uniformly dispersed in the solvent by selecting a suitable co-solvent, thereby obtaining a product through liquid phase co-precipitation, and ensuring that the carbon nanotubes in the composite product can be uniformly dispersed in the polymer. The dispersibility of carbon nanotubes in the composite system is one of the characteristics of the composite material of the present invention, and
在本发明中,所用碳纳米管为多壁碳纳米管,管径为30-50nm,长度>2μm,参见图1,可以与碳纳米管复合的高分子聚合物可以为聚氨酯、聚氯乙烯、聚碳酸酯、环氧树脂、聚酯、聚乳酸、聚乙醇酸、乳酸-乙醇酸共聚物中的任一种,优选聚氨酯。In the present invention, the carbon nanotubes used are multi-walled carbon nanotubes, the pipe diameter is 30-50nm, and the length>2μm, referring to Fig. 1, the high molecular polymer that can be compounded with carbon nanotubes can be polyurethane, polyvinyl chloride, Any one of polycarbonate, epoxy resin, polyester, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, preferably polyurethane.
在本发明方法中,对碳纳米管进行表面处理的方法可以有:将碳纳米管与一定比例混合的酸溶液在适当温度下超声振荡。本发明实施例中,采用超声处理的方法,用混合酸对碳纳米管用10-80KHz频率进行超声处理10-120分钟,所述混合酸可以为盐酸、硝酸、硫酸、乙酸、丁酸、马来酸中的两种或两种以上的混合。In the method of the present invention, the surface treatment method for carbon nanotubes may include: ultrasonically oscillating carbon nanotubes with an acid solution mixed in a certain proportion at an appropriate temperature. In the embodiment of the present invention, the method of ultrasonic treatment is adopted, and the carbon nanotubes are ultrasonically treated with a mixed acid at a frequency of 10-80KHz for 10-120 minutes. The mixed acid can be hydrochloric acid, nitric acid, sulfuric acid, acetic acid, butyric acid, ma A mixture of two or more acids.
在本发明方法中,分散具有水溶性碳纳米管的溶剂可以为水、四氢呋喃、二氧六环、甲醇、乙醇、丁醇、丙酮、丁酮、醋酸甲酯、醋酸乙酯中的两种或两种以上的混合形成共溶剂,其中优选水、甲醇、乙醇、四氢呋喃、二氧六环。In the method of the present invention, the solvent for dispersing water-soluble carbon nanotubes can be two or more of water, tetrahydrofuran, dioxane, methanol, ethanol, butanol, acetone, butanone, methyl acetate, ethyl acetate The mixture of two or more forms a co-solvent, among which water, methanol, ethanol, tetrahydrofuran, and dioxane are preferred.
本发明方法中,共沉淀的触发剂为水、甲醇、乙醇、丁醇、丙酮或丁酮,优选水、甲醇、乙醇,共沉淀时温度为0-60℃。In the method of the present invention, the triggering agent for coprecipitation is water, methanol, ethanol, butanol, acetone or butanone, preferably water, methanol, ethanol, and the temperature for coprecipitation is 0-60°C.
本发明方法中,共沉淀产物中具有不易挥发的溶剂,后处理中,需将这些溶剂去除,可采用置换法。In the method of the present invention, there are non-volatile solvents in the co-precipitation product, and these solvents need to be removed during the post-treatment, and a replacement method can be used.
本发明具体制备方法参见实施例一至二。For the specific preparation method of the present invention, refer to Examples 1 and 2.
