CN1706829A - Double indolyl derivative synthesizing process - Google Patents

Double indolyl derivative synthesizing process Download PDF

Info

Publication number
CN1706829A
CN1706829A CN 200510040053 CN200510040053A CN1706829A CN 1706829 A CN1706829 A CN 1706829A CN 200510040053 CN200510040053 CN 200510040053 CN 200510040053 A CN200510040053 A CN 200510040053A CN 1706829 A CN1706829 A CN 1706829A
Authority
CN
China
Prior art keywords
aldehyde
bis
double
indolyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510040053
Other languages
Chinese (zh)
Other versions
CN1332948C (en
Inventor
纪顺俊
曾晓飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CNB2005100400537A priority Critical patent/CN1332948C/en
Publication of CN1706829A publication Critical patent/CN1706829A/en
Application granted granted Critical
Publication of CN1332948C publication Critical patent/CN1332948C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indole Compounds (AREA)

Abstract

The present invention discloses the synthesis process of double indolylalkyl derivative. Aldehyde and indole are made to produce synthesis reaction, and the aldehyde is selected from C1-C10 aliphatic aldehyde and aromatic aldehyde. The present invention features that super solid acid SO42-/TiO2 is used as catalyst in the amount of 30-80 mg for each millimole of aldehyde, and that double indolylalkyl compound is prepared through grinding reaction for 0.5-5 hr and subsequent washing with solvent, filtering and filtrate concentration. The present invention adopts super solid acid to replace traditional protonic acid or Lewis acid, and no solvent in preparing double indolylalkyl compound, and has no environmental pollution caused by organic solvent, high reaction yield, short production period and simple operation.