实施例一、制备碳纳米管-聚氨酯复合材料Embodiment 1. Preparation of carbon nanotube-polyurethane composite material
(1)、称取0.25克碳纳米管于圆底烧瓶中,加入2∶1的浓硫酸/浓硝酸40毫升。在25KHz下超声处理10分钟;(2)、用大量水稀释并用孔径为100nm的滤膜过滤和冲洗至中性,干燥;(3)、将处理后的90毫克碳纳米管加入到60毫升60%的甲醇水溶液中进行分散;(4)、配制5%的聚氨酯的二氧六环溶液60毫升;(5)、将(3)缓慢加入到(4)中,得到均匀的黑色溶液;(6)、向(5)中滴加95%乙醇至共沉淀发生,得到均匀的黑色沉淀物;(7)将沉淀物剪切成米粒大小,并用95%乙醇反复浸洗产物,之后于50℃下在真空烘箱中干燥,得到碳纳米管-聚氨酯复合材料。本例中,在整个复合体系中,控制碳纳米管加入量为3%。(1) Weigh 0.25 g of carbon nanotubes into a round bottom flask, and add 40 ml of 2:1 concentrated sulfuric acid/concentrated nitric acid. Ultrasonic treatment at 25KHz for 10 minutes; (2), dilute with a large amount of water and use a filter membrane with a pore size of 100nm to filter and rinse to neutrality, and dry; (3), add 90 mg of carbon nanotubes after processing to 60 milliliters of 60 % in methanol aqueous solution; (4), prepare 60 milliliters of dioxane solutions of 5% polyurethane; (5), slowly join (3) in (4), obtain uniform black solution; (6 ), adding 95% ethanol dropwise to (5) until co-precipitation occurs to obtain a uniform black precipitate; (7) shear the precipitate into the size of a rice grain, and repeatedly soak the product with 95% ethanol, and then place it at 50°C Dry in a vacuum oven to obtain a carbon nanotube-polyurethane composite material. In this example, in the whole composite system, the added amount of carbon nanotubes is controlled to be 3%.
实施例二、制备碳纳米管-聚氯乙烯复合材料
采用实施例一相同的方法,其中,混合酸为浓硝酸和浓盐酸,共溶剂为四氢呋喃、醋酸乙酯、水,高分子聚合物为聚氯乙烯,共沉淀时触发剂为甲醇,所得到的产品为碳纳米管-聚氯乙烯复合材料。本例中,在整个复合体系中,控制碳纳米管加入量为1%。Using the same method as in Example 1, wherein the mixed acid is concentrated nitric acid and concentrated hydrochloric acid, the co-solvent is tetrahydrofuran, ethyl acetate, water, the high molecular polymer is polyvinyl chloride, and the trigger agent is methanol during coprecipitation. The product is carbon nanotube-polyvinyl chloride composite material. In this example, in the whole composite system, the added amount of carbon nanotubes is controlled to be 1%.
实施例三、制备碳纳米管-聚氨酯复合材料,其中碳纳米管加入量为6%Embodiment 3, preparation of carbon nanotube-polyurethane composite material, wherein the addition of carbon nanotube is 6%
采用实施例一相同的方法,其中,与聚氨酯溶液混合的碳纳米管为180毫克。The same method as in Embodiment 1 was adopted, wherein the carbon nanotubes mixed with the polyurethane solution was 180 mg.
依据上述实施例,进行下面实验:According to above-mentioned embodiment, carry out following experiment:
实验一:示差扫描量热方法(DSC)分析碳纳米管-聚合物的复合效果Experiment 1: Differential scanning calorimetry (DSC) analysis of the composite effect of carbon nanotubes-polymers
在氮气氛下,以20℃/min的速度升温,记录碳纳米管-聚氨酯复合材料(碳纳米管加入量3%)的热行为,以聚氨酯为参照样。结果由图3B所示。由DSC谱图可以看到,与碳纳米管复合后,聚氨酯材料原来的两个吸热峰相互靠近,说明碳纳米管与聚氨酯分子之间有较强的相互作用,形成了良好的复合体系。Under a nitrogen atmosphere, the temperature was raised at a rate of 20° C./min, and the thermal behavior of the carbon nanotube-polyurethane composite material (3% carbon nanotube addition) was recorded, with polyurethane as a reference sample. The results are shown in Figure 3B. It can be seen from the DSC spectrum that after compounding with carbon nanotubes, the original two endothermic peaks of the polyurethane material are close to each other, indicating that there is a strong interaction between carbon nanotubes and polyurethane molecules, forming a good composite system.
实验二、扫描电镜观察碳纳米管在聚合物中的复合与分散程度
将碳纳米管加入量为3%的碳纳米管-聚氨酯复合材料的粒料放置在液氮中30分钟,取出后立即拉断,在端面上喷金,于扫描电镜(S-5200)下观察断面形貌,结果如图3A所示,从图中可以看到,断面上没有明显的被拔出的碳纳米管,整个断面呈弹性断裂的特点。说明碳纳米管聚氨酯基体之间形成了良好的复合。Place the pellets of carbon nanotube-polyurethane composite material with a carbon nanotube addition of 3% in liquid nitrogen for 30 minutes, pull it off immediately after taking it out, spray gold on the end face, and observe it under a scanning electron microscope (S-5200) The results of the cross-section morphology are shown in Figure 3A. It can be seen from the figure that there are no obvious pulled out carbon nanotubes on the cross-section, and the entire cross-section is characterized by elastic fracture. It shows that a good composite is formed between the carbon nanotube polyurethane matrix.