Description

The synthetic method of double indolyl derivative
Technical field
The present invention relates to a kind of pentatomic ring that contains, condense with other ring, heteroatoms is the preparation of the heterogeneous ring compound of nitrogen-atoms, is specifically related to a kind of synthetic method of bis-indolyl alkyl compounds.
Background technology
Benzazole compounds is widespread in nature, and the derivative of many indoles all has certain physiologically active.Bis-indolyl alkyl compounds and derivative thereof are present in the continent and the ocean protista has in the bioactive metabolite, these compounds have certain activity, as: therefore multiple physiologically actives such as antitumor, antiviral, antibiotic and anti-inflammatory have caused organic chemist and medicine scholar keen interest.Wherein bis (indolyl) methane has formed the commodity of suitability for industrialized production.
The synthetic of bis-indolyl alkyl compounds just has report as far back as 19th century, and over more than 100 year, bis-indolyl alkyl compounds synthetic obtained significant progress.Main synthetic method be by indoles and aldehydes or ketones protonic acid or Lewis acid as: polynite K-10, LiClO 4, In (OTf) 3, InCl 3, I 2, CAN, FeCl 3Deng catalysis under obtain with productive rate preferably.But these methods all exist certain deficiency, have all limited the popularization of these methods to a certain extent as the poisonous and hazardous volatile organic solvent of a large amount of uses, use that expensive catalysts, harsh reaction conditions, complicated operations program and catalyzer can not be recycled etc.This just needs people to go to seek a kind of reaction system that more meets the Green Chemistry developing direction, for later suitability for industrialized production is laid a solid foundation.
In recent years, along with the enhancing of people's environmental consciousness and environmental legislation are strict day by day, the pollution problem in the chemical industry is Cheng Wei Yi Han problem to be solved.People wish that each molecule in the raw material can both be converted into product, realize the zero release of pollution, adopt nontoxic raw material, the friendly product of production environment.And catalyzer is stated in the purpose in realization and is played a crucial role.Acid catalyst is as H 2SO 4, HF, H 3PO 4Be widely used Deng in catalytic field, but use this class catalyzer to exist some row such as producing a large amount of waste liquids, equipment corrosion seriously reaches catalyzer and the isolating difficulty of product, be difficult to realize shortcomings such as continuous production on the chemical technology, and solid acid catalyst can address the above problem to a great extent.Thereby replacing liquid acid catalyst with solid acid is a most important approach that realizes the environmental friendliness Catalytic processes.Along with the development of catalytic science and the enhancing day by day of environmental protection consciousness, the technology of employing solid acid catalyst becomes the focus of present research.This type of technology is in not homophase because of catalyzer and reactant, and is recyclable and reuse, and do not have equipment corrosion and problem of environmental pollution, thereby be called as cleaning procedure.This technology is at first succeeded in developing in refining of petroleum and petrochemical industry, after be introduced into the Minute Organic Synthesis field.Super acids is the acid also stronger than 100% sulfuric acid, in catalyzed reaction, and to olefines double bond isomerizing, hydrolysis, olefin alkylation, acidylate, aspects such as esterification all show higher activity, such catalyst reaction mild condition has wide practical use.Yet, but do not see the pertinent literature report with this synthetic reaction as the catalyst bis-indolyl alkyl compounds.
Summary of the invention
The present invention seeks to solid super acid catalyst was introduced in synthesizing of bis-indolyl alkyl compounds,, need not the bis-indolyl alkyl compounds synthetic method that organic solvent participates in so that a kind of productive rate height to be provided.
For achieving the above object, the technical solution used in the present invention is: a kind of synthetic method of double indolyl derivative, carry out building-up reactions by aldehyde and indoles, and described aldehyde is selected from C 1To C 10Alkanoic or aromatic aldehyde, adopt solid super-strong acid SO 4 2-/ TiO 2As catalyzer, the aldehyde of corresponding every mmole, the add-on of catalyzer is the 30-80 milligram, and griding reaction 0.5 hour to 5 hours is used solvent wash then, filters, and filtrate concentrating promptly obtains bis-indolyl alkyl compounds.
In the technique scheme, the temperature during described griding reaction is between 25 ℃ to 60 ℃.Temperature can influence the speed of reaction, and usually, when temperature was higher, speed of response was very fast, for example, 50 ℃ of following reaction times between 0.5 hour to 1.5 hours, but the too high meeting of temperature causes the decomposition of aldehyde, therefore, is advisable to be controlled at below 60 ℃.When carrying out suitability for industrialized production, grinding can adopt ball mill to carry out.
Carry out for reacting fully, to improve degree of purity of production, optimized technical scheme is that the mol ratio of described aldehyde and indoles is 1: 2.
In the technique scheme, described solvent is an ethyl acetate.
In the technique scheme, the solid of gained is exactly a solid super acid catalyst during filtration, and the catalyzer process is simple dry, and in the catalyzed reaction that activation promptly can be used for next time in two minutes in microwave oven.
The solid super-strong acid SO of this programme 4 2-/ TiO 2Preparation of catalysts has bibliographical information, can adopt following method: add TiCl in the round-bottomed flask that magnetic stirring apparatus, dropping funnel are housed 4Liquid slowly splashes into strong aqua then under violent stirring, equal 8 until the pH value of reaction mixture.The precipitate with deionized water washing of gained is to can not detecting Cl -Existence till, then 100 ℃ dry 24 hours down.Gained blocks of solid grind into powder joins the H of an amount of 0.5mol/L then 2SO 4In, going out to anhydrate under the decompression, the gained sample promptly got solid super acid catalyst in 4 hours in 600 ℃ of following calcinations afterwards in 100 ℃ times dry 12 hours.
Because the technique scheme utilization, the present invention compared with prior art has following advantage:
1. because adopting, the present invention is easy to realize that the solid super acid catalyst of recycle replaces traditional protonic acid or Lewis acid catalyst to prepare bis-indolyl alkyl compounds under condition of no solvent, the pollution of having avoided organic solvent that environment is produced;
2. productive rate height of the present invention, the time is short, and is simple to operate, and catalyzer can recycle several times easily, and activity can not reduce.
Embodiment
Below in conjunction with embodiment the present invention is further described:
Embodiment one: bis (indolyl) methane synthetic
Get the formaldehyde of 1 mmole and the indoles of 2 mmoles and place grinding, add solid super-strong acid SO 4 2-/ TiO 2Catalyzer, 50 milligrams of consumptions at 50 ℃ of following griding reaction 0.5-1.5 hours, with the ethyl acetate washing, filter then, and filtrate concentrating obtains thick product, further purifies to obtain the bis (indolyl) methane of higher degree.
Embodiment two: 3,3'-(Phenylmethylene)bis[1H-indole] synthetic
Get the phenyl aldehyde of 1 mmole and the indoles of 2 mmoles and place reaction flask, add the solid super-strong acid SO of 60mg 4 2-/ TiO 2, place grinding, grind evenly, in being warming up under the infrared lamp about 50 ℃, through 0.5 hour, the TLC detection reaction was complete, with the ethyl acetate washing, filtered, and the filtrate vacuum concentration obtains thick product, and further purification promptly obtains the 3,3'-(Phenylmethylene)bis[1H-indole] of higher degree.
Embodiment three: two indoles thiophene phenyl methane synthetic
Get the thiophene phenol-2-formaldehyde of 1 mmole and the indoles of 2 mmoles and place reaction flask, add the solid super-strong acid SO of 45mg 4 2-/ TiO 2, place grinding, grind evenly, in being warming up under the infrared lamp about 50 ℃, through 1.5 hours, the TLC detection reaction was complete, with the ethyl acetate washing, filtered, and the filtrate vacuum concentration obtains thick product, and further purification promptly obtains the 3,3'-(Phenylmethylene)bis[1H-indole] of higher degree.
Embodiment four: two indoles nonyl methane synthetic
Get the aldehyde C-9 of 1 mmole and the indoles of 2 mmoles and place reaction flask, add the solid super-strong acid SO of 50mg 4 2-/ TiO 2, place grinding, grind evenly, in being warming up under the infrared lamp about 50 ℃, through 1.5 hours, the TLC detection reaction was complete, with the ethyl acetate washing, filtered, and the filtrate vacuum concentration obtains thick product, and further purification promptly obtains the 3,3'-(Phenylmethylene)bis[1H-indole] of higher degree.
Embodiment five: two 5-skatole p-nitrophenyl methylmethanes synthetic
Get the paranitrobenzaldehyde of 1 mmole and the 5-skatole of 2 mmoles and place reaction flask, add the solid super-strong acid SO of 50mg 4 2-/ TiO 2, place grinding, grind evenly, in being warming up under the infrared lamp about 50 ℃, through 0.5 hour, the TLC detection reaction was complete, with the ethyl acetate washing, filtered, and the filtrate vacuum concentration obtains thick product, and further purification promptly obtains the 3,3'-(Phenylmethylene)bis[1H-indole] of higher degree.
Figure A20051004005300063