实验三、碳纳米管在聚合物溶液中的稳定性实验Experiment 3. Stability experiment of carbon nanotubes in polymer solution
在实施例一中,取步骤(5)中碳纳米管-聚氨酯-共溶剂试样,置于烧杯中作实验样(1);另取同样浓度的碳纳米管水溶液直接加入到5%聚氨酯四氢呋喃溶液中的试样作为对照样(2),观察溶液变化情况,对照样中聚氨酯立即析出,不能与碳纳米管形成均匀的复合物,而实验样可以保持稳定的均匀黑色溶液,没有出现聚合物析出和碳纳米管聚集现象,参见图2A和2B。该实验说明,碳纳米管在聚氨酯-共溶剂体系中的分散性较好,且系统稳定性好。In embodiment one, take the carbon nanotube-polyurethane-co-solvent sample in the step (5), be placed in the beaker and make experimental sample (1); Another carbon nanotube aqueous solution of the same concentration is directly added to 5% polyurethane tetrahydrofuran The sample in the solution is used as a control sample (2), and the changes in the solution are observed. In the control sample, polyurethane precipitates immediately, and cannot form a uniform composite with carbon nanotubes, while the experimental sample can maintain a stable uniform black solution, and no polymer appears. Precipitation and carbon nanotube aggregation phenomena, see Figures 2A and 2B. This experiment shows that the dispersion of carbon nanotubes in the polyurethane-co-solvent system is good, and the system stability is good.
实验四、将碳纳米管-聚氨酯复合材料配制成5%四氢呋喃溶液后,溶液中碳纳米管的分散性实验:Experiment 4. After the carbon nanotube-polyurethane composite material is formulated into a 5% tetrahydrofuran solution, the dispersion experiment of carbon nanotubes in the solution:
将实施例一制备的碳纳米管-聚氨酯复合材料溶解四氢呋喃中,配制成5%的溶液,置于(1)试管中,同时取样涂于载玻片上,在光学显微镜下观察碳纳米管的分散状况;另取相同比例的表面处理后碳纳米管直接加入到5%的聚氨酯四氢呋喃溶液中,在25KHz下超声分散30分钟,置于(2)试管中作为对照样,同时取对照样涂于载玻片上,在光学显微镜下观察碳纳米管的分散状况。显微镜下结果如图4C所示,可以看到1#试管中碳纳米管在溶液中的分散状况明显好于2#试管中的对照样;从静置试管的观察看,参见图4B,(1)试管一直保持溶液状态,没有出现分层,而(2)试管溶液很快出现分层现象,说明本发明复合材料不仅可以重新配制成溶液使用,并且配制的溶液中碳纳米管仍然可以保持有较好的分散性和保持溶液的稳定性。Dissolve the carbon nanotube-polyurethane composite material prepared in Example 1 in tetrahydrofuran, prepare a 5% solution, place (1) in the test tube, and simultaneously take a sample and apply it on a glass slide, and observe the dispersion of the carbon nanotube under an optical microscope Situation; In addition, the surface-treated carbon nanotubes of the same proportion are directly added to 5% polyurethane tetrahydrofuran solution, ultrasonically dispersed for 30 minutes at 25KHz, placed in (2) test tube as a control sample, and the control sample is applied to the carrier On a glass slide, the dispersion of carbon nanotubes was observed under an optical microscope. The results under the microscope are shown in Figure 4C, and it can be seen that the dispersion of carbon nanotubes in the solution in 1# test tube is significantly better than that of the contrast sample in 2# test tube; from the observation of the static test tube, see Figure 4B, (1 ) test tube keeps solution state all the time, does not appear delamination, and (2) test tube solution appears delamination phenomenon very soon, shows that composite material of the present invention can not only be reconstituted into solution and use, and the carbon nanotube in the prepared solution can still keep Better dispersibility and maintain solution stability.