Claims (4)

1. the synthetic method of a double indolyl derivative is carried out building-up reactions by aldehyde and indoles, and described aldehyde is selected from C 1To C 10Alkanoic or aromatic aldehyde, it is characterized in that: adopt solid super-strong acid SO 4 2-/ TiO 2As catalyzer, the aldehyde of corresponding every mmole, the add-on of catalyzer is the 30-80 milligram, and griding reaction 0.5 hour to 5 hours is used solvent wash then, filters, and filtrate concentrating promptly obtains bis-indolyl alkyl compounds.
2. the synthetic method of bis-indolyl alkyl compounds according to claim 1 is characterized in that: the temperature during described griding reaction is between 25 ℃ to 60 ℃.
3. the synthetic method of bis-indolyl alkyl compounds according to claim 1, it is characterized in that: the mol ratio of described aldehyde and indoles is 1: 2.
4. the synthetic method of bis-indolyl alkyl compounds according to claim 1, it is characterized in that: described solvent is an ethyl acetate.
CNB2005100400537A 2005-05-12 2005-05-12 Double indolyl derivative synthesizing process Expired - Fee Related CN1332948C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100400537A CN1332948C (en) 2005-05-12 2005-05-12 Double indolyl derivative synthesizing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100400537A CN1332948C (en) 2005-05-12 2005-05-12 Double indolyl derivative synthesizing process

Publications (2)

Publication Number Publication Date
CN1706829A true CN1706829A (en) 2005-12-14
CN1332948C CN1332948C (en) 2007-08-22

Family

ID=35580960

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100400537A Expired - Fee Related CN1332948C (en) 2005-05-12 2005-05-12 Double indolyl derivative synthesizing process

Country Status (1)