本发明同时用实验一至四的方法,验证了实施例二和三得到的复合材料,也得到了相同的结果,在此不一一例举。依照上述实验,确定了用本发明的方法,当碳纳米管的加入量达到6%时,仍可以保证制备过程中体系的稳定性和将复合材料使用时重新配制成溶液时溶液的稳定性。At the same time, the present invention uses the methods of experiments 1 to 4 to verify the composite materials obtained in Examples 2 and 3, and also obtains the same results, which are not listed here. According to the above experiments, it is determined that with the method of the present invention, when the amount of carbon nanotubes added
本发明继续提供上述方法制备的碳纳米管-高分子复合材料在血液接触环境中的应用。The present invention continues to provide the application of the carbon nanotube-polymer composite material prepared by the above method in a blood contact environment.
正如前面所述,碳纳米管高分子复合材料应用于血液接触环境中(如心血管系统的植入物、人工器官、介入性导管、血液循环管路等)时,除了要保证碳纳米管高分子复合体系的分散性和稳定性外,还特别要求材料要尽可能保持其化学组成的纯净,尽可能不要在材料中引入其它对生物系统作用不确定的组分。本发明提供的碳纳米管高分子复合材料,体系中不含其它稳定剂、表活剂、以及接枝的高分子或有机化合物,可以很好地满足这个要求。以下以具体实施例说明本发明碳纳米管高分子复合材料的应用,这些实施例不能理解为对该复合材料应用领域的限制。As mentioned earlier, when carbon nanotube polymer composites are used in blood-contact environments (such as implants in the cardiovascular system, artificial organs, interventional catheters, blood circulation lines, etc.), in addition to ensuring that the carbon nanotubes have high In addition to the dispersion and stability of the molecular composite system, it is also particularly required that the material should keep its chemical composition as pure as possible, and try not to introduce other components with uncertain effects on the biological system into the material. The carbon nanotube polymer composite material provided by the present invention does not contain other stabilizers, surfactants, and grafted polymers or organic compounds in the system, which can well meet this requirement. The application of the carbon nanotube-polymer composite material of the present invention is described below with specific examples, and these examples should not be construed as limiting the application field of the composite material.
例一:复合材料作为血液接触环境中抗凝血涂层的应用Example 1: Application of composite materials as anticoagulant coating in blood contact environment
将本发明的复合材料,用四氢呋喃配制成5%的溶液,用涂覆成膜的方法制成试管;用同样方法,用聚氨酯制作试管作为对照样。抽取健康羊静脉血,按照标准方法制备富血小板血浆(PRP)。将PRP加入到样品管中孵育1小时后取出,用PBS(pH=7.4)缓冲液洗去未粘附的血小板,用标准方法固定、脱水、干燥、喷金后,在扫描电镜下观察血小板粘附数量和形态,参见图7A、图7B,结果显示:碳纳米管-聚氨酯复合材料(图7A)表面引起的血小板粘附数量和活化程度都显著低于对照样(图7B)。The composite material of the present invention is prepared into a 5% solution with tetrahydrofuran, and a test tube is made by coating and film-forming; the same method is used to make a test tube with polyurethane as a control sample. Venous blood was extracted from healthy sheep, and platelet-rich plasma (PRP) was prepared according to standard methods. Add PRP to the sample tube and incubate for 1 hour, take it out, wash off the non-adhered platelets with PBS (pH=7.4) buffer, fix, dehydrate, dry, and spray gold with standard methods, and observe the platelet adhesion under a scanning electron microscope. For the number and morphology of the platelets, see Figure 7A and Figure 7B. The results show that the number and activation degree of platelet adhesion on the surface of the carbon nanotube-polyurethane composite material (Figure 7A) are significantly lower than those of the control sample (Figure 7B).
例二:用同样的试管,采集健康支援者静脉血,按照标准程序制备血小板悬浮液和血浆;先用血浆在试样表面吸附,形成血浆蛋白吸附层,再把血小板悬浮液加入到试管中,孵育1小时后取出,用PBS(pH=7.4)缓冲液洗去未粘附的血小板,用标准方法固定、脱水、干燥、喷金后,在扫描电镜下观察血小板粘附数量和形态,参见图6A、图6B,结果显示:碳纳米管-聚氨酯复合材料(图6A)表面引起的血小板粘附数量和活化程度都显著低于对照样(图6B)。Example 2: Use the same test tube to collect venous blood from healthy supporters, and prepare platelet suspension and plasma according to standard procedures; first use plasma to adsorb on the surface of the sample to form a plasma protein adsorption layer, and then add the platelet suspension to the test tube. Take it out after incubation for 1 hour, wash off non-adhered platelets with PBS (pH=7.4) buffer, fix, dehydrate, dry, and spray gold with standard methods, observe the number and shape of platelets adhered under a scanning electron microscope, see Fig. 6A and FIG. 6B, the results show that the platelet adhesion quantity and activation degree caused by the surface of the carbon nanotube-polyurethane composite material (FIG. 6A) are significantly lower than those of the control sample (FIG. 6B).
例三:用同样的试管,采集健康志愿者静脉血,按照标准程序制备富血小板血浆(PRP)。将PRP加入到样品管中孵育15分钟后取出,用PAC-1标记活化的血小板,用流式细胞术分析PRP中血小板的活化率,结果参见图8,显示碳纳米管-聚氨酯复合材料引起的PRP中血小板的活化率显著降低。Example 3: Using the same test tube, collect venous blood from healthy volunteers, and prepare platelet-rich plasma (PRP) according to standard procedures. Add PRP into the sample tube and incubate for 15 minutes, take it out, mark the activated platelets with PAC-1, and analyze the activation rate of platelets in PRP by flow cytometry. The results are shown in Figure 8, which shows that the carbon nanotube-polyurethane composite material caused The activation rate of platelets was significantly reduced in PRP.
例四:用同样的试管,采集健康支援者静脉血,将0.2毫升鲜血和10毫升生理盐水混合后加入到待测试管中,37℃下孵育1小时,在2000rpm下离心10分钟,取上清液在540nm下测定溶液中血红蛋白的浓度,按照公式计算溶血度。结果参见图9,显示碳纳米管-聚氨酯复合材料引起的溶血度显著降低。Example 4: Use the same test tube to collect venous blood from healthy supporters, mix 0.2 ml of fresh blood and 10 ml of normal saline, add it to the test tube, incubate at 37°C for 1 hour, centrifuge at 2000rpm for 10 minutes, and take the supernatant Measure the concentration of hemoglobin in the solution at 540nm, and calculate the degree of hemolysis according to the formula. The results are shown in Figure 9, which shows that the degree of hemolysis caused by the carbon nanotube-polyurethane composite material is significantly reduced.
例五:制作介入性导管Example 5: Making Interventional Catheters
将碳纳米管-聚氨酯复合材料配制成5%的四氢呋喃溶液,在聚氨酯导管外涂覆碳纳米管-聚氨酯复合材料,同时用涂覆成膜工艺制作气囊,气囊的反搏效果符合动物实验要求,制作的气囊产品参见图5。The carbon nanotube-polyurethane composite material was prepared into 5% tetrahydrofuran solution, and the carbon nanotube-polyurethane composite material was coated on the outside of the polyurethane catheter. At the same time, the airbag was made by coating and film-forming technology. The counterpulsation effect of the airbag met the requirements of animal experiments. The manufactured airbag product is shown in Figure 5.
例六:制作粒料以及各种成型物料Example 6: Making pellets and various molding materials
本发明制备的碳纳米管-高分子复合材料,为一种黑色沉淀,经洗涤、烘干后,可以直接制作成粒料;也可以溶于溶剂中,注入模具中,根据需要制成各种形状。参见图10,其中有粒料,也有经模具成型后的圆形和方形物料。这些物料,可以进一步作为制备医疗器械,如人工组织、器官或介入性器件的原料。The carbon nanotube-polymer composite material prepared by the present invention is a black precipitate, which can be directly made into pellets after washing and drying; it can also be dissolved in a solvent, injected into a mold, and made into various shape. Referring to Fig. 10, there are pellets, and round and square materials formed by moulds. These materials can be further used as raw materials for the preparation of medical devices, such as artificial tissues, organs or interventional devices.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410047906 CN1706887B (en) | 2004-06-10 | 2004-06-10 | A carbon nanotube-polymer composite material used in blood environment and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410047906 CN1706887B (en) | 2004-06-10 | 2004-06-10 | A carbon nanotube-polymer composite material used in blood environment and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1706887A CN1706887A (en) | 2005-12-14 |
CN1706887B true CN1706887B (en) | 2010-04-28 |
Family
ID=35581008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410047906 Expired - Fee Related CN1706887B (en) | 2004-06-10 | 2004-06-10 | A carbon nanotube-polymer composite material used in blood environment and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1706887B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235193B (en) * | 2008-01-15 | 2010-12-08 | 北京科技大学 | Preparation method of degradable biocompatible polymer/carbon nanotube composite material |
CN102813969A (en) * | 2012-07-27 | 2012-12-12 | 上海交通大学医学院附属新华医院 | Degradable nano composite hollow viscera bracket having strengthening and toughening effects |
CN113244458B (en) * | 2021-05-08 | 2022-07-08 | 康膝生物医疗(深圳)有限公司 | Composite material for repairing articular cartilage damage and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1410475A (en) * | 2002-03-14 | 2003-04-16 | 四川大学 | Polymer/carbon nano pipe composite powder and its solid phase shear break up preparation method |