Country Link
CN (1) CN1332948C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467354A (en) * 2013-09-16 2013-12-25 陕西师范大学 Method for preparing diindolyl methane derivatives
CN111606838A (en) * 2020-06-19 2020-09-01 宁夏大学 Preparation method of bis-indolyl methane compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887348A1 (en) * 1997-06-25 1998-12-30 Boehringer Mannheim Italia S.p.A. Bis-Indole derivatives having antimetastatic activity, a process for their preparation and pharmaceutical compositions containing them
US20030191320A1 (en) * 2000-10-18 2003-10-09 Eliu Victor Paul Process for the preparation of bis-benzazolyl compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467354A (en) * 2013-09-16 2013-12-25 陕西师范大学 Method for preparing diindolyl methane derivatives
CN103467354B (en) * 2013-09-16 2015-04-08 陕西师范大学 Method for preparing diindolyl methane derivatives
CN111606838A (en) * 2020-06-19 2020-09-01 宁夏大学 Preparation method of bis-indolyl methane compound
CN111606838B (en) * 2020-06-19 2023-06-30 宁夏大学 Preparation method of bisindolyl methane compound

Also Published As

Publication number Publication date
CN1332948C (en) 2007-08-22

Similar Documents

Publication Publication Date Title
CN111995635B (en) Method for preparing organosilicon compound by catalyzing chitosan loaded copper film material
CN110590819B (en) Process for producing organoboron compound and process for producing beta-hydroxyorganoboron compound
CN112778218B (en) Method for preparing quinazolinone and derivative thereof by using chitosan-supported copper catalyst
Cheng et al. Asymmetric Hydrogenation of α, β‐Unsaturated Carboxylic Acids Catalyzed by Ruthenium (II) Complexes of Spirobifluorene Diphosphine (SFDP) Ligands
CN101492457B (en) Method of preparing hydronol
Wu et al. A novel C3-symmetric prolinol-squaramide catalyst for the asymmetric reduction of ketones by borane
Mhaldar et al. Highly effective cellulose supported 2-aminopyridine palladium complex (Pd (II)-AMP-Cell@ Al2O3) for Suzuki-Miyaura and Mizoroki–Heck cross-coupling
Shi et al. Synthesis Cu (I)–CN-based MOF with in-situ generated cyanogroup by cleavage of acetonitrile: Highly efficient for catalytic cyclization of propargylic alcohols with CO2
CN109096318B (en) Method for preparing organic boron compound and beta-hydroxy compound under catalysis of copper ion-loaded Y-type molecular sieve
CN1332948C (en) Double indolyl derivative synthesizing process
CN112321628B (en) Preparation method of beta-dimethylphenyl silicon substituted organic nitrile compound
CN113333021A (en) Porous polymer supported palladium catalyst with high catalytic activity and application thereof in catalyzing Suzuki-Miyaura reaction
CN112076776A (en) Protonated carbon nitrides for selective photocatalytic oxidation of alcohols to esters and uses thereof
Du et al. A new method for optical resolution of BINOL by molecular complexation with (S)-5-oxopyrrolidine-2-carboxanilide
CN102250005B (en) Preparation method of Eslicarbazepine
CN105037589A (en) Carboxymethyl hemicellulose supported palladium catalyst, preparation method therefor and application thereof
CN106748844B (en) A kind of synthetic method of L- homophenylalanins
CN101012194A (en) Method for preparing 2,3,5-trimethylpyridine
CN112824423B (en) Chiral ferrocenylphosphine-indolylaminophosphine ligand and preparation method and application thereof
CN114570428B (en) Cellulose-loaded heterojunction catalytic material and method for preparing chiral boride by using same
CN108383755B (en) Method for synthesizing alkene dinitrile compound
CN115197143B (en) Dinaphtholoazepine and derivatives thereof and nickel catalytic synthesis method thereof
CN105772101B (en) The Mn Anderson types heteropolyacid catalyst of 1 Phenethylthiourea modification, preparation method and applications
CN113354552B (en) Synthetic method of V-type organic ligand, synthetic V-type organic ligand and application thereof
CN114768877A (en) Cellulose-loaded Cu2O/TiO2Catalytic material and method for applying catalytic material to boron addition reaction of p-benzoquinone methide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20051214

Assignee: Suzhou Kaiyuan Minsheng Science and Technology Co., Ltd.

Assignor: Soochow University

Contract record no.: 2010320000323

Denomination of invention: Double indolyl derivative synthesizing process

Granted publication date: 20070822

License type: Exclusive License

Record date: 20100331

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070822

Termination date: 20130512