WO2003078317A1 (en) * | 2002-03-14 | 2003-09-25 | Carbon Nanotechnologies, Inc. | Composite materials comprising polar polyers and single-wall carbon naotubes |
CN1486927A (en) * | 2003-07-31 | 2004-04-07 | 上海交通大学 | Carbon nanotubes grafted with hyperbranched polymers and preparation method thereof |
-
2004
- 2004-06-10 CN CN 200410047906 patent/CN1706887B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1410475A (en) * | 2002-03-14 | 2003-04-16 | 四川大学 | Polymer/carbon nano pipe composite powder and its solid phase shear break up preparation method |
WO2003078317A1 (en) * | 2002-03-14 | 2003-09-25 | Carbon Nanotechnologies, Inc. | Composite materials comprising polar polyers and single-wall carbon naotubes |
CN1486927A (en) * | 2003-07-31 | 2004-04-07 | 上海交通大学 | Carbon nanotubes grafted with hyperbranched polymers and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1706887A (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hermenegildo et al. | Hydrogel-based magnetoelectric microenvironments for tissue stimulation | |
CN105566872B (en) | Poly-dopamine modified lithium halloysite nanotubes/lactic acid composite material and its preparation and application | |
CN100465229C (en) | Preparation method of biodegradable silica/polylactic acid nanocomposite | |
Bierman‐Duquette et al. | Engineering tissues of the central nervous system: interfacing conductive biomaterials with neural stem/progenitor cells | |
CN101235193A (en) | Preparation method of degradable biocompatible polymer/carbon nanotube composite material | |
KR20160124814A (en) | Payload molecule delivery using functionalized discrete carbon nanotubes | |
WO2015168411A1 (en) | Films and methods of forming films of carbon nanomaterial structures | |
Strassburg et al. | Functionalization of biopolymer fibers with magnetic nanoparticles | |
Dehghani et al. | Fabrication of polyurethane–Heparinized carbon nanotubes composite for heart valves application | |
Martins et al. | Microfluidic processing of piezoelectric and magnetic responsive electroactive microspheres | |
Sionkowska et al. | Incorporation of magnetite particles in 3D matrices made from the blends of collagen, chitosan, and hyaluronic acid | |
CN1706887B (en) | A carbon nanotube-polymer composite material used in blood environment and its preparation method and application | |
Mounesi Rad et al. | Preparation of HMWCNT/PLLA nanocomposite scaffolds for application in nerve tissue engineering and evaluation of their physical, mechanical and cellular activity properties | |
Shi et al. | Exploring the cell–protein–mineral interfaces: Interplay of silica (nano) rods@ collagen biocomposites with human dermal fibroblasts | |
CN105456233A (en) | High-drug-loading-capacity long-effect slow-release antibacterial thin film and preparation method thereof | |
TW477802B (en) | Method for preparing hydrophilic porous polymeric materials | |
Mondal | Carbon nanotube-reinforced polymer nanocomposite for biomedical applications | |
CN107802845B (en) | Method for phase conversion of hydrophobic nanoparticles by using silk fibroin molecules | |
CN110257944A (en) | Preparation method and application of functionalized nano composite membrane | |
Taccola et al. | On the injectability of free-standing magnetic nanofilms | |
Sivakumaran et al. | Fabricating degradable thermoresponsive hydrogels on multiple length scales via reactive extrusion, microfluidics, self-assembly, and electrospinning | |
CN104264469B (en) | The preparation method of outer hydrophilic in-laws oil or outer oleophylic in-laws' water core-shell nano fiber | |
CN106498626A (en) | A kind of preparation method of cross linked ciclodextrines nano fibrous membrane | |
Kurimoto et al. | Fibrous materials | |
CN102875733B (en) | Nanoparticles with epicyte-imitated structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100428 |